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In the modern theory of polarization, polarization itself is given by a geometric phase. In calculations for
interacting systems the polarization and its variance are obtained from the polarization amplitude. We interpret
this quantity as a discretized characteristic function and derive formulas for its cumulants and moments. In the
case of a noninteracting system, our scheme leads to the gauge-invariant cumulants known from polarization
theory. We study the behavior of such cumulants for several interacting models. In a one-dimensional system
of spinless fermions with nearest neighbor interaction the transition at which gap closure occurs can be clearly
identified from the finite size scaling exponent of the variance. When next nearest neighbor interactions are
turned on a model with a richer phase diagram emerges, but the finite size scaling exponent is still an effective
way to identify the localization transition.
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I. INTRODUCTION

In crystalline systems the polarization is expressed [1,2] as
a Berry phase [3,4], more specifically, its variant which arises
when crossing the Brillouin zone, the Zak phase [5], rather
than in terms of an ordinary observable. This quantity is also
the starting point in deriving topological invariants [6–9]. The
Zak phase itself corresponds to the first member in a series
of gauge-invariant cumulants (GIC), first studied by Souza,
Wilkens, and Martin [10] (SWM). While in band structure
calculations one can simply discretize [1] the integrals over
the Brillouin zone, in interacting systems the polarization is
obtained from the expectation value of the momentum shift
operator [11,12], also known as the polarization amplitude.
From this quantity Resta and Sorella [11,12] derived the
polarization itself and its variance. The latter has been used
extensively [13–15] as a localization criterion [16] for the
metal insulator transition. For higher order cumulants, expres-
sions in the spirit of Refs. [11] and [12] have not been derived.
For ordinary expectation values higher order moments and
cumulants enable finite size scaling [17–19].

Some studies, [13–15,20–22] focus on the properties of the
total momentum and total position shift operators. Nakamura
and Voit [14] showed the relation between the Lieb, Schultz,
and Mattis argument [23] and the work of Resta and Sorella
[11,12], as well as calculated renormalization group flows
based on sine-Gordon theory. Oshikawa found [21] a topo-
logical relation between commensurability and conductivity
using the total momentum and total position shift operators,
relating the number of low-lying states of an insulator when
the filling is an irreducible fraction p/q. It is also possible
to derive [24] a topological invariant for the Drude weight
using the shift operators. Closed expressions for the finite
size scaling exponent of Fq were derived and calculated

numerically for a set of canonical models by Kobayashi et al.
[20]. It was also shown that definite scaling relations apply to
Fq in some regions of the metallic state of a strongly correlated
model. Recently there has also been an interest [25,26] in the
study of higher order cumulants of the polarization. Patankar
et al. [25] showed that the third cumulant of the polarization
corresponds to the shift current, which gives the nonlinear
response in second harmonic generation experiments, which
show that this quantity exhibits a characteristic enhancement
in Weyl semimetals [25].

In this paper, we give the discrete formulas for the cumu-
lants and moments based on the polarization amplitude up to
any order. We construct the quantities relevant to finite size
scaling, and show that it is possible to locate phase transition
points the usual way. Fq is interpreted as a characteristic
function, and discrete derivative approximations with respect
to q are applied to obtain expressions for the gauge-invariant
cumulants. In contrast to Kobayashi et al. [20] we focus
on the moments derived from Fq rather than Fq itself. The
moments and cumulants seem to us physically more tan-
gible as physical quantities, more importantly their scaling
turns out to be sensitive to the metal-insulator transition,
even though the leading scaling exponent found in Ref. [20]
cancels in our construction. We also sketch the proof that
when our construction is applied to a noninteracting system
the cumulants correspond to the GICs studied in SWM [10].
We also derive the connection between the GICs and the
probability distribution arising from the Wannier function of a
given system.

We calculate the cumulants for models of spinless inter-
acting fermions which exhibit a variety of phase transitions.
When only nearest neighbor interactions are present a Lut-
tinger liquid (LL) to charge-density wave (CDW) transition
occurs in the regime of positive interaction, and a metallic
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state to phase separation when V is negative. Even for small
system sizes, the transition points are very well located. The
variance scales as the square of the system size in the metallic
phase, expected based on comparing the variance of the
polarization with the polarizability [27,28]. We also construct
the analog of the Binder cumulant [18,19], a quantity which is
particularly sensitive to size effects around phase transitions.
In the metallic regions, these quantities show critical behavior.

II. DISCRETE FORMULAS FOR MOMENTS AND
CUMULANTS

For a system periodic in L we first define the quantity

Fq = 〈�| exp(i2πqX̂/L)|�〉, (1)

where X̂ = ∑N
j=1 x j n̂ j . In terms of Fq the nth moment can be

written as

Mn =
(

L

2π i

)n

[Fq](n)
q=0 (2)

or the nth cumulant as

Cn =
(

L

2π i

)n

[ln Fq](n)
q=0. (3)

In the above equations the notation [ fq](n)
q=0 means discrete

derivative (finite difference) of order n of the function fq at
q = 0. In a periodic system q takes only integer values. Note
that Eqs. (2) and (3) amount to interpreting the quantity Fq

as a discretized characteristic function. It is easily verified
that the Resta [11] and Resta-Sorella [12] formulas for the
first and second cumulants, respectively, are reproduced from
Eq. (3). Zak also wrote [29] an expression for the polarization,
which corresponds to M1 in a symmetric finite difference
approximation.

Below we calculate cumulants by first obtaining the total
position C1 and redefining Fq as follows:

Fq = 〈�| exp(i2πqX̂/L)|�〉 exp(−i2πqC1/L). (4)

This step is a mere a shift in the coordinate system, and is for
numerical convenience. (Cumulants of order greater than one
are independent of the average.) We then take the derivative
of ln Fq with respect to Fq analytically, resulting in a sum
of products of moments, and then express the moments via
discrete derivatives. For example, the second cumulant is

C̃2 = M2, (5)

where M2 is are given by Eq. (2). M1 is zero due to the shift
by C1. The finite difference derivative expressions in this case
are correct up to O(L−2).

We now show that in a noninteracting framework Eqs.
(1) to (3) reproduce the GICs derived by SWM [10]. We
also derive the criterion which connects Eq. (1) with the
characteristic function of the distribution corresponding to
the Wannier function, also in a noninteracting system. The
derivation is based on the work of Resta [11].

Consider a crystalline system of lattice constant a with
periodic boundary conditions over M cells (L = Ma), leading
to M equally spaced Bloch vectors,

ks = 2π

Ma
s, s = 0, . . . , M − 1. (6)

The Bloch functions take the form

ψks,m(x) = exp(iksx)uks,m(x), (7)

where uqx,m(x) is Bloch function periodic in a, and m is a band
index. There are N/M occupied bands in the ground state wave
function, which can be written

�0 = A
N/M∏
m=1

M−1∏
s=0

ψks,m, (8)

where A is the antisymmetrizer. We now evaluate Fq for this
wave function,

Fq = 〈�0| exp(i2πqX̂/L)|�0〉 = detS, (9)

where

Ssm,s′m′ =
∫ L

0
dx ψ∗

ks,m(x) exp

(
i
2π

L
qx

)
ψks′ ,m′ (x). (10)

We used the fact that the overlap of determinants equals the
determinant of overlaps. Due to the orthogonality properties
of the Bloch wave functions Ssm,s′m′ is only finite if s = s′ + q,
and Fq determinant becomes

Fq =
M−1∏
s=0

detS(ks, ks+q ), (11)

where

Sm,m′ (ks, ks+q ) =
∫ L

0
dx ψ∗

ks,m(x) exp

(
i
2π

L
qx

)
ψks+q,m′ (x).

(12)

In terms of the periodic Bloch functions, the matrix S(ks, ks+q )
becomes

Sm,m′ (ks, ks+q ) =
∫ L

0
dx u∗

ks,m(x)uks+q,m′ (x). (13)

The quantity Fq is the moment generating function, whereas
ln Fq is the cumulant generating function. Taylor expanding
ln Fq in ks+q − ks = 2πq/L and taking the limit L → ∞ gives
the GICs of SWM (see Eqs. (32) and (33) of Ref. [10]). For
example, taking the second derivative of Fq in Eq. (11) and the
limit L → ∞ we obtain

C2 = − 1

2π

∫
BZ

dk(〈uk,m|∂2
k |uk,m〉 − 〈uk,m|∂k|uk,m〉2). (14)

We also derive the condition under which the moments or
GICs correspond to the true moments or cumulants of the
total position in a band system. The same derivation was used
by Zak [5] to show that the Zak phase corresponds to the
expectation value of the position over the Wannier function
of a given band. Using the definition of the Wannier function

uk,m(x) =
∞∑

p=−∞
exp(ik(pa − x))am(x − pa), (15)

we can rewrite the matrix elements as

Sm,m′ (ks, ks+q ) =
∞∑

p=−∞

∞∑
p′=−∞

∫ L

0
dx exp(−iks(pa − x))

× a∗
m(x − pa) exp(iks+q(p′a−x))

× am′ (x − p′a). (16)
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We can extend the range of the integral to infinity and after
further rearrangements obtain

Sm,m′ (ks, ks+q ) =
∞∑

�p=−∞
exp(−iks�pa)

∫ ∞

−∞
dxa∗

m(x − �pa)

× am′ (x) exp

(
−i

2π

Ma
qx

)
, (17)

where �p = p − p′. Assuming that the overlap between Wan-
nier functions centered in different unit cells is negligible, the
matrix elements become

Sm,m′ (ks, ks+q ) =
∫ ∞

−∞
dx a∗

m(x)am′ (x) exp

(
−i

2π

Ma
qx

)
.

(18)

In this case Fq = ∏M−1
s=0 detS(ks, ks+q ) is the characteristic

function of the squared modulus of the determinant of Wan-
nier functions corresponding to occupied bands. Note that a
similar approximation was derived in Ref. [26].

The moments derived above were used to construct the
maximally localized Wannier functions [30,31] by optimizing
the variance of the position. For a noninteracting system,
when the thermodynamic limit is taken, the resulting variance
(constructed out of moments) is not gauge invariant. However,
one can apply an arbitrary phase to the full many-body wave
function in Eqs. (1) and (2) without changing Mn. In other
words, the lack of gauge invariance manifests in the case
of separable wave functions, for example, product states of
single-particle wave functions, when individual orbitals can
take arbitrary phases.

III. INTERACTING MODEL OF SPINLESS FERMIONS
WITH NEAREST NEIGHBOR INTERACTION

We study an interacting model of spinless fermions on a
lattice in one dimension with Hamiltonian

H =
L∑

i=1

[−t (c†
i+1ci + c†

i ci+1) + V nini+1]. (19)

We solve this system via exact diagonalization at half-filling.
Our calculations include systems with periodic boundary con-
ditions at half-filling with an odd number of particles (the
ground state according to the Perron-Frobenius theorem). At
half filling, this model exhibits a transition at V = 2t and at
V = −2t . The former is a continuous transition between a LL
at small V/t and a CDW at large V , the latter is first-order. For
2t > −V the system is also LL, while for 2t < −V the ground
state is phase separated with particles tending to cluster near
each other. In the large V limit the ground state is one in
which all particles form a single cluster. This state is highly
degenerate, such a state can be displaced by an arbitrary
number of sites resulting in states with the same energy.

A. Finite size scaling of cumulants

C̃2 is shown in Fig. 1 for the attractive case. The upper
panel shows this quantity as a function of V/t , while the lower
one for fixed values of V/t as a function of system size. In the
upper panel, the cumulant increases until the phase transition
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FIG. 1. Upper panel: C̃2 as a function of V/t for different system
sizes. Lower panel: C̃2 as a function of system size for different
values of V on a log-log plot. The two lines indicate fits of the
function f (L) = aLγ + b for the two cases V = −4.0t and V =
−1.5t .

point, but then levels off to a constant value in the conducting
phase. The scaling exponent is difficult to determine in a
region close V = −2t in the insulating phase, but it is γ = 0.0
far from the transition point (see line fit to data points for
V = −4.0t in Fig. 1), and it gives a value of γ = 2.0 (see line
fit to data points for V = −1.5t in Fig. 1) in the conducting
phase. Even for values of V closer to the transition point, C̃2

tends to level off to a constant value for larger system sizes,
indicating a scaling exponent of γ = 0.0 (see Fig. 1, data for
V = −2.5t , V = −2.4t).

On the repulsive side, the behavior of these quantities is
depicted in Fig. 2. In the upper panel, C̃2 is shown. As V
increases, the cumulant decreases monotonically, even in the
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γ

FIG. 2. Upper panel: C̃2 as a function of V/t for different system
sizes. Lower panel: Scaling exponent γ as a function of V/t . The
black dotted line indicates the value of two. The error bars were
multiplied by 10 to make them more visible.
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conducting phase (V/t < 2). What is remarkable is that, in
spite of this, the scaling exponent (lower panel) is very close to
a value of 2 throughout the conducting phase, and starts to de-
crease as a function of V in the insulating phase. The error bars
for the scaling exponent are O(10−4) in the LL phase, increase
around the known phase transition point by several orders
of magnitude, until V/t = 3.7 where they reach a maximum,
and start to decrease, indicative of the significant shifting and
smearing of the KT transition for these system sizes.

We can connect the fact that in the metallic phase the
scaling exponent of the second cumulant with γ is 2, and
decreases when the system enters the insulating phase. It is
well known [27] that the polarizability obeys precisely this
scaling behavior, and the second cumulant gives an upper
bound [28] to the polarizability.

Comparing to the results of the authors of Ref. [20] we
see the advantage of using the cumulants for thermodynamic
scaling. There it was determined that Fq ≈ Lβ(V ) for this
model, meaning that the scaling of Fq depends on the inter-
action. However, the scaling of C̃2 within the metallic phase
is independent of V . The scaling exponent β(V ) is the leading
scaling exponent in Fq which was found to be linear in q for a
number of models. In our definition of the cumulant, we take
the derivative of ln Fq analytically with respect to Fq (which
still results in derivatives of Fq). For C̃2 two derivatives in q
make βV disappear, so the scaling we find is unaffected by
it. We find the expected scaling of the variance of the total
position in the LL phase (Figs. 1 and 2) throughout the entire
metallic region, while in the attractive region Ref. [20] reports
definite scaling only for −t < V < 0.

One way to apply the finite size scaling hypothesis [17] to
critical phenomena makes use of the Binder cumulant [18,19].
One can locate the phase transition point by calculating, for
example,

U4 = 1 − 〈	4〉
〈	2〉〈	2〉 , (20)

where 〈	m〉 denotes the mth moment of the observable 	 (the
order parameter) for different system sizes as a function of the
external parameter under scrutiny, and look for the crossing
point of these curves. The essential point is that the product
of the powers in the numerator and denominator in the second
term are equal. This method has even been applied to locate
phase transition points driven by quantum fluctuations [32],
but only in cases where the order parameter is an expectation
value of an observable, rather than a Berry phase. In this spirit,
we calculated M4/M2

2 (shown in Fig. 3). On the attractive side,
in the insulating phase, this quantity has a negative slope as
a function of V and exhibits size dependence, while in the
conducting phase it is constant and size independent. On the
repulsive no size dependence is found until V/t ≈ 2, but size
dependence is found in the insulating phase.

B. Total polarization distribution

In Fig. 4 we show the Fourier transform of Fq (F̃x) as a
function of the variable conjugate to q (denoted by x) and the
coupling V for a system of size L = 30. Near V = 0 F̃x is flat.
Structure begins to develop near V = ±2t , but much slower
on the positive side. The structure eventually consists of two
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2.5
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M
4/M

22

FIG. 3. Upper panel (Lower panel): Moment ratio M4/M2
2 for the

attractive(repulsive) case.

sharp peaks in the region shown, one at half of the lattice,
the other at its edge. The fact that there are two is a clear
consequence of the filling correction suggested by Aligia and
Ortiz [13]. It is interesting that the behavior of this quantity,
which is related to the distribution of the center of mass,
behaves similar on both ±V , even though the nature of the
ground states are very different. In the extreme limits, V →
±∞ one can easily construct the probability distributions for
ground states (perfect CDW for V → ∞, all particles “stuck”
together for V → −∞).

To show this, let N denote the number of particles, and L
the number of lattice sites, and L/N = 2. At large and positive
V the CDW state is doubly degenerate, we can write the
expectation value of X̂ for each of these as

X+ =
N∑

j=1

(2 j − 1) = N2, (21)

X− =
N∑

j=1

(2 j) = N2 + N, (22)
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F
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x
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025 -2
30 -4

FIG. 4. Fourier transform of Fq as a function of x and the
coupling constant V/t .
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each occurring with a probability of one-half. Since the oper-
ator exp (i2πqX̂/L) is diagonal in the position representation
we can write

Fq = 1

2

(
ei 2πq

L N (N+1) + ei 2πq
L N2) =

{
1 if q is even,

0 if q is odd.
(23)

For the case of extreme clustering (V → −∞) the ground
state is L-fold degenerate. The expectation values of the total
position are

Xk = Nk +
N∑

j=1

j = Nk + N (N + 1)

2
, (24)

where k corresponds to the kth degenerate ground state. In this
case, Fq becomes

Fq = 1

L

L−1∑
k=0

ei 2π
L q[Nk+ N (N+1)

2 ]. (25)

It is easily shown, using that N = L/2 is odd that again we
have

Fq =
{

1 if q is even,

0 if q is odd.
(26)

IV. INTERACTING MODEL OF SPINLESS FERMIONS
WITH NEAREST AND NEXT NEAREST NEIGHBOR

INTERACTION

The other model we study is an interacting model of spin-
less fermions on a lattice in one dimension with Hamiltonian

H =
L∑

i=1

[−t (c†
i+1ci + c†

i ci+1) + V nini+1 + V ′nini+2]. (27)

The phase diagram of this model was determined by Mishra
et al. [33]. In addition to the two phases already known (LL
and CDW) two more phases were found; a bond order (BO)
phase at intermediate V ′ and another charge-density wave
(CDW-2) phase for large V ′. The latter consists of alternating
pairs of particles and pairs of holes. As V ′ → ∞ the ordered
state that emerges is one which pairs of particles alternate
with pairs of holes. We may write the four possible ordered
states as

X1 =
N
2∑

j=1

(4 j − 3) +
N
2∑

j=1

(4 j − 2), (28)

X2 =
N
2∑

j=1

(4 j − 2) +
N
2∑

j=1

(4 j − 1),

X3 =
N
2∑

j=1

(4 j − 1) +
N
2∑

j=1

(4 j),

X4 =
N
2∑

j=1

(4 j) +
N
2∑

j=1

(4 j − 3).
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~

c c

FIG. 5. Upper panel: C̃2 as a function of V ′/t for a system
of fermions with nearest and next-nearest neighbor interaction for
the case V = 4t . Four system sizes are shown, L = 22, 24, 26, 28.
Lower panel: Size scaling exponent γ for C̃2 as a function of V ′/t .
Diamonds show the results based on calculations for systems with
sizes L = 4m, where m is an integer (L = 12, 16, 20, 24, 28), left
triangles show the results based on calculations for system sizes
L = 4m − 2, where m is an integer (L = 10, 14, 18, 22, 26). The
dotted line indicates the value of 2. V ′

c ≈ 1.0 is the critical point
for the transition between the charge-density wave and the Luttinger
liquid phases. V ′

c ≈ 2.9 is the critical point for the transition between
the Luttinger liquid and the bond-order phases.

Using these ordered states it can be shown that

Fq =
{−1 if q is even,

0 if q is odd.
(29)

We see that a sign change occurs between the two CDW
phases [compare to Eq. (23)] corresponding to a shift of the
maximum of the polarization.

In Fig. 5 we present our results for C̃2 (upper panel) and
its finite size scaling exponent (lower panel) for V = 4t as
a function of V ′/t . In Ref. [33] it was found that the CDW
to LL transition occurs at V ′

c ≈ 1.0t , while the LL to BO at
V ′

c ≈ 2.9t The BO phase transforms into the second CDW
phase at V ′

c ≈ 4.29t . Other than the LL all other phases are
gapped and insulating. In Ref. [33] Fig. 3 shows the gap for
this case, which is zero in the region 1.0t < V ′ < 2.9t , exactly
where the scaling exponent γ = 2 (Fig. 5 lower panel). Thus,
phase transitions accompanied by gap closure (metal-insulator
transitions) can be detected by our method.

While transitions between gapped to gapped phases are
more difficult, in this case the BO to CDW-2 transition can
be approximately located based on comparing calculations for
systems of size L = 4m and L = 4m − 2 (m integer) since
the ordered CDW-2 unit cell is four lattice sites. In the upper
panel it is obvious that C̃2 converges to different values for
L = 24, 28 from those of L = 26, 22. The two sets of curves
start to deviate at V ′ < 4.29t since it is expected that the
correlations associated with CDW-2 persist in the BO phase.
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It is interesting that the scaling exponents for L = 4m and
L = 4m − 2 deviate significantly only after V ′ ≈ 4.3t .

V. CONCLUSION

Even though the polarization in crystalline systems corre-
sponds to a Berry phase, proper finite size scaling is possible
via discrete formulas for gauge invariant cumulants. The
variance of the polarization in the Luttinger liquid (gapless)
phase exhibit a finite size scaling exponent γ = 2. Based
on this we were able to identify metal-insulator transitions

in several interacting models. The main limitation in our
study appears to be the small system sizes accessible to exact
diagonalization.
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