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Orbital-dependent backflow wave functions for real-space quantum Monte Carlo
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We present and motivate an efficient way to include orbital-dependent many-body correlations in trial wave
functions of real-space quantum Monte Carlo methods for use in electronic structure calculations. We apply our
new orbital-dependent backflow wave function to calculate ground state energies of the first row atoms using
variational and diffusion Monte Carlo methods. The systematic overall gain of correlation energy with respect
to single determinant Jastrow-Slater wave functions is competitive with the best single determinant trial wave
functions currently available. The computational cost per Monte Carlo step is comparable to that of simple
backflow calculations.
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I. INTRODUCTION

The fermion sign problem in general prevents electronic
quantum Monte Carlo (QMC) calculations from determining
unbiased ground-state properties within a controlled precision
and only polynomial increasing computational cost in the
number of particles. Real-space QMC methods [1] avoid the
sign problem through the fixed-node approximation, solving
the Schrödinger equation with Dirichlet boundary conditions
on the nodes of a trial function �. While fixed-node results
are often accurate, the quest for reducing the systematic
error incurred has prompted generalizations of the standard
Jastrow-Slater (JS) wave function. Better wave functions are
obtained replacing the Slater determinant by a multidetermi-
nant expansion [2], antisymmetrized geminal product (AGP)
[3], or Pfaffian (PF) [4]. As an alternative or in addition,
backflow (BF) transformations [5] can be applied to the
particles’ coordinates. All these variations include correlation
effects in the nodal structure of �, which in turn determines
the accuracy of the fixed-node approximation.

In this paper we introduce a way of including electron
correlations in the antisymmetric factor of � improving the
nodal structure of strongly inhomogeneous systems. Whereas
in previous BF wave functions the ith particle’s coordinate ri

in the argument of the nth single-particle orbital is substituted
by the BF-transformed coordinate qi [e.g., given by Eq. (6)
below],

φn(ri ) −→ φn[qi(X )], (1)

where X specifies the configuration of the system (e.g.,
electronic and nuclear coordinates), we instead replace each
orbital by two or more orbitals coupled via BF correlations in
the amplitudes

φn(ri ) −→ φ(1)
n (ri ) + [qi(X ) − ri] · ∇φ(2)

n (ri ). (2)

Here φ(a)
n , a = 1, 2, . . . , denote reoptimized orbitals of the

same spatial symmetry as φn, specific to the nth orbital. Thus,
the same BF transformation qi(X ) affects differently the var-
ious orbitals describing the antisymmetric part of �. We call
“orbital backflow” (OBF) this way of using the transformed
coordinates.

The OBF functional form is motivated in Sec. II using
the local energy method [6,7] for a single-determinant wave
function, and applied to the first row atoms in Sec. III, where it
proves competitive with inhomogeneous backflow (IBF) [8,9],
AGP [3,10], and PF [4,11] wave functions.

II. ORBITAL BACKFLOW TRIAL WAVE FUNCTION

We briefly outline how normal and orbital backflow may
emerge naturally from approximating a generalized Feynman-
Kac path integral formula. We are merely interested in pos-
sible functional forms, suitable for numerical evaluation, so
that most of the approximations in this section are driven
more by the need of simplification than by mathematical rigor.
Thus, anticipating the eventual optimization of the functional
parameters of any resulting trial wave function, we use vari-
ational freedom already in intermediate simplification steps,
to modify some of the detailed expressions into plausible
functional forms suggested by physical intuition. The notation
f̃ (·) will be used to indicate changes of an explicit function
f (·) due to parameter optimization.

The ratio between the exact ground-state wave function
�(R) and a trial wave function �0(R) not orthogonal to �

is [7,12,13]

�(R)

�0(R)
∝ 〈

e− ∫ ∞
0 EL[R(t )]dt

〉
, (3)

where R = (r1, . . . , rN ) are the coordinates of the N parti-
cles, and the brackets denote the average over all random
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walks R(t ) starting at R generated by the importance-sampled
Green’s function. The local energy method [6,7] uses an an-
alytic approximation of Eq. (3) to give an explicit expression
for an improved wave function � in terms of �0 and its local
energy EL(R) = 〈R|H |�0〉/〈R|�0〉,

�(R)

�0(R)
≈ e−

〈 ∫ τ

0 EL[R(t )]dt
〉
≈ e−τ ẼL (R) ≡ �(R)

�0(R)
. (4)

The approximations underlying Eq. (4) are the truncation of
the cumulant expansion at first order over a finite projection
time τ , and the assumption that the random walk average
of time integrals of EL[R(t )] merely reproduces the same
functional form of the local energy, but with a smoother R
dependence in the relevant phase-space region. The resulting
expression ẼL(R) in the exponent of the improved wave
function is therefore given by a functional expression similar
to EL(R) containing modified/optimized pseudopotentials and
orbitals.

We take �0 as a simple wave function with a Jastrow factor
e−U (R) and a Hartree product of single-particle orbitals φn(ri )
(the antisymmetrization being applied afterwards, on the im-
proved wave function �). The modified local energy ẼL(R)
then contains terms proportional to ∇iŨ (R) · ∇i ln φ̃n(ri ).
Specializing further to a two-body Jastrow factor U (R) =∑

i< j u(ri j ), Eq. (4) suggests that the one-particle orbitals in
the Slater determinant of the improved wave function � are
given by

φ̃n(ri ) exp

⎡
⎣∑

j 	=i

ũ′

ri j
(ri − r j ) · ∇i ln φ̃n(ri )

⎤
⎦. (5)

When ln φn is linear in ri, e.g., −ikn · ri for plane waves of
wave vector kn describing homogeneous systems, we recover
the familiar case of Eq. (1) with the usual backflow transfor-
mation

qi = ri +
∑
j 	=i

η(ri j )(ri − r j ), (6)

where η = ũ′/ri j .
Whereas the cumulant expansion in the local energy

method guarantees the extensivity of the logarithm of � for
extended systems, this approximation may poorly describe
modifications of strongly inhomogeneous, localized orbitals.
Local modifications of orbitals may better be captured by
keeping only the linear term of the exponential of Eq. (5). By
further choosing different modified orbitals φ(a)

n for each n, to
improve the variational flexibility of our trial wave function,
the OBF form of Eq. (2) is obtained. In our case, qi remains
a simple backflow coordinate with homogeneous two-body
correlations of the form given by Eq. (6).

Let us stress that the sequence of approximations made to
simplify Eq. (3) are rather crude and remain on a heuristic
level. However, the procedure is not aimed to directly obtain
accurate expressions, but to suggest flexible functional forms
for the trial function suitable for approximating the exact
ground state within polynomial computational cost. The qual-
ity of the resulting functional form is determined a posteriori
for specific systems after optimization of the radial function η

and the modified orbitals φ(a)
n involved.

III. CASE STUDY OF THE FIRST ROW ATOMS

To benchmark the accuracy of the OBF wave function we
have calculated the energies of all-electron first row atoms
with variational Monte Carlo (VMC) and fixed-node diffusion
Monte Carlo (DMC) for a trial wave function represented by
the product of a Jastrow factor and a single-determinant per
spin component composed from backflow improved orbitals
according to the transformation (2).

In particular, s orbitals now obtain the following form:

φs
n(ri, qi ) = χ (1)

n (ri) + (qi − ri ) · riχ
(2)
n (ri ), (7)

where qi is given by Eq. (6) using different η functions for
like- and unlike-spin electrons expressed as locally piecewise-
quintic Hermite interpolants (LPQHI) [14], and χ

(α)
j are radial

functions expanded in a basis of Slater type orbitals [15]. The
p orbitals read

φpα

n (ri, qi ) = rα
i χ (1)

n (ri) + (
qα

i − rα
i

)
χ (2)

n (ri )

+ rα
i (qi − ri ) · riχ

(3)
n (ri ), (8)

where α is the cartesian component required in the nth orbital.
Instead of using [∂χ (2)

n (r)/∂r]/r as suggested by Eq. (2),
we introduced a third independent radial function χ (3)

n (r) for
increased variational freedom.

Implementation of OBF is rather straightforward by con-
sidering both the particles’ coordinates ri and the renor-
malized BF coordinates qi as independent variables of the
modified orbitals on the right-hand side of (2). Gradient and
Laplacian of the trial wave functions are then obtained by
applying the chain rule in the same way as for standard BF
[6]. Compared to a direct inclusion of orbital-dependent BF
correlations through different coordinate transformations for
different orbitals, the computational cost of our OBF wave
function thus maintains the overall N3 scaling of standard
BF, with a small additional cost of less than a factor 2. The
increased number of independent terms in each orbital can be
dealt with by modern optimization techniques [16,17].

The symmetric Jastrow factor of our case study on first row
atoms contains an electron-electron term

∏
i< j exp[−u(ri j )]

with different pseudopotentials u for like and unlike spins, an
electron-nucleus term

∏
i exp[−w(ri)], and electron-electron-

nucleus correlations∏
i 	= j

exp{−[ξ0(ri )ξ0(r j ) − ξ1(ri)ξ1(r j )ri · r j]}. (9)

TABLE I. Energies in Hartree a.u. of the first row atoms obtained
with VMC and fixed-node DMC using the OBF wave function.

Z VMC DMC

3 − 7.4777221(63) − 7.478002(25)
4 − 14.661198(15) − 14.664801(90)
5 − 24.642090(24) − 24.64840(24)
6 − 37.83091(13) − 37.83796(20)
7 − 54.576653(69) − 54.58366(18)
8 − 75.05034(14) − 75.059814(96)
9 − 99.71480(19) − 99.72617(14)
10 − 128.91956(21) − 128.93129(28)
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FIG. 1. Fraction of correlation energy recovered in VMC for the
first row atoms of orbital backflow wave functions (OBF) compared
to previous results using different kinds of single-determinant wave
function, namely antisymmetrized geminal product (AGP) [3,10],
Pfaffian (PF) [4], inhomogeneous backflow (IBF) [8,9], Pfaffian in-
cluding inhomogeneous backflow (PFBF) [4], and a general Pfaffian
form dubbed STU [11]. Empty symbols denote the bare Slater-
Jastrow result from the respective sources. Small horizontal shifts
of some data are added for clarity. The Hartree-Fock and estimated
exact energies are taken from Table I of Ref. [8].

All radial functions u, w, ξ0, and ξ1 are expressed as LPQHI.
The variational parameters (58 for Li and Be, 67 for the
other atoms) are optimized by minimization of the variational
energy [16]. The resulting VMC and DMC energies obtained
are listed in Table I.

Energies of the first row atoms have been calculated by
several authors using a variety of different trial wave functions
beyond the simple JS form providing useful comparisons.
In Figs. 1 and 2 our OBF data from Table I, indicated by
full red circles, are compared with selected results from the
literature, as indicated by the labels in the body of the figures
with the reference in brackets (unpublished calculations [10]
using AGP and PF, and an earlier AGP result from Ref. [3];
the IBF energies from Ref. [9] for VMC in Fig. 1 and from
Ref. [8] for DMC in Fig. 2; a PF calculation [4] and its version
(PFBF) with IBF included, and a general PF form dubbed
STU [11] which encompasses both singlet and triplet pairing,
as well as unpaired orbitals). For AGP and IBF, subsequent
calculations with the same kind of wave function found lower
energies on account of more aggressive optimization and/or
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FIG. 2. Fraction of correlation energy recovered in fixed-node
DMC for the first row atoms of orbital backflow wave functions
(OBF) compared to previous results of different kinds of single-
determinant wave functions. Notations are the same as those of
Fig. 1.

use of extended basis sets. We also show by empty symbols in
Fig. 1 the VMC JS result from the respective sources.

The most pertinent and systematic comparison is possible
between IBF and OBF. Both are ways to include backflow ef-
fects in inhomogeneous systems, where standard backflow of
the form of Eq. (1) with the simple coordinate transformation
of Eq. (6) does not significantly lower the energies. Within
IBF, nuclear coordinates are included inside the standard BF
transformation through atom-specific electron-nucleus [7,18]
and electron-electron-nucleus [8] terms. Instead, OBF only
uses the basic BF transformation with homogeneous electron-
electron term, but introduces an orbital-specific dependence
through the modified orbitals of Eq. (2). We mention that a
yet different BF wave function, featuring iterative coordinate
renormalization [19], gives excellent results for both homoge-
neous and inhomogeneous strongly correlated systems [20].
However, it becomes less beneficial as correlations weaken,
providing only marginal improvements for the first row atoms.

Whereas OBF obtains slightly less correlation energy than
IBF [9] within VMC (see Fig. 1), a small gain relative to IBF
is obtained by OBF at the level of fixed-node DMC, except
for lithium and neon where they are very close. We attribute
the qualitatively different behavior of VMC and DMC to a
better parametrization of the symmetric Jastrow factor of the
IBF in Ref. [9] compared to the Jastrow factor of the present
work, clearly visible in the difference in the respective bare
Slater-Jastrow (JS) data (see Fig. 1). We further note that the
DMC results for single-determinant IBF are only provided by
Ref. [8]. In Ref. [9] the IBF wave function was optimized
much better, lowering the VMC energies particularly in the
case of beryllium and boron, but DMC values have not been
provided. It is natural to expect that the better optimized
IBF wave function will also lower the corresponding DMC
energies, thus reducing the rather large difference between
IBF and OBF of those two atoms shown in Fig. 2. For the other
atoms, however, the variational quality of single-determinant
IBF wave functions given in Refs. [8,9] is very similar, and
the DMC results of Ref. [8] shown in Fig. 2 should be
representative of a well-optimized IBF. Overall, it seems fair
to conclude that the OBF nodes tend to provide a slightly
better description than those of IBF.
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Pairing wave functions (AGP, PF, or STU) overcome some
topological inadequacies [21] that Hartree-Fock nodes share
with single-determinant wave functions, including OBF and
IBF. The excellent result—particularly in DMC—obtained for
beryllium with the AGP wave function is due to its multide-
terminant character [3] with respect to the nearly degenerate
p orbitals. However, for the heavier atoms, single-determinant
wave functions with OBF or IBF provide essentially as
good energies as pairing wave functions. The further, non-
negligible gain obtained by inclusion of IBF in a PF wave
function [4] (see the PFBF points in Figs. 1 and 2) suggests
that pairing and backflow correlations improve complemen-
tary aspects of the wave function, at least to some extent.

So far, the discussion and our comparison in Figs. 1 and 2
has been restricted exclusively to single-determinant trial
wave functions. For small atoms, nearly exact energies can be
retrieved in QMC multideterminant expansions with a mod-
est number of terms [9,22,23]. However, the same accuracy
cannot be maintained for heavier atoms or molecules with an
affordable number of determinants, whereas backflow wave
functions should improve the accuracy fairly independent
of the number of electrons with only polynomial increasing
computational cost.

We briefly mention that a simple linear extrapolation of
the JS and OBF energies against the corresponding variances
of the energy, as successfully used in strongly correlated
homogeneous quantum fluids [19,20], does not provide any
systematic improvement for the first row atoms’ energies. The
discrete nature of the density of states for the electrons in
the nuclear potential seems to considerably shrink down the
region of validity for such extrapolations.

IV. DISCUSSION

Orbital-dependent backflow wave functions provide a sim-
ple and efficient way of introducing and tuning a physically
appealing orbital dependence in many-body correlations. We
have shown that the resulting gain in energy for first row atoms

is competitive with inhomogeneous backflow wave functions
[9], the best currently available single-determinant trial wave
function for electronic structure of atoms and molecules.
For more complex systems, the orbital dependence of OBF
presents an appealing alternative to the atom-specific IBF
transformation, and may be better suited to study orbital-
selective phenomena in strongly correlated systems [24].

Variational flexibility of OBF is added by two main ingre-
dients, a coordinate renormalization, Eq. (6), and an orbital
modification, Eq. (2). The latter could be used without the
former, for instance replacing the backflow coordinate by the
fluctuation of a local dipole or by the wave vector of a density
fluctuation in an extended system in the scalar product with
the gradient. In such a version, OBF would correspond to an
earlier representation [25] of backflow correlations used in
lattice models [26].

Generically, OBF provides a modification of orbitals en-
larging the functional flexibility of trial wave functions suited
for standard real-space QMC methods. It can directly be
combined with IBF including further dependency on the
electron-nucleus distances or electron-electron-nucleus in the
backflow coordinates, and extended to iterated backflow wave
functions, as well as in the use of Pfaffian and multideter-
minant trial wave function. Efficient optimization among all
possible combinations may request improved optimization
strategies [27].

Despite obvious limitations, the accuracy reached by real-
space QMC methods should be sufficient to tackle and provide
new insights to the role of correlation in electronic structure.
Flexible trial wave functions capturing different aspects of
correlation put up a frame to estimate and reduce the bias
of the underlying trial wave function. Still, reliable estimates
and/or control of the the systematic error of fixed-node QMC
involving large number of electrons remains challenging.
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