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Manipulating quantum materials with quantum light
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We show that the macroscopic magnetic and electronic properties of strongly correlated electron systems can
be manipulated by coupling them to a cavity mode. As a paradigmatic example we consider the Fermi-Hubbard
model and find that the electron-cavity coupling enhances the magnetic interaction between the electron spins in
the ground-state manifold. At half filling this effect can be observed by a change in the magnetic susceptibility. At
less than half filling, the cavity introduces a next-nearest-neighbor hopping and mediates a long-range electron-
electron interaction between distant sites. We study the ground-state properties with tensor network methods and
find that the cavity coupling can induce a phase characterized by a momentum-space pairing effect for electrons.
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I. INTRODUCTION

The ability to control and manipulate complex quantum
systems is of paramount importance for future quantum tech-
nologies. Of particular interest are quantum hybrid systems
[1,2] where different quantum objects hybridize to exhibit
properties not shared by the individual components. Examples
of this hybridization effect in cold atom systems coupled
to optical cavities are given by self-organization phenomena
[3–7] as well as the occurrence of quantum phase transitions
and exotic quantum phases [8–11].

Recently, the class of available hybrid systems has been
extended by solid-state systems that couple strongly to mi-
crowave, terahertz, or optical radiation [12–30]. For example,
the coupling of microwave cavities to magnon and spinon
excitations in magnetic materials has been investigated in
[12–16] and [17], respectively. Two-dimensional electron
gases in magnetic fields can couple very strongly to tera-
hertz cavities [18–20] such that Bloch-Siegert shifts become
observable [21], and tomography of an ultrastrongly cou-
pled polariton state was presented in [22] using magneto-
transport measurements [23]. A recent experiment [24] has
demonstrated that coupling of an organic semiconductor to
an optical cavity enhances the electric conductivity, which
can be understood in terms of delocalized exciton polaritons
[25,26].

A special class of solid-state systems are quantum mate-
rials [31–34] where small microscopic changes can result in
large macroscopic responses due to strong electron-electron
interactions. Coupling these systems to cavities opens up the
fascinating possibility of investigating the ultimate quantum
limit where macroscopic properties of quantum materials are
determined by quantum light fields and vice versa. First steps
in this direction have been undertaken recently [27–30,35].
For example, quantum counterparts of light-induced super-
conductivity [36–39] have been investigated in [27–29,35] us-
ing terahertz and microwave cavities, and a superradiant phase
of a cavity-coupled quantum material has been predicted
in [30].

Here we show that shaping the vacuum via a cavity allows
one to manipulate macroscopic properties like the magnetic
susceptibility of a quantum material. As a paradigmatic model
of quantum materials we consider the Fermi-Hubbard model
[40] which captures the interplay between kinetic fluctua-
tions and strong, local, electron-electron interactions [32–34].
While the interaction of these systems with strong, classical
light fields has been investigated, for example, in [41–44], the
intriguing possibility of coupling them to quantum light fields
has not been explored yet.

More specifically, we consider a one-dimensional Hubbard
model coupled to a single mode of an empty cavity. For an
electronic system at half filling we find that the electron-cavity
interaction enhances the magnetic interactions between spins
in the ground-state manifold. This effect can be experimen-
tally observed by measuring the magnetic susceptibility.

At less than half filling, the cavity coupling introduces
(i) a next-nearest-neighbor hopping, (ii) an on-site energy
shift, and (iii) a long-range electron-electron interaction be-
tween distant sites. We investigate the ground state of the
electronic system at less than half filling and in the pres-
ence of the cavity with density-matrix renormalization-group
(DMRG) techniques [45,46]. We find that the cavity induces
momentum-space pairing for mesoscopic electron systems.
The transition to this phase is a collectively enhanced effect
and does not require ultrastrong coupling on the single-
electron level and scales with 1/

√
vuc, where vuc is the volume

of the unit cell of the crystal.
This paper is organized as follows. In Sec. II we introduce

our model for the system shown in Fig. 1. Our results are
presented in Sec. III, and their experimental realization is
discussed in Sec. IV. A brief discussion and conclusion are
provided in Sec. V.

II. MODEL

The system shown in Fig. 1 is comprised of an elec-
tronic system coupled to a single-mode cavity. We introduce
the Hamiltonian describing this quantum hybrid system in
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FIG. 1. The system of interest is given by an electronic system
coupled to a single-mode cavity. The electronic system is described
by the Fermi-Hubbard model with on-site interaction U and hopping
amplitude t between neighboring sites.

Sec. II A, and discuss its gross energy structure for the pa-
rameters of interest in Sec. II B.

A. System Hamiltonian

We begin with the description of the system Hamiltonian
with the single-mode cavity with resonance frequency ωc. The
Hamiltonian for the cavity photons with energy � = h̄ωc is

P̂ = �â†â, (1)

where â† (â) is the bosonic photon creation (annihilation)
operator. The eigenstates of P̂ are the photon number states
| jP〉 with P̂| jP〉 = j�| jP〉. The spectral decomposition of P̂
can thus be written as

P̂ = �

∞∑
j=0

jP̂P
j , (2)

where

P̂P
j = | jP〉〈 jP| (3)

is the projector onto the state with j photons.
The electronic system is described by the one-dimensional

Fermi-Hubbard model [40] with Hamiltonian

ĤFH = T̂ + D̂, (4)

where

T̂ = − t
∑
〈 jk〉σ

(ĉ†
j,σ ĉk,σ + H.c.) (5)

accounts for hopping between neighboring sites 〈 jk〉 with
j < k, t is the hopping amplitude, and ĉ†

j,σ (ĉ j,σ ) creates
(annihilates) an electron at site j in spin state σ ∈ {↑,↓}.
The second term in Eq. (4) describes the on-site Coulomb
interaction between electrons,

D̂ =U
∑

j

n̂ j,↑n̂ j,↓, (6)

where U is the interaction energy and n̂ j,σ = ĉ†
j,σ ĉ j,σ counts

the number of electrons at site j in spin state σ . Each site can
accommodate at most two electrons with opposite spins, and
in the following we refer to doubly occupied sites as doublons.

The operator D̂ is diagonal in the basis of Wannier
states [40],

|x, s〉 = ĉ†
xN ,sN

. . . ĉ†
x1,s1

|0E 〉, (7)

where |0E 〉 is the vacuum state of the electronic system and

x = (x1, . . . , xN ), (8a)

s = (s1, . . . , sN ), (8b)

are row vectors with x j ∈ {1, . . . , L}, s j ∈ {↑,↓}, and j ∈
{1, . . . , N}. The vectors in Eq. (8) describe the spatial distri-
bution of N electrons and their spin state in a one-dimensional
lattice with L sites.

The Wannier states are eigenstates of D̂ and form degen-
erate manifolds with energies kU , where k is an integer that
counts the total number of doubly occupied sites in |x, s〉. In
the following we refer to doubly occupied sites as doublons.
The projector onto the manifold with k doublons is given
by [40]

P̂D
k = (−1)k

k!
∂k

x G(x)

∣∣∣∣
x=1

, (9)

where

G(x) =
L∏

j=1

(1 − x n̂ j,↑n̂ j,↓) (10)

is the generating function. The spectral decomposition of D̂ is
thus given by

D̂ =U
L∑

k=0

k P̂D
k . (11)

Note that in general, each manifold with a given number
of doublons contains a large number of electronic states. For
example, the ground-state manifold with no doublons contains

#
(
P̂D

0

) = 2N

(
L

N

)
(12)

states for a system with N � L electrons. The preceding defi-
nitions for ĤFH and P̂ allow us to write the total Hamiltonian
of the hybrid system in Fig. 1 as

Ĥ = ĤFH + P̂ + V̂ , (13)

where V̂ accounts for the electron-photon interaction. In
Appendix A, we outline the derivation of this interaction term
from first principles and find

V̂ = g(â + â†)Ĵ , (14)

where

Ĵ = − i
∑
〈 jk〉σ

(ĉ†
j,σ ĉk,σ − ĉ†

k,σ
ĉ j,σ ) (15)

is the dimensionless current operator. The parameter g = tη in
V̂ determines the coupling strength between the electrons and
photons, and the dimensionless parameter

η = de√
2h̄ε0ωcv

(16)
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FIG. 2. Schematic drawing of the spectrum of Ĥ0 = D̂ + P̂. � =
� − U is the difference between the photon and doublon energies,
P̂ ( j)

n projects onto a submanifold with j photons and n − j doublons,
and P̂n = ∑n

j=0 P̂ ( j)
n . Higher excitations not shown.

depends on the lattice constant d and the cavity mode volume
v (e: elementary charge; ε0: vacuum permittivity; h̄: reduced
Planck’s constant). The cavity mode couples to both spin com-
ponents of the electrons in the same way, and the derivation
of V̂ assumes η 	 1. Furthermore, we point out that V̂ in
Eq. (14) is fundamentally different from cold atom systems
where the light-matter coupling is proportional to the atomic
density rather than the current.

B. Gross energy structure of Ĥ

Throughout this work we assume that the photon energy �

is of the same order of magnitude as the interaction energy
U of doubly occupied sites. Since we assume a strongly
correlated electron system with U 
 t and since the electron-
photon coupling obeys t 
 g, we have U, � 
 t, g. This
separation of energy scales suggests writing the Hamiltonian
in Eq. (13) as Ĥ = Ĥ0 + Ĥ1, where

Ĥ0 = D̂ + P̂ (17)

describes the energy of doublons and photons, and

Ĥ1 = T̂ + V̂ (18)

accounts for the kinetic energy and the electron-photon in-
teraction. Next we investigate the spectrum of Ĥ0 in more
detail. Due to the structure of Ĥ0 its eigenstates |x, s〉 ⊗ | jP〉
are the tensor product of eigenstates of D̂ and P̂. The energies
of the states |x, s〉 and | jP〉 are determined by their number
of doublons and photons, respectively. Here we group the
eigenstates of Ĥ0 into manifolds with the same number of
excitations as shown in Fig. 2, where an excitation can be
either a photon or a doublon. There are n + 1 possibilities
to form n excitations out of doublons and photons, and these
decompositions have energies

E ( j)
n = (n − j)U + j� = nU + j�, (19)

where � = � − U is the energy difference between the cavity
and the doublon transition, j ∈ {0, . . . , n} denotes the number
of photons, and n − j is the number of doublons. The corre-
sponding projector onto the submanifold with energy E ( j)

n is

P̂ ( j)
n = P̂D

n− j ⊗ P̂P
j , (20)

where P̂D
k and P̂P

j are defined in Eqs. (9) and (3), respectively.
Finally, we introduce

P̂n =
n∑

i=0

P̂ (i)
n , (21)

which is the projector onto the manifold with n excitations.

III. RESULTS

In Sec. II we have shown that the Hamiltonian describing
the system in Fig. 1 can be split in two terms that correspond
to different energy scales of the problem. The first, large
energy scale is given by the electron-electron interaction and
the cavity frequency. The second, small energy scale is the
hopping amplitude and the electron-cavity coupling. Due to
this separation of energy scales we can investigate the physics
of the low-energy sector of the system in an effective Hamilto-
nian approach described in Sec. III A. Results of a numerical
investigation of the ground state of this effective Hamiltonian
are presented in Sec. III B.

A. Effective Hamiltonian

Here we investigate the physics of the electron-photon
coupling in the low-energy manifold P0 with zero excitations.
The effective Hamiltonian in this ground-state manifold and
in second-order perturbation theory is given by [47]

Ĥgs = P̂0Ĥ1P̂0 +
∑

m
m �=0

m∑
j=0

P̂0Ĥ1P̂ ( j)
m Ĥ1P̂0

E0 − E ( j)
m

, (22)

where Ĥ1, E ( j)
m , and P̂ ( j)

m are defined in Eqs. (18)–(20), re-
spectively. E0 is the energy of states in the P̂0 manifold with
respect to Ĥ0, and we set E0 = 0 in the following. In order
to clearly single out the effect of the cavity on the electronic
system, we begin with a discussion of the case where the
electron-photon coupling is zero, i.e., g = 0. In this case only
the m = 0, j = 0 term contributes in the sum in Eq. (22), and
Ĥgs reduces to the well-known tJα model [40],

Ĥ [tJα] = P̂0(T̂ + Ĥmag[J] + Ĥpair[αJ])P̂0, (23)

where

Ĥmag[J] = −J
∑
〈kl〉

b̂†
kl b̂kl , (24a)

Ĥpair[αJ] = −αJ
∑
〈〈kl j〉〉

(b̂†
kl b̂l j + H.c.), (24b)

and

b̂†
kl = (ĉ†

k,↑ĉ†
l,↓ − ĉ†

k,↓ĉ†
l,↑)/

√
2 (25)
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FIG. 3. (a) Electronic system coupled to a single-mode cavity.
The electronic system is described by a one-dimensional Fermi-
Hubbard model with on-site interaction U and hopping amplitude
t . (b) Processes in the tJα model without the cavity where J is
the magnetic interaction and αJ is the pair hopping amplitude.
(c) The cavity leaves the hopping amplitude t unchanged but gives
rise to renormalized parameters Jc and αc. (d) The cavity introduces
a particle-hole binding and enables a next-nearest-neighbor hopping
term, and (e) enables a long-range electron-electron interaction.

creates a singlet pair at sites k and l . The physical processes
of the tJα model are illustrated in Fig. 3(b). T̂ describes
the hopping between adjacent sites, and Ĥmag binds nearest-
neighbor singlet pairs with energy J = 4t2/U via superex-
change processes. Ĥpair describes the hopping of singlet pairs
on neighboring sites as shown in Fig. 3(b), and the sum in
Eq. (24b) runs over adjacent sites 〈〈kl j〉〉 with k < l < j. The
hopping amplitude for singlet pairs is αJ with α = 1/2. The
presence of the cavity modifies the effective Hamiltonian in
the manifold of zero excitations. The electron-photon interac-
tion V̂ couples P̂0 to the P̂1 and P̂2 manifolds and the effective
Hamiltonian is (see Appendix B)

Ĥgs =Ĥ [tJcαc] + P̂0(Ĥshift + Ĥ2-site + Ĥlong)P̂0. (26)

A comparison with the tJα model shows that the cavity
changes the parameters J and α as shown in Fig. 3(c). We
find

Jc = J (1 + C), (27a)

αc = α
1 − C
1 + C , (27b)

where

C = g2

t2

U

U + �
. (28)

Since C > 0 for g �= 0, the electron-photon interaction in-
creases the magnetic interaction energy Jc, decreases αc and
reduces the pair hopping amplitude

αcJc = αJ (1 − C) (29)

for all parameters �,U 
 t, g. Note that Jc is the largest
for the smallest � compatible with � 
 t, g. In addition,
the presence of the cavity results in three additional terms in
Eq. (26),

Ĥshift = −g2

�

∑
j

[n̂ j (1 − n̂ j+1) + n̂ j+1(1 − n̂ j )], (30a)

Ĥ2-site = g2

�

∑
jσ

[(1 − n̂ j )c
†
j−1,σ c j+1,σ + H.c.], (30b)

Ĥlong = g2

�

∑
k �=l, l−1

σ, ν

[ĉ†
k,σ

ĉk+1,σ (ĉ†
l,ν ĉl+1,ν − ĉ†

l+1,ν
ĉl,ν )

+ H.c.], (30c)

where n̂ j = ∑
σ n̂ j,σ . The physical processes induced by

Ĥshift, Ĥ2-site, and Ĥlong are shown in Figs. 3(d) and 3(e). Ĥshift

describes an energy shift of all singly occupied sites with an
empty neighboring site. This effective particle-hole binding
energy results from virtual transitions to the empty site and
are accompanied by the emission and re-absorption of virtual
cavity photons. Ĥ2-site accounts for a next-nearest-neighbor
hopping process and Ĥlong describes a long-range electron-
electron interaction mediated by the cavity. These interactions
are independent of the distance between electrons. We note
that this technique of deriving an effective Hamiltonian is
similarly applicable to classical driving fields analyzed using
Floquet theory [41,42,48]. In a Floquet context, the zero-
excitation sector is coupled to an infinite number of excited
sectors P̂m with −∞ � m � ∞, representing absorption or
emission of m quanta from the driving field. However, the
terms in the +m and −m sectors which contribute to Ĥshift ,
Ĥ2-site, and Ĥlong exactly cancel in the case of a classical
driving field. We conclude that as these terms do not appear
for a classical driving field, they are quantum mechanical
in origin. Finally, we note that we have carried out exact
diagonalization calculations which confirm the accuracy of
the effective Hamiltonian Ĥgs in Eq. (26) in the parameter
regime �,U 
 t, g; see Appendix B for details.

B. Ground-state properties

In order to determine the ground state of the combined
electron-photon system we distinguish between electronic
systems at half filling and below half filling. In the case
of half filling the effective Hamiltonian in Eq. (26) reduces
to Ĥgs = P̂0Ĥmag[Jc]P̂0. This is the Hamiltonian of the tJα

model at half filling, i.e., an isotropic Heisenberg model
with coupling Jc. The ground state of Ĥgs is thus an anti-
ferromagnetic state [40] with increased exchange interaction
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FIG. 4. Illustration of the cavity-induced momentum correlations in the system. The model parameters are U = � = 20t . The bond
dimension used is χ = 400, and the number of sites is L = 32, and the system is at quarter filling N = 16 electrons. (a) The momentum
distribution of electrons n(q) in the ground state at various values of the cavity coupling geff . (b) The momentum correlation N (q1, q2) with a
cavity coupling geff/t = 0. (c) As in (b), but with a cavity coupling geff/t = 17.5 after the transition point. (d) A diagonal slice N (q, q) of the
momentum correlations highlighting the qualitative difference before and after the transition point.

Jc > J due to the electron-photon coupling. To investigate the
ground state at less than half filling, we perform finite-system
DMRG calculations as implemented in the open source Ten-
sor Network Theory (TNT) library [46]. The matrix product
operator corresponding to the Hamiltonian Hgs is built using
the finite automata technique [49,50]. We use a maximum
matrix product state bond dimension of χ = 400, resulting
in a typical truncation error per bond of ∼10−4. The most
important term in the Hamiltonian determining the structure
of the ground state is Ĥlong. Due to the infinite range of the
interaction, its total-energy contribution dominates that of the
strictly nearest-neighbor terms, scaling with ∼L2 rather than
∼L. To account for this expected length dependence of the
coupling term, we define an effective cavity coupling

geff = 4g
√

L ln 2 ≈ 3.33g
√

L. (31)

To explore the effect of the cavity terms, we first compute the
momentum distribution of electrons in the ground state,

n(q) =
〈∑

σ

ĉ†
q,σ ĉq,σ

〉
, (32)

where ĉq,σ = ∑
j e−i jqĉ j,σ /

√
L. As shown in Fig. 4(a), when

geff/t = 0 (i.e., the bare tJα model), a distorted Fermi surface
with the electrons centered about q = 0 is seen. When the cav-
ity coupling is switched to sufficiently large values geff/t �
15, the Fermi surface splits into two smaller peaks at finite mo-
menta. We find that when plotted as a function of the rescaled

geff , the transition occurs at the same value independent of the
system size L, as expected. Further information is revealed by
looking at the momentum-space electron correlations,

N (q1, q2) = 〈c†
q1,↑cq1,↑c†

q2,↓cq2,↓〉, (33)

shown in Figs. 4(b) and 4(c) for geff/t = 0 and geff/t = 17.5
respectively. We find that the cavity induced Ĥlong terms in-
duce momentum-space pairing correlations such that pairs of
“up” and “down” electrons always move in the same direction.
In Fig. 4(d) we show diagonal cuts N (q, q) at various values
of geff , highlighting the induced correlations. In addition to
n(q) and N (q1, q2) we calculated spin-spin correlations [51]
and find that they are approximately unchanged after the
transition. This is because although Jc and αc are substantially
modified by the presence of the cavity, they still lie below the
required threshold to induce a magnetic phase transition [51].
The more important term, Ĥlong, is spin agnostic, acting only
on the charge degree of freedom.

IV. EXPERIMENTAL REALIZATION

Next we discuss the experimental observation of the pre-
dicted effects. The change in the magnetic interaction energy
in the ground state at half filling could, e.g., be observed
by measuring changes in the magnetic susceptibility �χ ∝
�J ∝ η2 of the material [52]. In order to predict the mag-
nitude of this effect mediated by the exchange of virtual
photons, we consider ET-F2TCNQ [53,54] which is a generic
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example of a one-dimensional Mott insulator where U 
 t . A
cavity mode with wavelength λc ≈ 1.8 μm corresponding to
the Mott gap U ≈ 0.7 eV in ET-F2TCNQ results in η ≈ 3 ×
10−5

√
λ3

c/v. This shows that significant coupling strengths
require nanoplasmonic cavities [55] where small values of
v/λ3

c can be achieved. In order to change J by ≈1%, we
require v/λ3

c � 10−7. Such small cavity volumes have been
experimentally achieved recently [55] for wavelengths in the
THz regime. Similarly small volumes for higher frequencies
are expected to be available in the near future, e.g., by using
superconducting cavities [56,57]. In order to observe the
cavity-induced pairing in momentum space at less than half
filling we require geff/t � 15. If the material fills the mode
volume of the cavity, geff just depends on the volume per
lattice site vuc. Nanoplasmonic cavities are thus not required
to observe the momentum-space pairing effect. In the case
of ET-F2TCNQ we find geff/t ≈ 6.4. While this value is too
small by about a factor of 2 in order to observe the new phase,
larger values of geff/t are possible in materials with a smaller
Mott gap or smaller unit cells.

V. SUMMARY AND DISCUSSION

In summary, we have shown that second-order electron-
photon interactions enhance superexchange interactions giv-
ing rise to the antiferromagnetic ground state of the one-
dimensional Fermi-Hubbard model at half filling. Moreover,
we have shown that at sufficiently large couplings, the cav-
ity induces fermion pairing in momentum space. In higher
dimensions we speculate that this could lead to cavity-induced
superconductivity [28]. Such effects do not emerge from a
Floquet analysis of a classical light field, and so are gen-
uinely quantum mechanical in nature. Similarly, substantial
modification of the superexchange J can only be achieved by
classical light fields when they are extremely intense [41–43].
Here this is achieved by strong coupling to an empty cavity.
Finally, we note that our results are directly applicable to
higher-dimensional electronic systems where the electron-
cavity interaction can be tuned via the relative orientation
between the crystal and the cavity polarization vector; see
Appendix A. The rich physics ensuing from this anisotropic
interaction is subject to future studies.
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APPENDIX A: ELECTRON-PHOTON INTERACTION

The Hubbard Hamiltonian ĤFH and the cavity Hamiltonian
P̂ are defined in Eqs. (4) and (1), respectively. Interactions
between the two subsystems can be accounted for via the
Peierls substitution [40] T̂ → T̂PS, where

T̂PS = − t
∑
〈 jk〉σ

(
ĉ†

j,σ ĉk,σ e
i e

h̄

∫ rk
r j

Â(r′ )·dr′ + H.c.
)
, (A1)

ri is the position vector of site i, and

Â = A0(a + a†)u (A2)

is the quantized vector potential of the cavity field in Coulomb
gauge. In Eq. (A2) u is the mode function of the cavity field,

A0 =
√

h̄

2ε0ωcv
, (A3)

ε0 is the vacuum permittivity, and v is the mode volume.
In the following we neglect the position dependence of the
mode function and assume that u = ec, where ec is the unit
polarization vector of the cavity field. Assuming that ec is
aligned with the direction of the atomic chain we obtain

T̂PS = − t
∑
〈 jk〉σ

(ĉ†
j,σ ĉk,σ eiη(â+â† ) + H.c.), (A4)

where the dimensionless parameter η is defined in Eq. (16)
and d = |r j+1 − r j | is the lattice constant. The full Hamilto-
nian of the hybrid system comprising the electrons, photons,
and their interactions is thus

Ĥhybrid = T̂PS + P̂ + D̂. (A5)

Expanding Eq. (A4) up to first order in η for η 	 1 results in

T̂PS ≈ T̂ + V̂ , (A6)

where V̂ is defined in Eq. (14). For η 	 1, Ĥhybrid ≈ Ĥ =
ĤFH + P̂ + V̂ is thus well approximated by the system
Hamiltonian Ĥ defined in Eq. (13). The generalization of
the electron-photon interaction to higher-dimensional elec-
tronic systems is straightforward. In particular, for a three-
dimensional crystal whose unit cell is described by the lattice
vectors dα we obtain

V̂3D = (â + â†)
e√

2h̄ε0ωcv

∑
α

tα (ec · dα )Ĵα, (A7)

where tα and Ĵα are the hopping amplitude and the current
operator in the direction of dα , respectively. It follows that the
electron-cavity coupling depends on the relative orientation
between the crystal and the cavity field. Note that we did
not employ the rotating-wave approximation in Eqs. (14) and
(A7). As a matter of fact, the counter-rotating terms give rise
to the dominant contribution to the cavity-mediated effects in
the ground-state manifold.

APPENDIX B: EVALUATION OF Hgs

The first term in Eq. (22) reduces to P̂0T̂ P̂0 since
P̂0V̂ P̂0 = 0, i.e., the first-order contribution of the electron-
photon coupling to Ĥgs vanishes. The sum in Eq. (22) accounts
for all second-order processes, and only the three terms with
indices (m = 1, j = 0), (m = 2, j = 1), and (m = 1, j = 1)
make a nonzero contribution to this sum. (m = 1, j = 0)
corresponds to the standard tJα model, and (m = 2, j = 1)
and (m = 1, j = 1) account for the modifications due to the
cavity. In the following we discuss these three contributions
in more detail.

(i) (m = 1, j = 0). This term corresponds to processes
where one doublon is created and subsequently annihilated.
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These processes only involve the hopping term T̂ and are
independent of the electron-photon interaction V̂ ,

− 1

U
P̂0Ĥ1P̂ (0)

1 Ĥ1P̂0 = − 1

U

[
P̂D

0 T̂ P̂D
1 T̂ P̂D

0

] ⊗ P̂P
0

= P̂0(Ĥmag[J] + Ĥpair[αJ])P̂0, (B1)

where Ĥmag[J] and Ĥpair[αJ] are defined in Eqs. (24a) and
(24b), respectively, J = 4t2/U and α = 1/2.

(ii) (m = 2, j = 1). This term accounts for the virtual
creation and subsequent annihilation of one photon and one
doublon,

− 1

� + U
P̂0Ĥ1P̂ (1)

2 Ĥ1P̂0

= − g2

� + U

[
P̂D

0 ĴP̂D
1 ĴP̂D

0

] ⊗ P̂P
0

= P̂0

(
Ĥmag

[
4g2

U + �

]
+ Ĥpair

[
− 2g2

U + �

])
P̂0. (B2)

The terms in Eq. (B2) result in a renormalization of the
magnetic exchange energy and the pair hopping of the tJα

model.
(iii) (m = 1, j = 1). This term describes processes where

an electron hops to a neighboring empty site and a photon
is emitted, followed by the reabsorption of the photon and a
second hopping process. We find

− 1

�
P̂0Ĥ1P̂ (1)

1 Ĥ1P̂0 = −g2

�

[
P̂D

0 Ĵ P̂D
0 Ĵ P̂D

0

] ⊗ P̂P
0

= P̂0(Ĥshift + Ĥ2-site + Ĥlong)P̂0, (B3)

where Ĥshift, Ĥ2-site, and Ĥlong are defined in Eq. (30). Each
process in Eq. (B3) involves two electron hops without cre-
ating a doublon. Depending on whether the two hopping
processes go in the same or opposite direction, one obtains a
particle-hole binding effect (Ĥshift ) or a next-nearestneighbor
tunneling term (Ĥ2-site). The virtual photon can even be emit-
ted and absorbed by two different electrons, which gives rise
to the cavity-mediated long-range interaction Ĥlong. Note that
all terms in Eq. (B3) are zero at half filling, since in this case
electron hops without creating a doublon are impossible.

Combining all terms in Eqs. (B1)–(B3) gives Ĥgs in
Eq. (26). In order to test the accuracy of this effective Hamil-
tonian, we compare its spectrum to the eigenvalues of the
system Hamiltonian in Eq. (13) via exact diagonalization.
We find that the eigenvalues of the two Hamiltonians are
in excellent agreement for sufficiently large values of U
and �, and for a wide range of coupling strengths g. More
specifically, the differences between the eigenvalues are of the

FIG. 5. Comparison of the eigenenergies E of the system Hamil-
tonian Ĥ in Eq. (13) in the ground-state manifold and the effective
Hamiltonian Ĥgs in Eq. (26) for a system with L = 4 sites as a
function of the cavity coupling g. The eigenvalues corresponding
to Ĥ (Ĥgs) are shown by red solid (black dotted) lines. The exact
diagonalization calculations take into account photon states | jP〉 with
j ∈ {0, 1, 2}. (a) Half filling with N = 4 electrons and U = 20t and
� = 18t . (b) Same as in (a) but for N = 3 electrons.

order of t4/[min(U,�)]2, which is the magnitude of the next
higher-order terms in the perturbation series. We present two
examples of these calculations for a system with L = 4 sites
in Fig. 5, where Figs. 5(a) and 5(b) correspond to half filling
(N = 4 electrons) and less than half filling (N = 3 electrons),
respectively. Note that we chose a small system and an unre-
alistically large range of the cavity coupling parameter g for
illustration purposes. Finally, we point out that some of the
eigenvalues shown in Fig. 5 are degenerate. The total number
of states in Figs. 5(a) and 5(b) are 16 and 32, respectively.
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