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Machine learning electron correlation in a disordered medium
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Learning from data has led to a paradigm shift in computational materials science. In particular, it has been
shown that neural networks can learn the potential energy surface and interatomic forces through examples,
thus bypassing the computationally expensive density functional theory calculations. Combining many-body
techniques with a deep-learning approach, we demonstrate that a fully connected neural network is able to
learn the complex collective behavior of electrons in strongly correlated systems. Specifically, we consider
the Anderson-Hubbard (AH) model, which is a canonical system for studying the interplay between electron
correlation and strong localization. The ground states of the AH model on a square lattice are obtained using the
real-space Gutzwiller method. The obtained solutions are used to train a multitask multilayer neural network,
which subsequently can accurately predict quantities such as the local probability of double occupation and the
quasiparticle weight, given the disorder potential in the neighborhood as the input.
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I. INTRODUCTION

Machine learning (ML) [1–3] is one of today’s most
rapidly growing interdisciplinary fields. The deep-learning
neural network (NN) provides a powerful universal method
for finding patterns and regularities in high-dimensional data
[4,5]. It has found successful applications in a wide variety of
fields. In condensed-matter physics and materials science, no-
table applications include using ML to guide materials design
[6–8] and for identification and classification of crystalline
structures [9–13]. Recently, ML techniques have also been
taken up by researchers in the area of strongly correlated
systems. The majority of such activities focus on using ML
to identify phases and phase transitions in many-body systems
ranging from classical statistical models [14–17] and quantum
fermionic Hamiltonians [18,19] to topological phases [20]
and many-body localization [21]. In these studies, a deep-
learning NN, trained with data from classical or quantum
Monte Carlo simulations, is shown to be able to correctly
distinguish phases and predict phase diagrams. ML trained
NNs can also represent thermodynamic phases in equilibrium
(Boltzmann machines) [22], or ground-state wave functions
of quantum many-body systems [23,24].

In this paper, we demonstrate another application of ML in
correlated electron systems, namely, using NN as an efficient
emulator for many-body problem solvers. Specifically, our
goal is to investigate whether deep-learning NN can be trained
to predict electron correlation, such as the probability of dou-
ble occupation, in a disordered medium. Our approach here
is similar in spirit to those adopted in quantum chemistry and
materials science communities, where the ML trained NN is
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used to bypass the time-consuming density functional theory
(DFT) calculations [25–31]. Such activities have led to the
fast prediction of molecular atomization energies [32,33] and
efficient parametrization of interatomic force fields [34–38],
to name a few. We note in passing that similar ideas of by-
passing expensive numerical calculations with the ML model
have also been explored in correlated electron systems, such
as using ML to replace the impurity solver for dynamical
mean-field theory (DMFT) [39], or to speed up the total
energy calculation in Monte Carlo simulations [40–42].

We consider the disordered Hubbard model in two dimen-
sions,

H = −t
∑

i j,σ

ĉ†
i,σ ĉ j,σ +

∑

i,σ

εin̂i,σ + U
∑

i

n̂i,↑n̂i,↓, (1)

where ĉ†
i,σ is the electron creation operator with spin σ =

↑,↓ at site i, and n̂i,σ ≡ ĉ†
i,σ ĉi,σ is the corresponding num-

ber operator. The first term describes the nearest-neighbor
hopping of electrons. The second term denotes the random
local potential. The last term is the on-site Hubbard repulsion.
As in the standard Anderson model, here the site energy
εi is a random number drawn uniformly from the interval
[−W/2,+W/2]. We work at half filling on an L × L square
lattice with periodic boundary conditions. The Hamiltonian
Eq. (1), also known as the Anderson-Hubbard (AH) model,
is considered a paradigmatic model for studying the interplay
between strong electron correlation and disorder.

The AH model has been intensively studied by sev-
eral numerical methods, including Hartree-Fock calculations
[43,44], quantum Monte Carlo simulations [45–48], and
extended DMFT [49–52]. In particular, an intrinsic metal-
insulator transition without magnetic order can be quanti-
tatively calculated within the DMFT framework [53]. For
application to disordered systems, DMFT can be readily
combined with the typical medium theory (TMT) in which a
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geometrically averaged local density of states is used to
construct the electron bath [54]. The nonmagnetic phase
diagram of the AH model obtained from the TMT-DMFT
method includes three distinct phases: a correlated metallic
phase, a Mott insulating phase, and an Anderson insulating
phase [51,52]. Importantly, the two insulating phases of the
AH model have very different characters. The Mott insulator
results from the strong correlation effect which prohibits
electrons from hopping to the neighboring sites. On the other
hand, strong disorder weakens the constructive interference
that allows an electron wave packet to propagate coherently in
a periodic potential, leading to the Anderson insulator. TMT-
DMFT calculation shows that these two insulating phases are
continuously connected [51,52].

Real-space approaches such as variational Monte Carlo
(VMC) simulations [47,48], statistical DMFT [49,55], and
the Gutzwiller methods [56,57] can better cope with the
crucial spatial fluctuations in low-dimensional systems. Ap-
plying VMC to the two-dimensional (2D) AH model finds a
continuous transition that separates the Mott insulator from
the Anderson insulator in the nonmagnetic phase diagram
[47,48]. It is worth noting that there is no sharp distinction
between correlated metal and the Anderson insulator in 2D.
Interestingly, detailed large-scale simulations of the 2D AH
model within the Brinkman-Rice formalism, where the effi-
cient Gutzwiller method can be applied, showed that strong
spatial inhomogeneity gives rise to an electronic Griffiths
phase that precedes the metal-insulator transition [56].

II. REAL-SPACE GUTZWILLER METHOD

Here, we employ the Gutzwiller method to solve the
AH model on a square lattice. In its original formulation,
a variational wave function |�G〉 = PG|�0〉 is constructed
by applying a real-space projector PG = ∏

i Pi on the Slater
determinant |�0〉 obtained from the noninteracting electron
Hamiltonian [58]. Optimization of |�G〉 can be efficiently
carried out with the so-called Gutzwiller approximation (GA)
[58], which becomes exact in the infinite-dimension limit.
Moreover, GA corresponds to the zero-temperature saddle-
point solution of the slave-boson (SB) method [59]. Indeed,
by factoring out the occupation probability P0

i of the uncor-
related state, the local projector can be expressed as Pi ≡∑

α,β �i,αβ/(P0
i,β )−1/2|α〉〈β|, where α, β are the local many-

electron states, and the elements of the variational matrix �i

correspond to the SB coherent-state amplitude [60,61]. For
the single-band Hubbard model, �i is a diagonal matrix of
dimension 4, i.e., �i = diag(ei, pi,↑, pi,↓, di ), and the square
of these diagonal elements corresponds to the probability
of empty, single (with spin σ = ↑,↓), and double-occupied
states, respectively. In the following, we consider the nonmag-
netic solutions of the AH model and assume pi,↑ = pi,↓ = pi.

The GA solution for the AH model in Eq. (1) is obtained
by minimizing the following energy functional,

E (ρi j,�i ) = −2t
∑

〈i j〉
Ri R j ρi j + 2

∑

i

εi ρii,

+U
∑

i

d2
i + 2

∑

i

μi
(
ρii − p2

i − d2
i

)
. (2)

ni

εi εi

Zi
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FIG. 1. Summary of the GA solution for the AH model on a
30 × 30 square lattice. The panels show the scatter diagram of (a)
local energy correction μi, (b) site electron density ni, (c) probability
of double occupation Di = d2

i , and (d) local quasiparticle weight
Zi = R2

i vs the random site energy εi. The data points were obtained
from calculations with random strength W/t = 6, 10, 14, 18 and
three different U = 4t , 10t , and 16t . The smooth curves showing
the underlying overall trend for a given U were obtained using poly-
nomial regression with up to 14th-order polynomials. The red, blue,
and green curves correspond to U = 4t , 10t , and 16t , respectively.

Here, the prefactor 2 accounts for the spin degeneracy,
ρi j = 〈�0|c†

j ci|�0〉 is the single-particle density matrix, Ri =
(ei pi + pidi )/

√
ni(1 − ni ) is the Gutzwiller renormalization

factor [58], ni = ni,↑ = ni,↓ is the local electron density, and
μi is the Lagrangian multiplier that enforces the Gutzwiller
constraint ni = p2

i + d2
i = ρii [60,61]. The optimization of the

density matrix, or equivalently of the wave function |�0〉,
amounts to solving the following renormalized tight-binding
Hamiltonian,

Ĥ∗ = −t
∑

〈i j〉
RiR j ĉ

†
i ĉ j +

∑

i

(εi + μi )n̂i. (3)

The minimization with respect to SB amplitudes ∂E/∂�i = 0,
subject to constraint e2

i + 2p2
i + d2

i = 1, can be recast into an
eigenvalue problem for each site. These two steps, optimiza-
tion of �0 and �i, have to be iterated until convergence is
reached.

Using the above GA solver on a L = 30 square lat-
tice, large data sets were generated with various disorder
strengths W/t = 6, 10, 14, 18 and Hubbard parameters U/t =
2, 4, . . . , 16. The scatter plots in Fig. 1 show the various local
quantities versus the random site energy εi obtained from the
GA solution with three different values of Hubbard repulsion.
The local quantities are the site Lagrangian multiplier μi, the
local electron density ni, the double-occupation probability
Di = d2

i , and the local quasiparticle weight Zi = R2
i . Interest-

ingly, for a given U , the data points cluster around a smooth
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curve, indicating an underlying continuous trend. More quan-
titatively, we used polynomial regression to determine the
overall dependence of the local quantities on the site energy
εi; see the solid curves in Fig. 1.

Extensive studies on the statistics of electron correlation
in the 2D AH model have been carried out using SB or real-
space DMFT methods [55–57]. One interesting phenomenon
is the screening of the impurity potential due to electron
correlations, especially close to the metal-insulator transition.
Our result shown in Fig. 1(a) clearly demonstrates this trend.
Indeed, from Eq. (3), one can define a renormalized site
potential as ε̃i = εi + μi. The anticorrelation between μi and
εi thus results in a reduced effective site potential. Moreover,
the local density ni exhibits a more homogeneous distribution
in the vicinity of the Fermi energy with increasing U ; see
Fig. 1(b).

The overall behavior of local quasiparticle weight versus
ε is consistent with the result obtained from TMT-DMFT
using the SB method as the impurity solver [52]. As shown
in Fig. 1(d), electrons at large |εi| get less renormalization,
i.e., retain a larger Zi, compared with those close to the
Fermi energy (ε ∼ 0). Moreover, the difference between large
and small Zi increases as one approaches the Mott transition
boundary. This behavior also indicates a strong spatial inho-
mogeneity. While electrons in some regions become localized
magnetic moments characterized by a vanishing Zi, electrons
in other regions undergo an Anderson localization transition
and maintain a large value of Zi.

III. NEURAL NETWORK MODEL

In order to capture the spatial site-to-site fluctuations of the
electron correlation, we next employ deep-learning techniques
to predict the local electronic properties of the AH model.
More specifically, our goal is to predict the local quantities
μ, n, D, and Z at a randomly picked site, say, site 0, with
the site potentials ε j in its neighborhood within a cutoff
radius rc as the input; see Fig. 2(a). This, of course, is based
on the assumption of locality which implies that correlation
functions decay strongly with the distance. In general, the
single-particle density matrix exhibits an exponential and
a power decay for insulators and metals, respectively. The
localization of electron wave functions due to disorder also
enhances the decay of correlation functions, especially in 2D.
To quantify this locality approximation, we have repeated
our ML training with various rc, and have verified that the
predictions of the NNs are not sensitive to the cutoff radius.
The results presented below were obtained by including up
to 14th nearest neighbors with a total of 89 sites within the
cutoff.

A proper representation of the site energies ε j is crucial
in order to provide a description of the neighborhood that
is invariant under fundamental transformations of the lattice
symmetry. To this end, we first decompose all ε j into irre-
ducible representations (irrep) of point group D4, which is
the site symmetry group of a square lattice. The neighboring
sites can be classified into three different invariant subsets,
as shown in Fig. 2(b). Decomposition of these subsets into
the corresponding irreps is straightforward. Taking the square
as an example, there are three irreps: xA1 = εa + εb + εc +

rc
Rj

R0

(a)

(c)(c)
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ε1

ε2

εj
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m
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FIG. 2. (a) Schematic showing the target site at R0 on the square
lattice. Random potentials ε j of neighbors up to some cutoff radius
rc are used as the input to the neural network (NN). (b) Basic
invariant subgroups of neighbors include two types of squares and
a octagons. (c) Architecture of the fully connected NN for the
disordered correlated systems. For input, we use all the random-
distributed on-site energies in the certain circle. The ReLU activation
function is used in the five hidden-feature extraction layers with
512 × 256 × 256 × 128 × 64 nodes. The linear activation function
is used to predict local quantities including μ, n, D, and Z .

εd , xB1 = εa − εb + εc − εd , and xE = (εa − εc, εb − εd ). The
amplitudes of each irrep and their relative phases are then
used as the input for the NN. For example, consider all
doublet irreps: xm with m = 1, 2, . . . , M, where M is the total
number. The amplitudes |xm|, and relative angle cos θmn =
xm · xn/|xm| |xn|, are invariant under symmetry operations. We
note that this descriptor of the site environment is similar to
the atom-centered symmetry functions used in ML potentials
for quantum molecular dynamics simulations [34,37].

We design a fully connected neural network (NN) with five
hidden layers consisting of n = 512 × 256 × 256 × 128 × 64
rectified linear unit (ReLU) neurons [62]. The input layer
is the symmetrized neighborhood ε as discussed above. The
NN performs a sequence of transformations on the input
that is illustrated in Fig. 2(c). In the mth layer, the nth
neuron processes the activation a(m−1) from the (m − 1)th
layer through independent weights and biases w(m−1)a(m−1) +
b(m−1). After the ReLU functions, the outcome is fed forward
to be processed by the output neuron with the linear activation
function. Importantly, here we adopt the multitask ML tech-
nique [63] that forces the NN to learn multiple local electron
properties simultaneously. The additional constraints coming
from the multitask setup helps the search for the true ML
model because of the smaller set of models that can fit all
properties simultaneously.

We use the mean absolute error (MAE) as the cost function
with the L2 regularization [64] to avoid overfitting and a
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FIG. 3. Comparison of the ML predictions with references ob-
tained from the GA solvers, for (a) the local potential renormalization
μi, (b) site electron density ni, (c) probability of double occupation
Di, and (d) local quasiparticle weight Zi. The blue and orange data
points denote predictions for training and test data sets, respectively.
The insets show the normalized count of the error δ defined as the
difference between prediction and reference values.

minimum batch size of 100. We use randomly mixed 900 000
data samples as the training set and perform a fivefold cross-
validation during the training. The Glorot uniform initializer
[65] and Adam optimizer [66] with a learning rate of 0.000 01
is applied for the training process. Once the training process
is successful, the trained neural network can rapidly predict
the 237 600 test data samples. Figure 3 compares the ML
prediction with the GA solutions for all accumulated configu-
rations, i.e., those used in the training phase and the remaining
configurations used for validation. For all four local quantities,
the NN gives rather good predictions as attested by the small
MAE, which is of the order of less than 1% of the mean values
for all quantities.

IV. DISCUSSION AND OUTLOOK

To summarize, we have introduced a ML model for predict-
ing the local electron correlation of the Anderson-Hubbard
Hamiltonian based on training a deep multitask NN in config-
uration space. In order to describe the spatial inhomogeneity
of the electronic structure, we use the real-space Gutzwiller
method to numerically solve the AH model on a square lattice.

Using the disorder potential in the neighborhood as the input,
our ML trained NN is able to predict local electron properties
such as double occupancy and quasiparticle weight. Interest-
ing phenomena such as the correlation-induced screening of
the disorder potential and the local Mott transition can be
accurately predicted by our ML model. Our work provides
a proof-of-principle study showing that deep NNs can serve
as an efficient many-body problem solver for the large-scale
computation of strongly correlated systems. For example,
instead of the Gutzwiller solutions, one can train the NNs with
data sets obtained from the real-space DMFT or the VMC
methods for the AH model. Although more computational
effort is required to generate the training data, more accurate
predictions can be achieved with the resultant NN model.

As discussed above, a primary motivation for ML trained
NN is to bypass the expensive DFT calculation that is re-
quired in simulations such as ab initio molecular dynamics.
Similarly, our proposed ML model as an efficient GA solver
also has a direct application for the molecular dynamics sim-
ulations of the so-called Holstein-Hubbard model [67–69], in
which the site potential εi = −gXi is related to the amplitude
of the local phonon mode Xi, where g is the electron-phonon
coupling constant. In such simulations [68], forces acting on
the local elastic modes are proportional to the local electron
density Fi = gni, which can be efficiently computed using
the trained NN. Another related application is to the recently
proposed Gutzwiller molecular dynamics (GMD) [70]. The
atomic forces in this method are computed from the optimized
Gutzwiller many-electron wave function at every time step.
Contrary to DFT-based molecular dynamics, GMD simula-
tions allow one to investigate the effects of electron correlation
on atomic structural dynamics [70]. Our work shows that ML
techniques can be applied to develop a NN that efficiently
emulates a GA solver. Preliminary results [71] indeed show
that ML is a promising approach for such applications.
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