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We classify time-reversal breaking (class A) spinful topological crystalline insulators with crystallographic
nonmagnetic (32 types) and magnetic (58 types) point groups. The classification includes all possible magnetic
topological crystalline insulators protected by point group symmetry. Whereas the classification of topological
insulators is known to be given by the K-theory in the momentum space, computation of the K-theory has been
a difficult task in the presence of complicated crystallographic symmetry. Here we consider the K-homology
in the real space for this problem, instead of the K-theory in the momentum space, both of which give the
same topological classification. We apply the Atiyah-Hirzebruch spectral sequence (AHSS) for computation
of the K-homology, which is a mathematical tool for generalized (co)homology. In the real-space picture, the
AHSS naturally gives the classification of higher-order topological insulators at the same time. By solving the
group extension problem in the AHSS on the basis of physical arguments, we completely determine possible
topological phases including higher-order ones for each point group. Relationships among different higher-order
topological phases are argued in terms of the AHSS in the K-homology. We find that in some nonmagnetic and
magnetic point groups, a stack of two Z2 second-order topological insulators can be smoothly deformed into
nontrivial fourth-order topological insulators, which implies nontrivial group extensions in the AHSS.
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I. INTRODUCTION

The topological band theory [1,2] is one of the major
topics in condensed-matter physics. The earliest example
of topological quantum phenomena is the integer quantum
Hall effect [3], which is described by the Chern number
n ∈ Z of occupied bands [4]. Kane and Mele generalized
this idea to two-dimensional insulators with keeping time-
reversal symmetry, and found that their intrinsic topological
phase is characterized by the Z2 invariant [5]. After this
work, further generalization to insulators and superconduc-
tors has been done in arbitrary dimensions, which are now
called topological insulator and topological superconductor.
The topological classification under time-reversal, particle-
hole, and chiral symmetries are summarized in the celebrated
topological periodic table [6–8].

In addition to these on-site symmetries, topological phases
protected by crystalline symmetry have been also explored
in insulators [9,10] and superconductors [11–14]. Mathemat-
ically, the topological crystalline insulators/superconductors
are properly described by the twisted equivariant K-theory
[15–17]. However, computation of the K-theory is difficult,
and only a limited class of crystalline symmetry has been
taken into account so far [18–28].

To accomplish topological classification under compli-
cated crystalline space groups, we introduce here a compre-
hensive mathematical method into condensed-matter physics.
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In terms of mathematics, the K-theory is categorized as a
generalized cohomology theory. The Atiyah-Hirzebruch spec-
tral sequence (AHSS) [29] is known to be a powerful tool
to calculate generalized cohomology. In the AHSS, the space
considered is divided into a finite number of simpler cells on
which crystalline symmetry acts as merely on-site symmetry
or relates different cells. We start from simpler topological
classification on the simple cells, then check systematically
the connectivity of different cells by using the so-called
differential maps. By connecting the cells smoothly, we obtain
the desired topological classification on the whole space.

The idea of the AHSS has been applied to the K-theory in
momentum space [30]. It has been shown that the lowest-order
differential map is nothing but the compatibility relation in
the band theory, and thus the AHSS naturally fits into the
topological band theory [31–35]. Moreover, topological struc-
tures beyond the band compatibility relation are obtained via
higher-order differential maps. A complete list of topological
numbers has been obtained for noninteracting fermions under
230 space groups without time-reversal and/or particle-hole
symmetries [30].

In addition to the above momentum space picture, there
is a real-space picture of topological classification [36–40].
While the momentum space picture is only applicable to non-
interacting systems, the real-space picture can be generalized
to symmetry protected topological (SPT) phases with many-
body interactions. It has been suggested that SPT phases are
classified in a unified manner by generalized homology in
real space [40]. The latter picture can also naturally describe
higher-order topological phases [41–51], which are manifest
in lower-dimensional real subspaces. The AHSS works also
in generalized homology as well as the K-theory. In the

2469-9950/2019/99(8)/085127(17) 085127-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.085127&domain=pdf&date_stamp=2019-02-15
https://doi.org/10.1103/PhysRevB.99.085127


NOBUYUKI OKUMA, MASATOSHI SATO, AND KEN SHIOZAKI PHYSICAL REVIEW B 99, 085127 (2019)

real-space picture of topological insulators, the lowest-order
differential map (also called as the boundary map) in the
AHSS can be given as the induced representation from higher-
to lower-dimensional cells.

In this paper, we classify topological phases of noninter-
acting fermions under nonmagnetic and magnetic point group
symmetries in terms of the real-space picture. We consider
the K-homology in real space instead of the K-theory in
momentum space, both of which give the same topological
classification. For each point group symmetry, we systemati-
cally calculate the E∞ page in the AHSS for the K-homology,
which determines topological numbers of higher-order topo-
logical insulators. In order to obtain topological numbers on
the whole space, we solve the group extension problem in
the AHSS by using physical considerations based on Dirac
Hamiltonians. By combining calculations of the AHSS and
such physical considerations, we complete the topological
classification under point group symmetries.

This paper is organized as follows. In Sec. II, we formulate
the AHSS defined in real space as a mathematical tool of
topological classification under symmetries. In the construc-
tion of the AHSS, we use the terminology of SPT phases
as well as that of topological insulators. In particular, we
demonstrate that the mathematical notion of E∞ page in the
AHSS naturally classifies higher-order topological insulators.
In Sec. III, we classify topological phases of noninteracting
spinful fermions under 32 nonmagnetic point groups, in the
absence of time-reversal symmetry. As an example, we ex-
plicitly compute the AHSS under twofold rotation symmetry
in two dimensions. The classification table is summarized in
Fig. 4. In Sec. IV, we classify topological phases of noninter-
acting spinful fermions under 58 magnetic point groups. In
contrast with the cases of nonmagnetic point groups, there
exist antiunitary operations, which provides an additional
complication in the computation of the AHSS. As an example,
we describe the explicit calculation of the AHSS under 2′
symmetry in three dimensions, which correctly reproduces
the Z2 classification of the second-order topological insulator.
The classification table is summarized in Fig. 6. In Sec. V,
we explain how to solve the group extension problem in the
AHSS. While the AHSS enables us to obtain the E∞ page
systematically, we need to solve the group extension problem
to determine the whole topological structure. For this purpose,
we introduce a Dirac Hamiltonian and consider its adiabatic
deformation with adding symmetry-preserving mass terms.
From physical arguments, we derive a simple criterion for
the nontrivial group extension, by which we solve the group
extension problem completely.

II. FORMALISM

In this section, we introduce the AHSS in real space as
a mathematical tool of topological classification. We first
describe the role of the AHSS and then formulate it in terms
of SPT phases and topological insulators. In particular, we
demonstrate that the mathematical notion E∞ page in the
AHSS gives topological classification of higher-order topo-
logical insulators. The following formalism can be under-
stood without the mathematical knowledge of generalized

FIG. 1. Cell decomposition with orientation under twofold rota-
tion in two dimensions. A, a, and α represent zero, one, and two cells,
respectively. The same name is assigned to equivalent cells under the
symmetry. A has the on-site symmetry C2, while a and α have no
on-site symmetries.

(co)homology. See also Refs. [30] and [40] for physical
interpretations of these mathematical concepts.

A. Role of AHSS in topological physics

The key features of topological classification based on the
AHSS are summarized as follows:

(i) The AHSS is a mathematical tool to compute general-
ized (co)homology.

(ii) Classification of SPT phases is done systematically
in the framework of generalized (co)homology [30,40,48,
52–57].

(iii) For noninteracting topological insulators, the gener-
alized homology reduces to the K-homology in real space
[40,58].

The K-theory in momentum space has been used in con-
ventional classification of noninteracting topological insula-
tors. Owing to the mathematical duality, both the K-theory
and K-homology give the same classification. We here adapt
the K-homology in real space since it naturally classifies
higher-order topological phases at the same time: The E∞
page defined in the AHSS of generalized homology directly
describes higher-order topological phases, as discussed below.
In this paper, we explain how to apply the AHSS to the
K-homology in real space, providing classification of nonin-
teracting topological insulators.

B. Outline of AHSS

We here describe the AHSS in terms of SPT phases defined
on real space. Let X be the d-dimensional real space, typically
taken as the Euclidean space [59] Ed , and G a symmetry group
acting on X such as point and space groups. SPT phases are
classified by a generalized homology

hG
0 (X ) = Zm

⊕
i

Zki , (1)

where m and ki are integers.
The AHSS gives the information of hG

0 (X ) in the following
way. Let us consider a cell decomposition of X that respects
symmetry G. We take the cell decomposition so that an
element of G acts on each cell as on-site symmetry or it moves
the cell to different equivalent cells. For such a situation, the
following results do not depend on the choice of the cell
decomposition. An example of the cell decomposition under
twofold rotation is given in Fig. 1. Then, we define the p
skeleton Xp of X as the set of all cells whose dimensions are
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equal to or less than p [60]:

X0 ⊂ X1 ⊂ · · · ⊂ Xd = X. (2)

We can obtain a set of SPT phases on X by embedding p-
dimensional SPT phases on Xp into the whole space X , which
is denoted by FphG

0 (X ). Then the following relations hold:

0 ⊂ F0hG
0 (X ) ⊂ F1hG

0 (X ) ⊂ · · · ⊂ Fd hG
0 (X ) = hG

0 (X ), (3)

with

E∞
p,−p � FphG

0 (X )
/

Fp−1hG
0 (X ), (4)

or equivalently with the short exact sequence

0 → Fp−1hG
0 (X ) → FphG

0 (X ) → E∞
p,−p → 0. (5)

Here the quotient group in Eq. (4) is called E∞ page. In the
next subsection, we explain how the E∞ page is obtained in
the framework of the AHSS.

Once we obtain the E∞ page, FphG
0 (X ) and hG

0 (X ) are
determined by solving Eq. (5). Mathematically, this problem
is known as group extension. Possible group extensions are
not unique in general if E∞

p,−p in Eq. (5) contains a torsion
subgroup

⊕
i Zki . In such a case, we need to combine other

methods to determine the homology completely. Eventually,
the obtained hG

0 (X ) fully classifies SPT phases on X .
Although the E∞ page is introduced as a tool to calculate

hG
0 (X ), it has its own physical meaning. Since FphG

0 is obtained
from SPT phases on cells whose dimensions are equal to or
less than p, E∞

p,−p, the quotient group in Eq. (4), corresponds
to SPT phases on the p-dimensional submanifold consisting of
p-cells and their boundaries. For p < d , such embedded topo-
logical phases are known as higher-order topological phases.
Therefore, the AHSS in real space naturally classifies both
topological insulators and higher-order ones through hG

0 (X )
and E∞ page. We discuss the relation between them in the
last section.

C. E∞ page in K-homology and higher-order topology

In the following, we consider the K-homology KG
0 (X ).

For convenience, we simultaneously treat KG
n (X ), where n is

an integer grading. In the famous topological periodic table,
n specifies the complex (n = 0, 1) or real (n = 0, 1, . . . , 7)
Altland-Zirnbauer (AZ) classes [61]. In general, KG

n (X ) is
equipped with additional n chiral symmetries in addition to
G. On the cell decomposition of the AHSS, G reduces to
on-site symmetry on each cell, and thus we can specify the
corresponding AZ class. The additional n chiral symmetries
shift the AZ class accordingly. As in the case of n = 0, there
exists a short exact sequence

0 → Fp−1KG
n (X ) → FpKG

n (X ) → E∞
p,n−p → 0. (6)

Now we would like to explain how to obtain the E∞ page.
As the first step, we introduce the E1 page as follows. Let
Dp

j be a p-dimensional cell in the cell decomposition, where
j runs the set of inequivalent p-cells under G. Then, the E1

page is defined as

E1
p,n ≡

⊕
j

K
GDp

j

p+n

(
Dp

j , ∂Dp
j

)
, (7)

where GDp
j

is the little group of G on Dp
j (namely, on-site

symmetry on Dp
j ). Here K

GD
p
j

p+n (Dp
j , ∂Dp

j ) denotes the relative
K-homology between Dp

j and its boundary ∂Dp
j , which cor-

responds to (p + n)-th graded SPT phases on the p sphere
Dp

j /∂Dp
j with on-site symmetry GDp

j
. For the noninteracting

case, the SPT phases are given by the K-theory, so we have
[40]

E1
p,n =

⊕
j

K−n
GD

p
j

(pt ), (8)

where K−n
GDp

j

(pt ) is the nth graded K group of a point with on-

site symmetry GDp
j
. Here we have used the Poincaré duality

between the K-homology and the K-theory. We then assign
the emergent AZ class on Dp

j by applying the Winger criterion
[30] on GDp

j
, and identify an element of the K group of a point

as a set of irreducible representations of GDp
j
. Owing to the

Bott periodicity, we can obtain all terms of the E1 page just
by calculating the n = 0 case.

By definition, E1
p,n represents (p + n)th graded SPT phases

on the p spheres Dp
j /∂Dp

j , but it is not the only physical
meaning. E1

p,n is also interpreted as (p + n + 1)th graded
topological gapless modes: The second interpretation comes
from the bulk-boundary correspondence, which claims that
anomalous gapless boundary modes exist if the bulk topologi-
cal phase is nontrivial. Actually, in the noninteracting case, we
can increase the dimension of the system by 1 with keeping
the bulk topological numbers, by shifting the grading as p +
n → p + n + 1 [28]. Then, we can obtain anomalous gapless
modes on p spheres as boundary modes of the (p + 1)-
dimensional system, which are also characterized by E1

p,n.
Based on the above consideration, we can define the first

differential map (also called the boundary map)

d1
p,n : E1

p,n → E1
p−1,n, (9)

which relates the (p + n)th graded SPT phases on p-cells
(E1

p,n) to the (p + n)th graded anomalous gapless modes
on the adjacent (p − 1)-cells (E1

p−1,n) by the bulk-boundary
correspondence: If one puts a SPT on a p-cell, one obtains
its boundary gapless modes on the adjacent (p − 1)-cells. In
practical terms, d1

p,n is expressed as an integer matrix. The
differentials satisfy the following relation:

d1
p,n ◦ d1

p+1,n = 0, (10)

which corresponds to the fact that the boundary of the bound-
ary is nothing. Owing to Eq. (10), we can define the homology
of d1 called E2 page:

E2
p,n := Ker

(
d1

p,n

)/
Im

(
d1

p+1,n

)
. (11)

Physically, E2
p,n represents a family of SPT phases on p-

cells that do not create anomalous boundary modes on their
adjacent (p − 1)-cells. Therefore, we can connect p-cells and
(p − 1)-cells without creating gapless modes on (p − 1)-cells.
At the same time, by regarding the page as gapless modes
[62], we also exclude anomalous gapless modes from (p + 1)-
cells in E2

p,n. See Fig. 2(b).
In general, this is not the end of the story because the

connectivities between p-cells and (p ± 2, 3, . . . )-cells are not
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FIG. 2. (a) Summary of the procedure to calculate the E 1 page of the K-homology. (b) Schematic picture of the differential map d1. The
colored region corresponds to E 2

p,n defined in Eq. (11). TGM denotes the topological gapless mode.

considered in the E2 page. The higher differential and Er page
are iteratively given as

dr−1
p,n : Er−1

p,n → Er−1
p−r+1,n+r−2,

Er
p,n := Ker

(
dr−1

p,n

)/
Im

(
dr−1

p+r−1,n−r+2

)
. (12)

The Er page converges at r = d + 1, and the converged page
is called the limiting page E∞. Note that the Er page can
converge at lower r when ds = 0 (s � r). In class A with
nonmagnetic and magnetic point groups, the E2 page becomes
the limiting page, as discussed in the following sections.

We can interpret E∞
p,−p as SPT phases on the G-invariant

p-dimensional submanifold in the original symmetry class
with p + n = 0. In recent terminology, such topological states
defined on the lower-dimensional subspace of X are called
higher-order topological insulators. Thus, E∞

p,−p for p < d
classifies (d − p + 1)th-order topological insulators, while
E∞

p,−p for p = d classifies conventional topological insulators.

III. TOPOLOGICAL CLASSIFICATION UNDER
NONMAGNETIC POINT GROUP SYMMETRIES

In this section, we classify topological phases in class A
(n = 0) under nonmagnetic point group symmetries acting on
spinful fermions. In class A, time-reversal, particle-hole, and
chiral symmetries are absent, so the emergent AZ class for
n = 0 on each cell is trivially A. In that case, the emergent
AZ class for n = 0 on each cell is trivially A. Thus, the K
group of a point takes the form of Zm, which is generated by
m unitary irreducible representations (irreps) of GDp

j
. In other

words, the Z topological number counts the number of states
in each irrep. By taking the sum over inequivalent p-cells and
using the Bott periodicity for complex AZ classes, we obtain

E1
p,2l =

⊕
j

Zmj ,

E1
p,2l+1 = 0, (13)

where l is an integer, and mj is the number of possible unitary
irreps of GDp

j
.

In the following, we calculate the first differential d1 and
E2 page for the E1 page (5). As an example, we consider
twofold rotation in two dimensions. We take the cell de-
composition defined in Fig. 1. For each p, the number of

inequivalent p-cells is 1. The zero-cell A has on-site point
group symmetry C2, while the one-cell a and two-cell α have
no symmetry. There are two irreps under C2 rotation, which
are characterized by the rotation eigenvalues C2 = ±i, while
there is only one irrep under no symmetry. Thus, the E1 page
is given by

n = 1 0 0 0
n = 0 Z2 Z Z
E1

p,n p = 0 p = 1 p = 2 . (14)

Next, we consider the first differential d1
1,0 from E1

1,0 to
E1

0,0. By definition, E1
1,0 describes the first graded topolog-

ical phases on the one-cell a, which corresponds to one-
dimensional topological insulators in class AIII. Let us put
the nontrivial topological insulator on a. The one-dimensional
topological insulator creates gapless edge states characterized
by its topological number Z, which defines the first differen-
tial map d1

1,0 [Fig. 3(a)]. Since the map respects C2 symmetry,
two boundary modes are created on A from two as adjacent to
A, which form irreps at A as induced representations. In other
words, the map is nothing but the construction of induced
representation [40] from a with no symmetry to A with C2

symmetry. Thus the differential is given by the compatibility
relation

d1
1,0 =

(
1
1

)
, (15)

where rows and columns represent the irreps on A and a,
respectively. This means that a pair of C2 = ±i irreps are
induced on A from a trivial irrep on a.

FIG. 3. Schematic pictures of the first differentials (a) d1
1,0 and

(b) d1
2,0 under the twofold rotation symmetry.
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The first differential d1
2,0 from E1

2,0 to E1
1,0 can also be de-

termined in the same way. See Fig. 3: E1
2,0 describes a second

graded, or equivalently zeroth graded topological insulator on
the two-cell α which is nothing but the Chern insulator. On the
other hand, E1

1,0 represents zeroth graded anomalous gapless
modes on the one-cell a, i.e., the chiral anomaly due to chiral
edge modes. In this case, there is no on-site symmetry for both
the one- and two-cells. The Chern insulator on α can create
a chiral edge mode, but two αs are next to one a, and they
give edge modes with opposite chirality. The contributions
from them cancel each other, and thus the differential becomes
trivial,

d1
2,0 = 0. (16)

This cancellation can be also interpreted in terms of the
orientation relation between the one-cell a and two-cell α.
It is convenient to assign the sign of orientation to each cell
with respecting the symmetry (Fig. 1). The relative orientation
sign between a and α corresponds to the sign of contribution
discussed above. Note that Eqs. (15) and (16) apparently
satisfy Eq. (10).

We are now in a position to calculate the E2 page by
applying Eq. (11) to Eqs. (15) and (16). The result is given by

n = 1 0 0 0
n = 0 Z 0 Z
E2

p,n p = 0 p = 1 p = 2 . (17)

Here E2
0,0 = Z is given by n−i − n+i, where n±i are the

number of states in irreps C2 = ±i. E2
2,0 = E2

2,−2 = Z is the
Chern number of the Chern insulator on two-cells. Since
E1

p−1,n, E1
p,n, and E1

p,n+1 have no torsion, Eq. (11) can be
systematically calculated by using the Smith decomposition.

In this example, the E2 page is nothing but the E∞ page
because of the absence of the higher differentials. Thus the
remaining issue is the group extension problem. Substituting
Eq. (17) into Eq. (5), we obtain

F0KG
0 (X ) = E∞

0,0 = Z, (18)

F1KG
0 = E∞

0,0 = Z, (19)

0 → Z → KG
0 = F2KG

0 → E∞
2,−2 = Z → 0. (20)

This short exact sequence splits since the right side has no
torsion, and thus the solution is given by the sum of the left
and right sides. Namely, the K-homology is given by

KG
0 (X ) = Z2. (21)

The above discussions are simply generalized to any non-
magnetic point group symmetries in two and three dimen-
sions. Fortunately, the higher differentials for them are 0
even in the case of three dimensions, and thus the E2 pages
are always equal to the E∞ pages. The obtained results are
summarized in Fig. 4. Here we omit E∞

1,−1 and E∞
3,−3 since

they are trivial. (This is because E1
1,−1 and E1

3,−3 are 0.) In
three dimensions, E∞

2,−2 classifies the second-order topolog-
ical insulators, whose boundaries host one-dimensional gap-
less modes. Note that the group extension problems for the Ci

(inversion), C3i, and S4 symmetries cannot be solved without

further information because E∞
2,−2 has a torsion. For example,

the short exact sequence for the Ci symmetry is given by

0 → Z → KG
0 (X ) → Z2 → 0. (22)

The trivial solution of Eq. (22) is KG
0 (X ) = Z ⊕ Z2, but

KG
0 (X ) = Z is also a solution of Eq. (22). In general, if the

group extension problem has a nontrivial solution, then we
need an additional method other than the AHSS to fully
determine the K-homology. In the above case of Ci symmetry,
the true answer is KG

0 (X ) = Z. Using physical arguments, we
solve the group extension problem in the last section.

IV. TOPOLOGICAL CLASSIFICATION UNDER
MAGNETIC POINT GROUP SYMMETRIES

In this section, we classify topological phases of the com-
plex A class (n = 0) under magnetic point group symmetries.
In general, a magnetic point group G′ is related with a non-
magnetic point group G:

G′ = G + a0G, (23)

a0 = T v0, (24)

where v0 is a symmetry operation that is not an element
of G, and T is the time-reversal operation. Note that this
is a narrow definition of magnetic point group symmetry in
which v0 is not the identity operation. There exist 58 types of
such magnetic point groups. Very recently, Song et al. have
performed topological classification under pure time-reversal
and nonmagnetic point group symmetries except for the part
corresponding to E∞

0,0 [47]. We here consider the cases with
v0 �= 1.

To determine the E1 page, we need irreps of G′. Following
the standard recipe [63], we start from irreps of G. Then, the
Wigner criterion detects how the irreps of G behave under a0.
Let us consider an irrep α of G. In the Wigner criterion, we
use the following quantity:

Wα = 1

|G|
∑
g∈G

za0g,a0gχα[(a0g)2], (25)

where χα is the character of the irrep α. The factor system of
G′, {zg,h = ±1/g, h ∈ G′}, is defined as

zg,hU (gh) = U (g)U (h), (26)

where

U (g) =
{
U (g) for g ∈ G
U (g)K for g ∈ a0G

(27)

is a projective representation of G′ with U (g) and K being a
unitary matrix and the conjugate operator, respectively.

Wα takes the values ±1, 0 and gives the information of the
degeneracy generated by a0:

Wα Degeneracy of irrep α

1 No additional degeneracy
−1 Kramers degeneracy

0 α has the conjugate irrep ᾱ of G
(α and ᾱ are interchanged by a0)

.

The results of the Wigner criterion for 58 magnetic point
groups are listed in Ref. [63]. Wα determines the emergent
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FIG. 4. Topological classification of complex A class under (a) two- and (b) three-dimensional nonmagnetic point group symmetries for
spinful fermions. The red characters represent the nontrivial group extensions. In three dimensions, E∞

2,−2 gives the topological classification
of the second-order topological insulators (TIs). See Appendix C for the explicit configurations of the surface edge modes and bound states.

AZ class, and thus it determines the K group of a point for
irrep α,

Wα Emergent AZ class K group
1 AI Z

−1 AII Z
0 A Z

.

Using this rule, we can determine E1
p,0 as in the case of

nonmagnetic point groups.
In the case of magnetic point groups, the first differential

can be defined as a map between different emergent AZ
classes. To see this, we consider the magnetic point group 2′
acting on spinful fermions in three dimensions. We take the
cell decomposition defined in Fig. 5(a). The one-cell A has
on-site magnetic symmetry

2′ = C1 + (
TCz

2

)
C1, (28)

where Cz
2 is twofold rotation around the z axis, and C1 denotes

the trivial group consisting of only the identity operation E .
The irrep of C1 is the one-dimensional representation counting

FIG. 5. (a) Cell decomposition with orientation for magnetic
point group 2′ in three dimensions. The left α has the same orien-
tation as that of a, while the other one has the opposite orientation.
(b) Surface edge mode of second-order topological insulator under 2′

symmetry. A gapless mode appears at the edge of the Chern insulator
on the two-cells.

the number of states. According to the Wigner criterion, the
emergent AZ class on the one-cell A is AI:

W = χ
[(

TCz
2

)2] = 1. (29)

The two-cell a and three-cell α have no on-site symmetry. In
summary, the E1 page is given by

n = 7 0 0 0 0
n = 6 0 0 Z Z
n = 5 0 0 0 0
n = 4 0 Z Z Z
n = 3 0 0 0 0
n = 2 0 Z2 Z Z
n = 1 0 Z2 0 0
n = 0 0 Z Z Z
E1

p,n p = 0 p = 1 p = 2 p = 3

. (30)

To determine the E1 page on the one-cell (p = 1) in the above,
we have used the Bott periodicity for real AZ classes,

Z → Z2 → Z2 → 0 → Z → 0 → 0 → 0. (31)

As in the case of nonmagnetic point groups, we use the
compatibility relation to obtain the first differentials. How-
ever, two additional points should be considered in the case
of magnetic point groups. First, we need the compatibility
relation between different AZ classes. The rule for compat-
ibility relation is summarized in Appendix A. In any case,
we can construct the compatibility relation from that of the
nonmagnetic parts. For instance, d1

2,0 is the differential map
from class A to class AI. The compatibility relation in this
case is given by doubling the nonmagnetic part. In this simple
case, the differential for the nonmagnetic part is just the
identity and thus we obtain

d1
2,0 = 2. (32)

Second, the shift of the grade can change the original time-
reversal-type magnetic symmetry into the particle-hole-type
one,

a′
0Ha′−1

0 = −H, (33)
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FIG. 6. Topological classification of complex A class under (a) two- and (b) three-dimensional magnetic point group symmetries for spinful
fermions. The red characters represent the nontrivial group extensions. In three dimensions, E∞

2,−2 gives the topological classification of the
second-order topological insulators (TIs). See Appendix C for the explicit configurations of the surface edge modes and bound states.

where a′
0 is the antiunitary operator in the shifted grade, which

is constructed from a0. In our problem, this change occurs in
the cases of n = 2, 3, 6, 7. In particular, the change for n = 6
is crucial because E∞

2,6 = E∞
2,−2 enters into the short exact

sequence (5). Let us calculate d1
3,0 and d1

3,6. The differential
from the three-cell α to the two-cell a is determined by
assigning the sign of orientation relation between them. For
n = 0, contributions from two αs to A cancel each other out.
On the other hand, for n = 6, there arises a sign change
coming from the fact that particle-hole-like symmetry changes
a state into the antistate. As a result, we can obtain a nonzero
d1

3,6. In summary, we have

d1
3,0 = 0, d1

3,6 = 2. (34)

Other first differentials can be obtained in a similar manner,
by which we calculate the E2 page. The result of the E2 page
for 2′ is

n = 7 0 0 0 0
n = 6 0 0 Z2 0
n = 5 0 0 0 0
n = 4 0 0 0 Z
n = 3 0 0 0 0
n = 2 0 0 0 0
n = 1 0 Z2 0 0
n = 0 0 Z2 0 Z
E2

p,n p = 0 p = 1 p = 2 p = 3

. (35)

While the second differential from E2
3,0 to E2

1,1 can be non-
trivial, there are no higher differentials acting on E2

p,−p. Thus,
E2

p,−p = E∞
p,−p, and the topological classification is given by

E∞
0,0 = E∞

1,−1 = E∞
3,−3 = 0, (36)

E∞
2,−2 = Z2, (37)

KG
0 (E3) = Z2. (38)

The Z2 topological phase in the above is a second-order
topological insulator [64,65] [Fig. 5(b)]. The generator of Z2

is Chern insulators on two-cells that respect 2′ symmetry.
Using the method in the above, we have calculated the E2

pages for all 58 magnetic point groups and found that there are
no higher differentials that affect E2

p,−p. Therefore, we have
E2

p,−p = E∞
p,−p, as in the case of nonmagnetic point groups.

The results are summarized in Fig. 6. Note that the triviality
of third differentials from E3

3,−2 to E3
0,0 is checked only after

the explicit calculations.

V. PHYSICS OF GROUP EXTENSION

Finally, we describe the nontrivial group extension by
using the language of topological physics. We again consider
the symmetry Ci (inversion). As mentioned above, the group
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FIG. 7. Schematic pictures of adiabatic transformations under
the inversion symmetry Ci and no time-reversal symmetry. (a) Equiv-
alence between the Chern insulator with the Chern number: +1
and a Z2 topological insulator. (b) Adiabatic process representing
nontrivial group extension. A stack state of two Chern insulators can
be deformed into one bound state at the origin surrounded by the
hedgehoglike vector field M(x), which corresponds to the generator
of E∞

0,0 = Z.

extension is nontrivial:

0 → E∞
0,0 = Z → KG

0 (E3) = Z → E∞
2,−2 = Z2 → 0. (39)

Here the generator of E∞
2,−2 = Z2 is a Chern insulator that

respects the inversion symmetry. Since the classification of
the second-order topological insulator E∞

2,−2 is Z2, a stack of
two nontrivial states is trivial in E∞

2,−2, and thus two surface
edge modes can be gapped out. When the group extension is
nontrivial, however, such a trivial state in E∞

2,−2 is a nontrivial
state in E∞

0,0. This can be understood by using adiabatic
transformations, in which the gap is not closed.

Let us consider the Chern insulator with the Chern number:
+1 respecting the inversion symmetry, which is a generator of
E∞

2,−2 = Z2. Without changing the symmetry, this state can
be adiabatically transformed into the three-dimensional Z2

topological insulator described by a 4×4 Dirac Hamiltonian
(see Appendix B for details) [see Fig. 7(a)]:

H3d = −i
∑

i

∂iσiτx + mτz,

I3d = τzP(x → −x), (40)

where m is the mass, σ s and τ s represent the 2×2 Pauli
matrices in spin and parity spaces, respectively, and P is the
operator that changes x to −x. The inversion operator I3d

does not change the Hamiltonian H3d . Instead of the Chern
insulators, we consider a stack of two topological insulators:

H3d ⊕ H3d = −i
∑

i

∂iσiτxμ0 + mτzμ0,

I3d ⊕ I3d = τzμ0P, (41)

where μ is an identity matrix in the stack space. Under the
inversion symmetry, the following additional mass term can
exist:

M(x) · μτy, (42)

where the vector field M obeys the constraint from the inver-
sion symmetry:

M(−x) = −M(x). (43)

This mass term can be added to the Hamiltonian (41) without
the gap closing. It is known that the number of bound states
at the origin of such a Hamiltonian is equal to the winding
number of the vector field M surrounding the origin, which
is a consequence of the index theorem [66–70]. Under the
constraint (43), the winding number can only be an odd
number, which means that the Hamiltonian (41) cannot be
adiabatically transformed into the state without the bound
state. Such bound states at the origin are nothing but elements
of E∞

0,0. By taking the winding number to be 1, the stack of
two three-dimensional topological insulators, or equivalently
that of two second-order topological insulators, can be trans-
formed into the state that corresponds to the generator of E∞

0,0
[see Fig. 7(b)].

The above discussion can be simply generalized to the
other nonmagnetic and magnetic point groups with E∞

2,−2 =
Z2 (see Appendix B for details). We focus on the behavior
of the mass term M under the inversion, rotation, and time-
reversal operations since all symmetric operations of point
groups are combinations of them. Each symmetric operation
acts on the mass term in the following ways (see Appendix B
for details):

Inversion : M(x) → −M(−x),

Rotation : M(x) → M(R̂n,θ x),

Time reversal : M(x) → (−M1(x), M2(x),−M3(x)), (44)

where R̂n,θ is a rotation matrix. The group extension is non-
trivial if and only if M can be taken as a uniform vector field
(see Appendix B for details), whose winging number is equal
to zero, under the above conditions. By using this property,
we determine the K-homology for the cases with E∞

2,−2 = Z2

(Figs. 4 and 6). There are two types of exact sequences that
cannot be determined only by the AHSS:

0 → Zp
2 → KG

0 (E3) → Z2 → 0, (45)

0 → Zq → KG
0 (E3) → Z2 → 0, (46)

where p, q are integers. In the cases described by Eq. (45), we
have checked that there can exist a uniform vector field. Thus,
the group extension is trivial:

KG
0 (E3) = Zp+1

2 . (47)

As an Abelian group, the solution of the short exact sequence
(46) can have the following two forms:

KG
0 (E3) = Zq + Z2, (48)

KG
0 (E3) = Zq. (49)
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We have checked that there cannot exist a uniform vector field
under the point groups described by Eq. (46). Thus, the group
extension is nontrivial, and the true solution is Eq. (49).

VI. SUMMARY

We have classified the (class A) topological phases of non-
interacting spinful fermions under nonmagnetic and magnetic
point groups. We have considered the K-homology of real
space instead of the K-theory of momentum space, both of
which give the same topological classification, and computed
it in the framework of the Atiyah-Hirzebruch spectral se-
quence (AHSS). In the real-space picture, the mathematical
notion E∞ page introduced in the AHSS naturally gives the
classification of the higher-order topological insulators. We
have systematically determined the E∞ page and derived the
short exact sequence that contains the K-homology for each
point group. Mathematically, the K-homology is given as a
solution of the group extension problem. The consideration
of the relationship between the E∞ page and K-homology
plays an important role to solve the group extension problem.
We have found that in some nonmagnetic and magnetic point
groups, a stack of two Z2 second-order topological insulators
can be smoothly deformed into a nontrivial fourth-order topo-
logical insulator, which implies a nontrivial group extension
in the AHSS. For each point group, we have determined the
K-homology in addition to the E∞ page and summarized
them in tables.
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APPENDIX A: RULES FOR COMPATIBILITY
RELATION

In this appendix, we summarize the compatibility relation
between a (p − 1)-cell and adjacent p-cells in the cases with
antiunitary symmetries. We write down the rules for each
emergent AZ class at n = 0. i and λ denote representations
of the unitary part of the on-site symmetries at (p − 1)- and
p-cells, respectively. wiλ represents the compatibility relation
of the unitary part. In the cases with W = 0, we choose
one representation of the conjugate pair under the antiunitary
operation, and omit the other representation from rows or
columns of the differential map matrix. The schematic picture
describes how representations at (p − 1)-cells are induced by
representations at adjacent p-cells. Black dots denote unitary
representations, and ↔ means the unitary compatibility re-
lation between them. A pair of representations in a red box
behaves as a generator of the emergent group.

1. Unitary ↔ unitary

n = 0: [
d1

p,n

]
iλ = wiλ.

(A1)

2. Antiunitary (Wi = +1 at n = 0) ↔ unitary

n = 0: [
d1

p,n

]
iλ = 2wiλ.

(A2)

n = 2: [
d1

p,n

]
iλ = wiλ.

(A3)

n = 4: [
d1

p,n

]
iλ = wiλ.

(A4)

3. Antiunitary (Wi = 0 at n = 0) ↔ unitary

n = 0, 4:[
d1

p,n

]
iλ = wiλ + wiλ.
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(A5)

n = 2, 6: [
d1

p,n

]
iλ = wiλ − wiλ.

(A6)

4. Antiunitary (Wi = 0 at n = 0) ↔ antiunitary
(Wλ = 1 at n = 0)

n = 0: [
d1

p,n

]
iλ

= wiλ.

(A7)

n = 4: [
d1

p,n

]
iλ = 2wiλ.

(A8)

5. Antiunitary (Wi = +1 at n = 0) ↔ antiunitary
(Wλ = 0 at n = 0)

n = 0: [
d1

p,n

]
iλ = 2wiλ.

(A9)

n = 2: [
d1

p,n

]
iλ = wiλ.

(A10)

n = 4: [
d1

p,n

]
iλ

= wiλ.

(A11)

6. Antiunitary ↔ antiunitary (the same W,W = 0)

n = 0, 4:[
d1

p,n

]
iλ = wiλ + wiλ.

(A12)

n = 2, 6: [
d1

p,n

]
iλ = wiλ − wiλ.
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(A13)

7. Antiunitary ↔ antiunitary (the same W,W = ±1)

Same as the conventional compatibility relation.

APPENDIX B: GROUP EXTENSION PROBLEMS

Without the time-reversal symmetry (TRS) ZT
2 in class-A

systems, because of the absence of a building block state in
one and three dimensions, the K group fits into the short exact
sequence

0 → E∞
0,0 → KG

0 (E3) → E∞
2,−2 → 0. (B1)

When E∞
2,−2 is free Abelian, the above exact sequence splits

(as Abelian groups), and the K group is determined as E∞
0,0 ⊕

E∞
2,−2. For nonmagnetic or magnetic point group symmetries

in class-A systems, from the explicit computation of the
AHSS, we find that group extensions in which E∞

2,−2 contains
a torsion Abelian group take the following form:

0 → E∞
0,0 → KG

0 (E3) → Z2︸︷︷︸
E∞

2,−2

→ 0, (B2)

where E∞
2,−2 = Z2 represents second-order topological insu-

lators (TIs) and is generated by embedding Chern insulators
on two-cells with respecting the (non)magnetic point group
symmetry. The purpose of this appendix is to depict how we
solve the group extension (B2) systematically.

1. Equivalence of Z2 second-order TIs and the
three-dimensional TI with mass domain walls

In the following manner, one can avoid solving ad hoc
problems that depend on what the (non)magnetic point group
is. Notice that the second-order TIs generating E∞

2,−2 = Z2

can be represented by the 4×4 three-dimensional Dirac
Hamiltonian with the O(3)×ZT

2 symmetry,

H (x) = −i∂xσxτx − i∂yσyτx − i∂zσzτx + mτz, (B3)

IH (x)I−1 = H (−x), I = τz, (B4)

Cn,θH (x)(Cn,θ )−1 = H (R̂n,θ x), Cn,θ = e−i(θ/2)n·σ, (B5)

T H (x)T −1 = H (x), T = iσyK, (B6)

where x → Rn,θ x is the rotation around the n axis by the angle
θ , and K is the complex-conjugate operator. In the presence
of the pure TRS T , the mass term M(x)τy is forbidden at any
spatial point, which is nothing but the robustness of the time-
reversal symmetric three-dimensional TI. Let us consider a
(non)magnetic point group symmetry G ⊂ O(3)×ZT

2 where
G does not include the pure TRS. Owing to the absence of

the TRS, without breaking the symmetry G, it is possible to
add a spatially varying mass term M(x)τy to the Hamiltonian
(B3). If the symmetry G forbids the mass M(x) to be uniform,
a possible spatial configuration of M(x) should accompany
with symmetry-respecting domain walls at which the sign of
M(x) changes, resulting in the Chern insulators with a unit
Chern number localized at the domain walls. We find that any
second-order TIs with E∞

2,−2 = Z2 can be represented in this
way.

We present an example. For the nonmagnetic point group
1̄ = {1, I}, the inversion symmetry enforces a domain wall of
M(x) at the origin. In the presence of a single domain wall
along the z direction with M(−z) = −M(z) so that M(z →
∞) > 0, the low-energy states are described by the doublet
	(z) localized at the domain wall (z ∼ 0),

	loc(z) =
((

1
0

)
σ

⊗
(

0
1

)
τ

,

(
0
1

)
σ

⊗
(

1
0

)
τ

)

× e− ∫ z M(z′ )dz′
. (B7)

The low-energy effective two-dimensional Hamiltonian H2d is
given as

H	loc(z) = 	loc(z)H2d , (B8)

H2d = −i∂xσx − i∂yσy + mσz. (B9)

The two-dimensional Hamiltonian H2d represents the Chern
insulator with a unit Chern number, a representative of the
second-order TI phase with E∞

2,−2 = Z2.

2. Uniform mass and triviality of group extension

Now we solve the group extension (B2). We discuss
whether or not the stack of two Z2 second-order TIs is adia-
batically equivalent to a generator of E∞

0,0, a zero-dimensional
bound state at the origin. Along the line of the thought in the
previous subsection, instead of starting with Chern insulators
on two-cells, we consider a stack of two three-dimensional
TIs,

H (x)⊕2 = (−i∂xσxτx − i∂yσyτx − i∂zσzτx + mτz ) ⊗ μ0,

(B10)

where μs are Pauli matrices for layers. We have four mass
terms Mτy, M1μxτy, M2μyτy, and M3μzτy. Note that Mτy

commutes with the others. Among them, we can exclude
Mτy since we have assumed nontrivial Z2 second-order
TI phases where there is no uniform mass term of Mτy,
and Mτy cannot contribute to the construction of a zero-
dimensional bound state. Let us introduce the mass vec-
tor M(x) = (M1(x), M2(x), M3(x)). From the group actions
(B4)–(B6), the mass vector M(x) changes as in Eq. (44) under
the (non)magnetic point group. We find a simple criterion:

Theorem B.1. The group extension (B2) is trivial if and
only if there exists a uniform mass vector M(x) = M0.

The proof is as follows. The “if” part is obvious: a uniform
mass vector induces a large mass gap in the whole real
space, leading to the absence of any low-energy state with
the same energy scale as m. The “only if” part is more
involved. Let G be a (non)magnetic point group. Suppose
a G-symmetric hedgehog of the mass vector M(x) with
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a finite winding number, q = 1
4π

∫
|x|→∞ M̂ · (dM̂×dM̂ ) ∈ Z

with M̂(x) = M(x)/|M(x)|. Possible winding numbers q ∈ Z
are restricted to some set of integers from the symmetry G.
Applying the index theorem for an infinite open manifold
[66–68] to the defect Hamiltonian H (x)⊕2 + M(x) · μτy, we
find that there appear q stable zero-dimensional bound states
{ψ j}q

j=1, and the low-energy effective Hamiltonian H0d de-
scribing them is H0d = m1q×q. The triviality of the group
extension (B2) implies that the bound states {ψ j}q

j=1 belong
to the image of the first differential d1

1,0. This is equivalent to
that all the bound states {ψ j}q

j=1 can spatially split at the origin
and move far away [see Fig. 3(a)]. In doing so, the mass vector
around the origin becomes finite and can be uniform (because
of the absence of the winding number near the origin). This
completes the proof [71].

Let us see a few examples.
(1̄) The inversion symmetry imposes the condition

M(−x) = −M(x) on the mass vector. There is no uniform
mass vector, meaning that the group extension is nontrivial.

(4̄) The rotoinversion symmetry ICz
4 imposes the condition

M(y,−x,−z) = −M(x, y, z) on the mass vector. There is no
uniform mass vector, meaning that the group extension is
nontrivial.

(4′) The time-reversal rotation symmetry TCz
4 induces the

constraint (−M1, M2,−M3)|−y,x,z = M(x, y, z). There exists a
uniform mass vector M(x, y, z) = (0, M0, 0), meaning that the
group extension is trivial.

Using Theorem B.1, it is easy to determine if the group
extension (B2) is trivial or not for any nonmagnetic and
magnetic point group symmetries. The results are summarized
in Figs. 4 and 6.

3. Some analytic solutions

For some simple (non)magnetic point group symmetries,
one can derive the explicit zero mode solution for a given
winding number q. When the mass vector M(x, y, z) is com-
posed of a single domain wall of the third component M3(z)
along the z direction and a vortex line of the first and second
components (M1(r, θ ), M2(r, θ )) in the xy plane as in

M(r, θ, z) = (�(r) cos(qθ ),�(r) sin(qθ ), m(z)), q ∈ Z,

(B11)

�(r) > 0,�(r → 0) = 0,�(r → ∞) = �0, (B12)

m(z → ±∞) = ±m0, (B13)

it is straightforward to get the analytic solution of zero modes
of the defect Hamiltonian [72]

H̃ (x) = −i∂ · στx + M(x) · μτy (B14)

with the chiral symmetry τz, {H̃ (x), τz} = 0. Without loss of
generality, one can assume m0 > 0. From the U(1) rotation
symmetry generated by the angular momentum Jz (see below)
which commutes with the chiral symmetry τz, the zero modes
are simultaneously labeled by the chirality τz = ±1 and the
angular momentum jz. The explicit forms of the zero modes

are given as

τzψ
±
jz

(r, θ, z) = ±ψ±(r, θ, z), (B15)

Jzψ
±
jz

(r, θ, z) = jzψ
±
m (r, θ, z), Jz = −i∂θ + 1

2 (σz + qμz ),

(B16)

jz ∈
{
Z + 1

2 (q ∈ 2Z),
Z (q ∈ 2Z + 1),

, | jz|<
{

1+q
2 (τz = 1),

1−q
2 (τz = −1),

(B17)

ψ+
jz

(r, θ, z) ∼ ei[ jz−(σz+qμz )/2]θ

[
α+

jz
(r)

(
1
0

)
σ

⊗
(

0
1

)
μ

⊗
(

1
0

)
τ

+ β+
jz

(r)

(
0
1

)
σ

⊗
(

1
0

)
μ

⊗
(

1
0

)
τ

]
e− ∫ z m(z′ )dz′

, (B18)

ψ−
jz

(r, θ, z) ∼ ei[ jz−(σz+qμz )/2]θ

[
α−

jz
(r)

(
1
0

)
σ

⊗
(

1
0

)
μ

⊗
(

0
1

)
τ

+ β−
jz

(r)

(
0
1

)
σ

⊗
(

0
1

)
μ

⊗
(

0
1

)
τ

]
e− ∫ z m(z′ )dz′

. (B19)

Here, the functions α±
jz

(r) and β±
jz

(r) are determined by the
detail of the amplitude �(r). The relationship among the
winding number q and the quantum numbers {τz, jz} is sum-
marized as

q > 0, q ∈ 2Z ⇒ τz = 1, jz = ±1

2
,±3

2
, . . . ,±q − 1

2
,

(B20)

q > 0, q ∈ 2Z + 1 ⇒ τz = 1, jz = 0,±1,±2, . . . ,±q − 1

2
,

(B21)

q < 0, q ∈ 2Z ⇒ τz = −1, jz = ±1

2
,±3

2
, . . . ,±|q| − 1

2
,

(B22)

q < 0, q ∈ 2Z + 1 ⇒ τz = −1, jz = 0,±1,±2, . . . ,

± |q| − 1

2
. (B23)

Using the explicit forms (B18) and (B19) of zero modes,
for some cases, one can explicitly obtain representations of
zero modes under the (non)magnetic point group symmetry,
i.e., the element of E1

0,0. Let us see a few examples.
(1̄) In this case, q is constrained into odd integers q ∈

2Z + 1 from the inversion symmetry I . For q > 0, there are
q zero modes {ψ+

jz
}(q−1)/2

jz=−(q−1)/2 with the positive chirality, and
these have the inversion eigenvalues Iψ+

jz
(r, θ + π,−z) =

(−1) jz+(q−1)/2ψ+
jz

(r, θ, z). A pair of inversion eigenvalues I =
{1,−1} is in the image of d1

1,0. Therefore, for any odd integer

q, the set of bound states {ψ+
jz
}(q−1)/2

jz=−(q−1)/2 belongs to the
generator of E2

0,0 = Z.
(4̄) In this case, q is in 4Z + 2 from the rotoinversion

symmetry ICz
4. For q > 0, there exist q zero modes with

085127-12



TOPOLOGICAL CLASSIFICATION UNDER NONMAGNETIC … PHYSICAL REVIEW B 99, 085127 (2019)

FIG. 8. Nontrivial higher-order topological states of spinful fermions under (a) nonmagnetic and (b) magnetic point groups. Blue and
red objects represent the Zm and Zn

2 (m, n: given in Figs. 4 and 6), respectively. The surface edge modes represent second-order topological
insulators E∞

2,−2, while the bound states at the origin represent the fourth-order topological insulators E∞
0,0.

the positive chirality, and these have the ICz
4 eigenvalues

as ICz
4ψ

+
jz

(r, θ + π/2,−z) = eiπ jz/2(−1)(q−2)/4ψ+
jz

(r, θ, z).
Per the increment q → q + 4, there appears a
quartet of irreducible representations with ICz

4 =

{eπ i/4, e3π i/4, e5π i/4, e7π i/4}, which is trivialin the sense
of being in the image of d1

1,0. Therefore, for any integer
q ∈ 4Z + 2, there remain two irreducible representations
with ICz

4 = {eπ i/4, e3π i/4}, the generator of E2
0,0 = Z2.
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TABLE I. E 2 pages for TRS-breaking spinful topological insula-
tors with nonmagnetic point group (PG) symmetry.

PG
[
E 2

0,0, E 2
1,0, E 2

2,0, E 2
3,0

]
C1 [0 0 0 Z]
Ci [Z 0 Z2 0]
C2 [0 Z 0 Z]
Cs [0 0 Z 0]
C2h [Z 0 Z 0]
D2 [0 Z3 0 Z]
C2v [0 0 Z2 0]
D2h [Z 0 Z3 0]
C4 [0 Z3 0 Z]
S4 [Z2 0 Z2 0]
C4h [Z3 0 Z 0]
D4 [0 Z4 0 Z]
C4v [0 Z Z2 0]
D2d [Z Z Z 0]
D4h [Z2 0 Z3 0]
c3 [0 Z2 0 Z]
C3i [Z3 0 Z2 0]
D3 [0 Z2 0 Z]
C3v [0 Z Z 0]
D3d [Z2 0 Z 0]
C6 [0 Z5 0 Z]
C3h [Z2 0 Z 0]
C6h [Z5 0 Z 0]
D6 [0 Z5 0 Z]
C6v [0 Z2 Z2 0]
D3h [Z 0 Z2 0]
D6h [Z3 0 Z3 0]
T [0 Z3 0 Z]
Th [Z3 0 Z 0]
O [0 Z4 0 Z]
Td [Z Z Z 0]
Oh [Z3 0 Z2 0]

APPENDIX C: SCHEMATIC PICTURES OF
SECOND-ORDER TOPOLOGICAL INSULATORS

Locations of surface edge states in second-order topolog-
ical insulators and bound states at the origin are shown in

Fig. 8. The corresponding classifications are given in Figs. 4
and 6.

APPENDIX D: E2 PAGES FOR THREE DIMENSIONS

In this appendix, we summarize the E2 pages (E2
p,n) for

three dimensions that we have used in the main text.
For TRS-breaking spinful insulators with nonmagnetic

(32 types) point group symmetry, the E1 page has the twofold
Bott periodicity E1

p,n+2 = E1
p,n. From (8), E1

p,n is the direct
sum of free Abelian groups at p-cells in the symmetry class
with the grading n. Under the stable equivalence, there is
no representation in class AIII insulators, meaning that E1

p,1

vanishes for all p and so is E2
p,1. Taking the homology of the

first differential (9), we have the E2 page E2
p,0, which is listed

in Table I in the following form:[
E2

0,0, E2
1,0, E2

2,0, E2
3,0

]
. (D1)

As you can see, the second and third differentials dr
p,n :

Er
p,n → Er

p−r,n+r−1, r = 2, 3, are trivial. Therefore, the E2

page is the limiting page.
For TRS-breaking spinful insulators with magnetic (58

types) point group symmetry, the E1 page obeys the
eightfold Bott periodicity E1

p,n+8 = E1
p,n. In the E∞ page,

E∞
0,0, E∞

1,−1, E∞
2,−2 and E∞

3,−3 constitute the K-homology
KG

0 (E3) that classifies the three-dimensional topological insu-
lators with the symmetry group G. In Table II, we provide the
parts of E2 pages with n ∈ {0,−1,−2,−3}, which is shown
in the following form:⎡⎢⎢⎢⎣

E2
0,0 E2

1,0 E2
2,0 E2

3,0

E2
0,7 E2

1,−1 E2
2,−2 E2

3,−3

E2
0,6 E2

1,−1 E2
2,−2 E2

3,−3

E2
0,5 E2

1,−1 E2
2,−2 E2

3,−3

⎤⎥⎥⎥⎦, (D2)

for 58 magnetic point groups. We find that, for E2 pages
relevant to the K-homology KG

0 (E3), the second and third
differentials vanish.

TABLE II. E 2 pages for TRS-breaking spinful topological insulators with magnetic point group (MPG) symmetry.

MPG

⎡⎢⎢⎢⎣
E 2

0,0 E 2
1,0 E 2

2,0 E 2
3,0

E 2
0,−1 E 2

1,−1 E 2
2,−1 E 2

3,−1

E 2
0,−2 E 2

1,−2 E 2
2,−2 E 2

3,−2

E 2
0,−3 E 2

1,−3 E 2
2,−3 E 2

3,−3

⎤⎥⎥⎥⎦ 4̄′

⎡⎢⎢⎢⎣
0 Z Z2 0

0 0 0 0

0 Z2 0 Z

0 0 0 0

⎤⎥⎥⎥⎦ 4/mm′m′

⎡⎢⎢⎢⎣
Z3 Z2 0 0

0 0 0 0

0 0 Z 0

0 0 0 0

⎤⎥⎥⎥⎦

1̄′

⎡⎢⎢⎢⎣
0 0 Z2 0

0 0 0 0

0 0 0 Z

Z2 0 0 0

⎤⎥⎥⎥⎦ 4′/m

⎡⎢⎢⎢⎣
Z Z2 0 0

0 0 0 0

0 0 Z 0

0 0 0 0

⎤⎥⎥⎥⎦ 4/m′m′m′

⎡⎢⎢⎢⎢⎢⎢⎣

0 Z4 Z2 0

0 0 0 0

0 0 0 Z
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

085127-14



TOPOLOGICAL CLASSIFICATION UNDER NONMAGNETIC … PHYSICAL REVIEW B 99, 085127 (2019)

TABLE II. (Continued).

2′

⎡⎢⎢⎣
0 Z2 0 Z
0 0 0 0
0 0 Z2 0
0 0 0 0

⎤⎥⎥⎦ 4/m′

⎡⎢⎢⎣
0 Z2 Z2 0
0 0 0 0
0 Z 0 Z
0 0 0 0

⎤⎥⎥⎦ 3̄′

⎡⎢⎢⎣
0 Z Z2 0
0 0 0 0
0 Z 0 Z
Z2 0 0 0

⎤⎥⎥⎦

m′

⎡⎢⎢⎣
0 0 Z2 0
0 0 0 0
0 0 0 Z
0 0 0 0

⎤⎥⎥⎦ 4′/m′

⎡⎢⎢⎣
Z Z2 Z2 0
0 0 0 0
Z 0 Z2 0
0 0 0 0

⎤⎥⎥⎦ 32′

⎡⎢⎢⎣
Z2

2 Z2 0 Z
0 0 0 0
0 Z2 Z2 0
0 0 0 0

⎤⎥⎥⎦

2′/m

⎡⎢⎢⎣
0 Z2 0 0
0 0 0 0
0 0 Z 0
0 0 0 0

⎤⎥⎥⎦ 4′22′

⎡⎢⎢⎣
Z2 Z ⊕ Z2 0 Z
0 0 0 0
0 Z2 Z2 0
0 0 0 0

⎤⎥⎥⎦ 3m′

⎡⎢⎢⎣
0 Z2 Z2 0
0 0 0 0
0 0 0 Z
0 0 0 0

⎤⎥⎥⎦

2/m′

⎡⎢⎢⎣
0 Z Z2 0
0 0 0 0
0 0 0 Z
0 0 0 0

⎤⎥⎥⎦ 42′2′

⎡⎢⎢⎣
Z3

2 Z2 0 Z
0 0 0 0
0 Z3 Z2 0
0 0 0 0

⎤⎥⎥⎦ 3̄′m

⎡⎢⎢⎣
Z2 Z2 0 0
0 0 0 0
0 Z Z 0
0 0 0 0

⎤⎥⎥⎦

2′/m′

⎡⎢⎢⎣
Z Z2 Z2 0
0 0 0 0
0 0 Z2 0
0 0 0 0

⎤⎥⎥⎦ 4′m′m

⎡⎢⎢⎣
0 Z2 Z 0
0 0 0 0
0 0 Z 0
0 0 0 0

⎤⎥⎥⎦ 3̄′m′

⎡⎢⎢⎣
0 Z2 Z2 0
0 0 0 0
0 0 0 Z
0 0 0 0

⎤⎥⎥⎦

2′2′2

⎡⎢⎢⎣
Z2 Z2 0 Z
0 0 0 0
0 Z Z2 0
0 0 0 0

⎤⎥⎥⎦ 4m′m′

⎡⎢⎢⎣
0 Z3 Z2 0
0 0 0 0
0 0 0 Z
0 0 0 0

⎤⎥⎥⎦ 3̄m′

⎡⎢⎢⎣
Z3 Z2 Z2 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦

m′m2′

⎡⎢⎢⎣
0 Z2 0 0
0 0 0 0
0 0 Z 0
0 0 0 0

⎤⎥⎥⎦ 4̄′2′m

⎡⎢⎢⎣
Z2 Z2 Z 0
0 0 0 0
0 0 Z 0
0 0 0 0

⎤⎥⎥⎦ 6′

⎡⎢⎢⎣
0 Z ⊕ Z2 0 Z
0 0 0 0
0 Z Z2 0
0 0 0 0

⎤⎥⎥⎦

m′m′2

⎡⎢⎢⎣
0 Z Z2 0
0 0 0 0
0 0 0 Z
0 0 0 0

⎤⎥⎥⎦ 4̄′2m′

⎡⎢⎢⎣
0 Z2 Z2 0
0 0 0 0
0 Z 0 Z
0 0 0 0

⎤⎥⎥⎦ 6̄′

⎡⎢⎢⎣
0 Z Z2 0
0 0 0 0
0 Z 0 Z
0 0 0 0

⎤⎥⎥⎦

m′mm

⎡⎢⎢⎣
0 Z2

2 0 0
0 0 0 0
0 0 Z2 0
0 0 0 0

⎤⎥⎥⎦ 4̄2′m′

⎡⎢⎢⎣
Z2 Z2 Z2 0
0 0 0 0
0 0 Z2 0
0 0 0 0

⎤⎥⎥⎦ 6′/m

⎡⎢⎢⎣
Z Z2 0 0
0 0 0 0
Z 0 Z 0
0 0 0 0

⎤⎥⎥⎦

m′m′m

⎡⎢⎢⎣
Z Z2 0 0
0 0 0 0
0 0 Z 0
0 0 0 0

⎤⎥⎥⎦ 4/m′mm

⎡⎢⎢⎣
Z2 Z2

2 0 0
0 0 0 0
0 Z Z2 0
0 0 0 0

⎤⎥⎥⎦ 6/m′

⎡⎢⎢⎣
0 Z3 Z2 0
0 0 0 0
0 Z2 0 Z
0 0 0 0

⎤⎥⎥⎦

m′m′m′

⎡⎢⎢⎣
0 Z3 Z2 0
0 0 0 0
0 0 0 Z
0 0 0 0

⎤⎥⎥⎦ 4′/mm′m

⎡⎢⎢⎣
Z Z2 Z 0
0 0 0 0
0 0 Z2 0
0 0 0 0

⎤⎥⎥⎦ 6′/m′

⎡⎢⎢⎣
Z2 Z2 Z2 0
0 0 0 0
Z 0 Z2 0
0 0 0 0

⎤⎥⎥⎦

4′

⎡⎢⎢⎣
0 Z2 0 Z
0 0 0 0
0 Z Z2 0
0 0 0 0

⎤⎥⎥⎦ 4′/m′m′m

⎡⎢⎢⎣
Z Z ⊕ Z2 0 0
0 0 0 0
0 0 Z 0
0 0 0 0

⎤⎥⎥⎦ 6′22′

⎡⎢⎢⎣
Z2

2 Z2 0 Z
0 0 0 0
0 Z2 Z2 0
0 0 0 0

⎤⎥⎥⎦

62′2′

⎡⎢⎢⎣
Z5

2 Z2 0 Z
0 0 0 0
0 Z5 Z2 0
0 0 0 0

⎤⎥⎥⎦ 6/mm′m′

⎡⎢⎢⎣
Z5 Z2 0 0
0 0 0 0
0 0 Z 0
0 0 0 0

⎤⎥⎥⎦
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TABLE II. (Continued).

6′mm′

⎡⎢⎢⎣
0 Z ⊕ Z2 0 0
0 0 0 0
0 0 Z 0
0 0 0 0

⎤⎥⎥⎦ 6/m′m′m′

⎡⎢⎢⎣
0 Z5 Z2 0
0 0 0 0
0 0 0 Z
0 0 0 0

⎤⎥⎥⎦

6m′m′

⎡⎢⎢⎣
0 Z5 Z2 0
0 0 0 0
0 0 0 Z
0 0 0 0

⎤⎥⎥⎦ m′3̄′

⎡⎢⎢⎣
0 Z2 Z2 0
0 0 0 0
0 Z 0 Z
0 0 0 0

⎤⎥⎥⎦

6̄′m′2

⎡⎢⎢⎣
0 Z2 Z2 0
0 0 0 0
0 0 0 Z
0 0 0 0

⎤⎥⎥⎦ 4′32′

⎡⎢⎢⎣
Z3

2 Z2 0 Z
0 0 0 0
0 Z3 Z2 0
0 0 0 0

⎤⎥⎥⎦

6̄′m2′

⎡⎢⎢⎣
Z2 Z2 0 0
0 0 0 0
0 Z Z 0
0 0 0 0

⎤⎥⎥⎦ 4̄′3m′

⎡⎢⎢⎣
0 Z3 Z2 0
0 0 0 0
0 0 0 Z
0 0 0 0

⎤⎥⎥⎦

6̄m′2′

⎡⎢⎢⎣
Z2 Z2 0 0
0 0 0 0
0 0 Z 0
0 0 0 0

⎤⎥⎥⎦ m′3̄′m

⎡⎢⎢⎣
Z ⊕ Z2 Z2 0 0

0 0 0 0
0 Z Z 0
0 0 0 0

⎤⎥⎥⎦

6/m′mm

⎡⎢⎢⎣
Z2

2 Z2
2 0 0

0 0 0 0
0 Z2 Z2 0
0 0 0 0

⎤⎥⎥⎦ m3̄m′

⎡⎢⎢⎣
Z3 Z2 0 0
0 0 0 0
0 0 Z 0
0 0 0 0

⎤⎥⎥⎦

6′/mmm′

⎡⎢⎢⎣
Z Z2

2 0 0
0 0 0 0
0 0 Z2 0
0 0 0 0

⎤⎥⎥⎦ m′3̄′m′

⎡⎢⎢⎣
0 Z4 Z2 0
0 0 0 0
0 0 0 Z
0 0 0 0

⎤⎥⎥⎦

6′/m′mm′

⎡⎢⎢⎣
Z2 Z2 0 0
0 0 0 0
0 0 Z 0
0 0 0 0

⎤⎥⎥⎦
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