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We construct a many-body quantized invariant that sharply distinguishes among two-dimensional nonequi-
librium driven phases of interacting fermions. This is an interacting generalization of a band-structure Floquet
quasienergy winding number and describes chiral pumping of quantum information along the edge. In particular,
our invariant sharply distinguishes between a trivial and anomalous Floquet Anderson insulator in the interacting,
many-body localized setting. It also applies more generally to models where only fermion parity is conserved,
where it differentiates between trivial models and ones that pump Kitaev Majorana chains to the boundary, such
as ones recently introduced in the context of emergent fermions arising from eigenstate Z2 topological order.
We evaluate our invariant for the edge of such a system with eigenstate Z2 topological order, and show that it is
necessarily nonzero when the Floquet unitary exchanges electric and magnetic excitations, proving a connection
between bulk anyonic symmetry and edge chirality that was recently conjectured.
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I. INTRODUCTION

Recently it has been shown that new band structures, hav-
ing no equilibrium analogues, can arise in periodically driven
free fermion systems [1,3–6]. They are characterized by new
winding number topological invariants arising from the 2π

periodic nature of the quasienergy spectrum, and with the
addition of bulk disorder can give rise to a new type of single-
particle “Floquet” Anderson insulator [7,8]. The stability of
these band structures to interactions is not clear, however.
While a priori it may seem that all distinctions between
interacting Floquet systems should be rendered meaningless
because such systems are expected to absorb energy from the
drive and heat up to infinite temperature, it has recently been
shown that many-body localization (MBL) [9] can provide
a robust way to avoid this heating problem [10–12]. Thus
MBL provides a natural setting to study interacting Floquet
phases [2,13–21] of fermions beyond the level of band struc-
ture analysis. In this work, we classify such interacting two-
dimensional Floquet phases of fermions, providing a many-
body invariant that sharply distinguishes among them in the
MBL setting.

The interacting 2d fermionic Floquet phases we focus
on are dynamic counterparts of integer quantum Hall states,
having no bulk topological order. Despite this superficial sim-
ilarity, they are inherently dynamical phases, exhibiting novel
properties such as quantized chiral transport of quantum in-
formation [21,22] that have no equilibrium analog. They were
studied in Ref. [2], and several of their properties elucidated,
including their emergent role in a bulk-boundary correspon-
dence for a dynamic bosonic phase with Z2 topological order.
The main contributions of the present work, which is meant
to complement Ref. [2], are (1) a rigorous classification of

these fermionic phases, based on our construction of a many-
body index sharply distinguishing among their interacting 1d
edges, and (2) a proof, based on this classification, of the
bulk-boundary correspondence proposed in Ref. [2].

As in the case of bosonic Floquet MBL phases [22], our
basic strategy is to use the full set of bulk local conserved
quantities of the Floquet unitary operator to effectively de-
couple the stroboscopic edge dynamics from the bulk. The
nontrivial nature of the 2d bulk phase is then reflected in an
anomalous property of these edge dynamics: namely, while
the stroboscopic edge evolution preserves locality, in the sense
of taking local operators to nearby local operators, it cannot
be generated by any continuous evolution of a truly 1d local
Floquet Hamiltonian. In other words, it is not a finite depth
quantum circuit of local unitaries. A prototypical example of
such an anomalous 1d edge is the chiral translation by one
site: despite being locality-preserving, such a translation is
not a finite depth quantum circuit. Such bosonic 1d locality-
preserving operators were fully classified, modulo finite depth
quantum circuits, in Ref. [23], and Ref. [22] leveraged this
classification to define a quantized many-body “chiral uni-
tary” index that distinguishes among bosonic Floquet MBL
phases. However, due to its inherently bosonic nature, this
classification cannot be directly applied to the fermionic prob-
lem.

The principal technical result that underlies the conclu-
sions in the present work is a full classification of fermionic
1d locality-preserving unitaries, modulo finite depth circuits.
This classification can be expressed as a quantized index ν f =
ζ ln

√
2 + ln p

q , where ζ = 0, 1 is a Z2 index, and p and q are
positive integers. The ln p

q portion of this index is the same
as that obtained in the bosonic classification of Ref. [23], and
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indeed we will show that 2d fermionic Floquet MBL systems
with such indices are equivalent to their bosonic counterparts,
if the latter are built out of ‘fundamental’ fermionic degrees
of freedom. On the other hand, the ln

√
2 portion of the index

is inherently fermionic. An example of a fermionic locality-
preserving unitary with index ln

√
2 is a Majorana translation,

defined by γi → γi+1 in a Majorana mode representation of a
fermionic 1d chain. We construct a microscopic 2d fermionic
Floquet MBL model exhibiting such a Majorana translation
edge mode, which represents an inherently fermionic dynam-
ical phase whose physical property is that a Kitaev chain
is pumped onto the edge during every Floquet cycle. We
furthermore give a simple physical construction, in the general
interacting setting, of a Z2 edge index that measures ζ .

The dynamics in the Majorana 2d fermionic Floquet model
does not conserve U(1) particle number. This means that
any particle number conserving fermionic realization must
include Goldstone modes of a U(1) symmetry breaking or-
der parameter, which would be problematic for many body
localizability. On the other hand, Z2 fermions can also appear
as emergent excitations in Z2 topologically ordered bosonic
systems without any symmetries, such as the Kitaev toric code
[24]. In this setting, a “gauged” version of the Majorana 2d
fermionic model was constructed in Ref. [2], with underlying
toric code topological order. The Floquet unitary in the model
of Ref. [2] has the property that it exchanges the e and m
toric code quasiparticles and, thus, gives an example of a
Floquet enriched topological order (FET) [25], in that the
Floquet unitary acts as an anyonic symmetry. Furthermore,
Ref. [2] shows that this model always exhibits a chiral edge
mode, whose chiral unitary index is half that of a fundamental
bosonic edge translation, and proposed that the bulk anyon-
exchanging FET order is necessarily tied to such a fractional
edge chirality. On the other hand, it is certainly possible to
have a global Z2 symmetry that exchanges e and m excitations
in ordinary equilibrium toric code models, with no chiral edge
modes. Indeed, such models can be built out of commuting
projectors, with the Z2 symmetry acting onsite [26,27], which
appears incompatible with the proposal of Ref. [2].

We show that the resolution to this seeming paradox hinges
on the difference between ground state topological order and
eigenstate topological order. To do this, we first give a precise
strong definition of eigenstate topological order [25,28–30],
in terms of a set of localized l-bits that are equivalent to the
vertex and plaquette terms of the standard square lattice toric
code. While demanding local unitary equivalence to the toric
code is overly restrictive, since the model of interest might
have a different geometry and different set of microscopic
local degrees of freedom, we find that demanding stable local
unitary equivalence, modulo trivial localized l-bit spins, gives
a sufficiently robust definition of eigenstate topological order.
In particular, the honeycomb model of Ref. [2] is stably
equivalent to the square lattice toric code.

We will then focus on Floquet unitary evolutions that
exchange the local conserved quantities corresponding to the
charge (e) and flux (m). As opposed to Floquet unitary evo-
lutions that preserve all bulk local conserved quantities [22],
for which a bosonic edge state can be cleanly decoupled from
the localized bulk, here we will see that no such decoupling
is possible. Nevertheless, we will see that it is still possible

FIG. 1. Majorana SWAP model.

in this case to decouple an effective fermionic edge. We will
then show, using our 1d fermionic classification, that this edge
dynamics is stably equivalent to a Majorana translation—
and in particular is chiral—precisely when the bulk Floquet
unitary exchanges e and m, proving the bulk FET (boundary
chirality correspondence).

II. A Z2 INVARIANT

We now construct a model—dubbed the Majorana SWAP
model—which describes Floquet evolution in a fermionic
Hilbert space, where the only symmetry is the conservation of
fermions modulo 2. The significance of this particular exactly
solvable model is that it represents a new universality class
of Floquet-MBL phase that becomes realizable when funda-
mental fermion degrees of freedom are introduced. In fact,
modulo the bosonic Floquet MBL phases that were classified
in Ref. [22], it is the only new such phase. Later in this section
we will define a Z2 invariant which precisely captures this
new nontrivial phase. Its nontrivial nature implies edge trans-
port that would otherwise be impossible in a one-dimensional
system, or at the edge of a bosonic phase, and hence may
allow for new methods for manipulating quantum dynamics
in a coherent fashion.

A. Majorana SWAP model

The Majorana SWAP model is defined on a Hilbert space
of Majorana zero modes γr sitting on sites r of a square lattice,
as illustrated in Fig. 1. We will need an orientation on the links
of this lattice. We will pick it arbitrarily, and in our notation
below always take a link (r, r′) to be oriented from r to r′. The
Majorana modes γr can be paired up into physical fermions
by pairing sites, which we arbitrarily choose to be along the
light blue links in Fig. 1. So for a light blue link (r, r′), we let

ar,r′ = 1
2 (γr + iγr′ ), (1)

a†
r,r′ = 1

2 (γr − iγr′ ). (2)

so that the fermion parity of this physical fermion site is equal
to

Pr,r′ = 1 − 2a†
r,r′ar,r′ = iγrγr′ . (3)
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The Majorana SWAP Hamiltonian, periodic with period
T , consists of five piecewise constant driving terms Hj ,
j = 1, . . . , 5, turned on for time T

5 . The first four

Hj =
∑

(r,r′ )∈ j

5π

2T
(iγrγr′ ) (4)

perform nearest-neighbor hops by turning on the solid blue,
solid red, light blue, and light red links for j = 1, 2, 3, 4
respectively, as shown in Fig. 1. The fifth one

H5 =
∑

(r,r′ )∈3

W(r,r′ )iγrγr′ (5)

is an onsite disorder term that is included for stability pur-
poses. Here the coupling constants W(r,r′ ) are drawn from a
uniform random distribution in [− 5π

T , 5π
T ]. We then see that

the Floquet operator

U (T ) = T exp

(
−i

∫ T

0
dt H (t )

)
(6)

is given by

U (T ) = U5U4U3U2U1, (7)

where for j = 1, . . . 4,

Uj =
∏

(r,r′ )∈ j

exp
(π

2
γrγr′

)
(8)

and

U5 =
∏

(r,r′ )∈3

exp

(
T

5
W(r,r′ )γrγr′

)
. (9)

Under the jth time step, the operators γr, γr′ in a link (r, r′)
of color j transform as

γr → UjγrU
†
j = −γr′ , (10)

γr′ → Ujγr′U †
j = γr . (11)

so all of the γr are invariant under the first four time steps:

γr → UγrU
† = γr (12)

and so in the bulk

U (T ) = U5. (13)

Thus {Pr,r′ } for light blue links (r, r′) forms a full set of com-
muting local conserved quantities in the bulk of the system.

At the boundary of the system, the same analysis as in
Refs. [1,22] shows that

γr → U (T )γrU (T )† = γT (r), (14)

where T (r) is a translation by one Majorana site, as indicated
in Fig. 1. Acting on a trivial ground state of the effective
1d system, this Floquet unitary pumps a Majorana wire, as
indicated in Fig. 2.

B. Decoupling edge and bulk in 2d fermionic system

We will now show how to extract, for any 2d fermionic Flo-
quet MBL system, a quasi-1d locality-preserving fermionic
unitary that describes the edge dynamics. This discussion is

FIG. 2. The Floquet unitary acting on the boundary of the
Majorana SWAP model pumps a Kitaev chain.

similar to the one given in Ref. [22] for bosonic systems.
We will then use the quasi-1d unitary to define a quantized
many-body invariant that distinguishes the Majorana SWAP
model constructed above from a trivial system. Subsequently,
we will define a finer invariant which completely classifies
all such quasi-1d unitaries, and thus gives a classification of
fermionic 2d chiral Floquet MBL phases.

Take a lattice system with fundamental fermion degrees of
freedom. We will consider a general interacting local time-
dependent Hamiltonian H (t ), periodic with period T , that
conserves fermion parity. Our MBL assumption then amounts
to the existence of a full set of commuting local operators
(FSCLO) that is conserved by the Floquet unitary U (T ). This
is just a set of commuting local operators with the property
that specifying all of their eigenvalues fixes a state uniquely.
We will further assume that this FSCLO is adiabatically
connected via a finite depth circuit of local unitaries V to
a set of trivial decoupled fermionic l-bits, i.e., a full set of
conserved quantities on decoupled fermionic sites.

To extract the edge, it is first useful to discuss some of the
length scales involved. Besides the microscopic lattice spac-
ing, there is a so-called “Lieb-Robinson” length ξ associated
to the Floquet unitary U (T ). This is roughly equal to T times
the maximum of the Lieb-Robinson velocity of H (t ), and has
the interpretation of a smearing length: if X has support on
some set of sites S, then U (T )†XU (T ) will have most of
its support on a “thickening” Sξ of S, consisting of all sites
within distance ξ of S. In the following, we will assume that
U (T ) has no exponential tails, i.e., U (T )†XU (T ) is exactly
supported on Sξ . This amounts to approximating U (T ) by
a finite depth circuit; all of the arguments we give can be
generalized from the finite depth circuit context to the general
Floquet unitary context. Similarly, there is a “Lieb-Robinson”
length ξ ′ associated to the finite depth circuit V [31].

Now let

Udisc(T ) = T exp

(
−i

∫ T

0
dt Hdisc(t )

)
(15)

be the Floquet unitary for the Hamiltonian truncated to a large
disk region (larger than ξ or ξ ′), denoted Hdisc(t ). Then deep
in the bulk of the disk, at distances larger than ξ from the
edge, Udisc(T ) is the same as U (T ), and has a full set of bulk
conserved quantities.
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FIG. 3. After truncating to the disk and conjugating into the l-bit
basis, the Floquet unitary preserves all of the spins in the bulk of
the disk (blue). Thus these spins can be set to arbitrary fixed values,
resulting in a quasi-1d unitary operator Y acting on the degrees of
freedom near the edge (red). The thickness of the edge must generally
be taken to be greater than the Lieb-Robinson lengths ξ , ξ ′ defined
in the text.

Now let Vdisc denote an arbitrary truncation of V to the disk,
and define

U ′
disc(T ) = V †Udisc(T )V. (16)

Then deep in the bulk of the disk, at distances larger than
ξ or ξ ′ from the edge, U ′

disc not only has a full set of con-
served quantities, but these conserved quantities are simply
decoupled fermionic sites. We can thus restrict the evolution
to a constrained Hilbert space where these bulk conserved
quantities all have definite eigenvalues. This then defines
an effective fermionic locality-preserving unitary Y on the
remaining degrees of freedom, which consist of sites near the
edge. This is illustrated in Fig. 3. One can check that, up to
deformation by finite depth circuits, Y is independent of the
choices made in this procedure. In the next section we will
define a Z2-valued many-body quantized index associated to
Y that distinguishes between the Majorana SWAP model and
a trivial phase.

C. A Z2-valued many body quantized invariant

We now define a Z2-valued many-body invariant ζ ∈ {0, 1}
that separates 1d fermionic locality-preserving unitaries—and
hence 2d fermionic chiral Floquet MBL phases—into two
distinct classes. Both the trivial insulator and the anomalous
Anderson Floquet insulator (AFAI) [7,8] are in the trivial class
ζ = 0, whereas the Majorana SWAP model defined above has
ζ = 1.

The invariant ζ is defined as follows: given a locality-
preserving unitary Y , take a long interval I , and consider the
evolved operator Y †PIY . Because Y is locality-preserving and
fermion parity even, we expect that Y †PIY is equal to PI in the
bulk of the interval I , i.e., the mismatch between PI and Y †PIY

occurs only near the endpoints of I . Formally, we expect that

Y †PIY = PI ALAR, (17)

where AL and AR are local operators acting only on the sites
near the left and right endpoints of I , respectively. For a proof
of Eq. (17), see Appendix A.

Now, from Eq. (17), AL and AR must both have well defined
fermionic parity, and their product must be fermion parity
even. Thus there are two possibilities: either AL and AR are
either both fermion parity even, in which case we set ζ = 0,
or they are both fermion parity odd, ζ = 1.

Clearly a trivial 2d insulator, for which Y acts as the
identity, has ζ = 0. The AFAI also has ζ = 0. Indeed, in
this case, the edge unitary performs a translation by a single
fermionic site, so that the mismatch between PI and Y †PIY
is given by operators at the left and right endpoints which
measure the fermion parity of a single site; both are even
operators.

For an example of a system with nontrivial ζ , take the
Majorana translation found at the edge of the Majorana SWAP
model. Formally, this edge can be described as follows.
Consider a periodic spinless fermion chain of length N , with
creation and annihilation operators an and a†

n at site n, and
rewrite these in terms of 2N Majorana modes:

an = 1
2 (γ2n−1 + iγ2n), (18)

a†
n = 1

2 (γ2n−1 − iγ2n). (19)

Then Y acts by

Y †γiY = γi+1 (20)

for i = 1, . . . , 2N − 1 and U †γ2NU = −γ1. Explicitly, Y can
be constructed as a unitary operator as follows. Let M be the
2N by 2N matrix defined by Mi,i+1 = 1 for i=1, . . . , 2N −1,
M2N,1 = −1, and all other Mi, j = 0. Since M is in SO(2N ), it
can be written as M = exp(A), with A real and antisymmetric.
Then letting

Y = exp

⎛
⎝1

4

∑
i, j

Ai, jγiγ j

⎞
⎠, (21)

we see that Y acts on the γi as desired. Note that A is not
local, in the sense that it has nonzero matrix elements Ai, j for
large |i − j|, so that Y is not a finite depth quantum circuit;
nevertheless, it is locality-preserving.

To see that the Majorana translation has ζ = 1, write the
fermion parity PI of an interval I = [a, b] as

PI = (iγ2a−1γ2a)(iγ2a+1γ2a+2) . . . (iγ2b−1γ2b). (22)

Then

Y †PIY = ib−a+1γ2aγ2a+1 . . . γ2b+1 (23)

so that the mismatch defined in Eq. (17) is, up to sign, AL =
γ2a−1 and AR = γ2b+1. These are both fermion parity odd
operators, and hence ζ = 1.
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III. CLASSIFICATION OF 1D FERMIONIC
LOCALITY-PRESERVING UNITARIES AND
2D FERMIONIC FLOQUET MBL PHASES

In the previous section, we defined a Z2-valued many-
body invariant ζ that gives a coarse classification of 2d
fermionic Floquet MBL systems into those that pump a Kitaev
chain to the boundary and those that do not. However, this
invariant does not distinguish between a trivial phase and
the anomalous Floquet Anderson insulator (AFAI), which
performs a chiral translation by a physical fermionic site at
the edge. Although a many-body rational-valued index that
distinguishes among bosonic analogues of the AFAI has been
defined [22,23], it is not a priori clear whether it remains
stable or becomes modified in the presence of fermionic
degrees of freedom.

In this section, we define such an index ν f (Y ) in the
fermionic setting. Let us first say precisely what we mean
by “fermionic setting.” On the one hand, we could take this
to mean systems whose site Hilbert spaces are generated
by some number 2n of Majorana zero modes, i.e., they are
2n-dimensional Fermionic Fock spaces based on n physical
fermionic modes. In this case, we will show in Sec. III A
below that ν f (Y ) takes the form

ν f (Y ) = k

2
ln 2, (24)

where k is an integer that describes the chiral nature of Y .
Specifically, nonzero even k corresponds to a translation by
some number of physical fermion sites, as in the AFAI edge,
whereas odd k corresponds to a net Majorana translation; in
particular ζ = k mod 2. More generally, however, we want to
consider a class of systems that allows for both fermions and
general bosonic systems. This is the setting of general Z2-
graded Hilbert spaces, which we treat in Sec. III B. In this
case, we show that ν f (Y ) takes the form

ν f (Y ) = ζ

2
ln 2 + ln

(
p

q

)
, (25)

where p and q are relatively prime positive integers whose
prime factors are all divisors of the site Hilbert space dimen-
sions.

The physical interpretation of ν f (Y ) is that it character-
izes the extent to which Y , despite being locality-preserving,
cannot be generated as the Floquet evolution of any local
1d fermionic Floquet Hamiltonian. The most important prop-
erty of ν f (Y ) is that, as we discuss in Sec. III C, it is the
only obstruction to the existence of such a 1d generating
Hamiltonian. Thus ν f (Y ) = 1 implies that Y is a finite depth
quantum circuit, and ν f (Y ) = ν f (Y ′) implies that Y ′ differs
from Y by finite depth circuits U and W : Y ′ = UYW . There
is one caveat, as we discuss in Sec. III C: in order for these
equations to be true, we might have to allow for additional
ancilla fermionic degrees of freedom, leading to a notion
of stable equivalence. The final result then is that fermionic
systems with ζ = 0 are stably equivalent to bosonic systems
(in particular, the AFAI is stably equivalent to the bosonic
SWAP model of Ref. [22]), all bosonic systems with nontrivial
chiral unitary index remain nontrivial in the presence of
fermions, and modulo these bosonic systems there is only

one nontrivial fermionic equivalence class, namely that of the
Majorana SWAP model introduced above.

A. Definition of quantized many body index:
Fermionic Fock space

Let us give a precise definition of the fermionic chiral uni-
tary index ν f (Y ) for a fermionic locality-preserving unitary
Y . In this section, we will restrict for simplicity to fermionic
systems whose site Hilbert spaces are 2n-dimensional and can
be thought of as a Fock space of n independent fermionic
modes. In this setting, we will show that ν f = 1

2 ln 2 in the
case of a Majorana translation and that ν f = ln 2 in the case
of the AFAI.

To start, take a large but finite system � with periodic
boundary conditions, with lattice sites labeled by x at which
sit fermionic Fock spaces Hx of dimension 2nx . Then the
algebra Ax of local operators at site x is 22nx -dimensional
and is generated by 2nx Majorana modes γx,1, . . . γx,2nx . For
a collection of sites S, we let AS = ⊗x∈SAx be the algebra of
operators supported on S.

Now take a spatial cut and consider two contiguous inter-
vals of sites L and R, residing immediately to the left and right
of the cut, respectively. We require that L and R are longer
than the Lieb-Robinson length of Y . The algebras AL and
AR then commute in the Z2-graded sense. This just means
that fermion parity even operators of each algebra commute
with everything in the other algebra, and fermion parity odd
operators anti-commute. On the other hand, Y †ALY and AR

might fail to commute in this Z2-graded sense, which is an in-
dication of a flow of quantum information from the left to the
right. To quantify this, we define a general measure η(A,B)
that describes the extent to which algebras A and B fail to
graded-commute. Letting A and B be generated by 2nA and
2nB Majorana modes respectively, we can form monomials of
these to generate sets of pA = 22nA and pB = 22nB orthonormal
operators ea

i , i = 1, . . . , pA and eb
j, j = 1, . . . , pB spanning A

and B, respectively. We then use these to define

η(A,B) = 2−n�

√√√√ pA∑
i=1

pB∑
j=1

∣∣Tr�
(
ea

i
†eb

j

)∣∣2
, (26)

where

n� =
∑
x∈�

nx (27)

is the total number of fermionic modes in the whole system,
and the trace in Eq. (26) is taken in the Hilbert space of the
whole system. Using this, we then define

ν f (Y ) = ln

(
η(Y †ALY,AR)

η(AL,Y †ARY )

)
. (28)

Although it is not obvious from its definition in Eq. (28), we
demonstrate in the next subsection (see also Appendix A) that
ν f (Y ) is independent of the choices made in the definition,
and takes the quantized form ν f (Y ) = n

2 ln 2.
Let us evaluate ν f (Y ) for the Majorana translation γi →

γi+1 in a chain of spinless fermions. It suffices to take L
and R to consist of a single fermionic mode each, described
by γ1, γ2 and γ3, γ4, respectively. Then it is clear that the
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denominator in the logarithm in Eq. (28) is equal to 1, since
the two algebras AL and Y †ARY -graded-commute. As for the
numerator, there are exactly two nonzero contributions to the
sum in Eq. (26), coming from ea

i = eb
j = 1 and ea

i = eb
j = γ3.

Both contribute 2n� (the dimension of the total Hilbert space)
to the trace, so that ν f (Y ) = ln

√
2. A similar argument shows

that a translation by one physical site, such as that occuring at
the edge of the AFAI, has a fermionic index equal to ν f = ln 2,
and is hence nontrivial.

B. Definition of quantized many body index:
general Z2-graded Hilbert space

In order to treat fermionic and bosonic systems on the same
footing, we now define the index in the more general setting of
so-called Z2-graded site Hilbert spaces. A Z2-graded Hilbert
space Hi is a Hilbert space that can be decomposed into
fermion parity even and odd pieces

Hi = H0
i ⊕ H1

i . (29)

Letting pi = |H0
i | and qi = |H1

i | be the dimensions of the odd
and even sectors of Hi, we will also use the notation Hi =
Cp|q. The total Hilbert space H is now the tensor product of
the site Hilbert spaces Hi:

H = ⊗iHi. (30)

H also has a natural Z2 grading: the total fermion parity in H
is the product of the individual fermion parities in the Hi.

For example, a spinless fermion is described by a two-
dimensional Z2-graded site Hilbert space Hi = C1|1. The total
Hilbert space H is then just the usual fermionic Fock space. A
spinful fermion can similarly be described by Hi = C2|2. On
the other hand, if we take Hi to be purely even, i.e., Hi = Cp|0,
then we recover a purely bosonic system. Our framework
encompasses all of these cases.

Let us denote the algebra of all operators on Hi by Oi:
this is simply the algebra of |pi + qi| by |pi + qi| complex
matrices. We will also use the notation Oi = C(pi|qi ). Again,
Oi splits into even and odd components:

Oi = O0
i ⊕ O1

i . (31)

O0
i is the subalgebra of all operators that conserve fermion

parity, and is just C(pi ) ⊕ C(qi ). Its dimension as a complex
vector space is thus p2

i + q2
i . O1

i is the space operators that mix
the two fermion parity sectors, and has dimension dimension
2piqi. We will say that an operator X ∈ O j

i , j = 0, 1, has well
defined fermion parity j, and set |X | = j.

More generally, for a set of sites S, we define the algebra
of operators supported on S as

OS = ⊗i∈S Oi. (32)

In the notation above, ⊗ represents the Z2-graded tensor
product, which just means that odd operators on distinct sites
anti-commute. By tensoring with the identity on all sites not
in S, we can view each such subalgebra OS as sitting inside
the algebra of operators on all of H , which we simply denote
O. We will then say that operators in OS ⊂ O are “supported”
on S.

The anticommuting nature of fermionic operators on dis-
tinct sites motivates the following definition of the graded

commutator [X,Y ]g of two operators X,Y of well defined
fermion parity:

[X,Y ]g ≡ XY − (−1)|X ||Y |Y X. (33)

By linearity the definition of graded commutator extends to all
operators, not just those of well defined fermion parity. Then
[Oi,O j]g = 0 on distinct sites i, j.

Given a locality-preserving operator Y , we now sketch
an algebraic definition of the index ν f (Y ) in the general
Z2-graded case, which makes it manifest that the index is
quantized in the claimed form—for more details, including
why this definition is equivalent to the one in Eq. (28) for
fermionic Fock spaces, see Appendix A. First, coarse grain
the Hilbert space by grouping sites in such a way that Y
is locality-preserving with range 1. Now take the operator
algebra on two neighboring sites, O2x ⊗ O2x+1. It follows that

Y †(O2x ⊗ O2x+1)Y (34)

⊂ (O2x−1 ⊗ O2x ) ⊗ (O2x+1 ⊗ O2x+2). (35)

We now want to quantify the extent to which
Y †(O2x ⊗ O2x+1)Y is supported on either of the two tensor
factors in brackets on the right-hand side of the above
equation, which will reflect the chiral nature of Y . In
Appendix A we show, using the fact that conjugation by Y
preserves the Z2-graded algebra structure, that there exist
mutually graded-commuting “support” algebras

R2x ⊂ O2x−1 ⊗ O2x, (36)

R2x+1 ⊂ O2x+1 ⊗ O2x+2, (37)

such that

Y †(O2x ⊗ O2x+1)Y = R2x ⊗ R2x+1, (38)

O2x+1 ⊗ O2x+2 = R2x+1 ⊗ R2x+2. (39)

The proof of Eq. (38), given in Appendix A, is nontrivial, and
requires generalizing the algebraic constructions of Ref. [23]
to the Z2-graded algebra setting.

Taking dimensions of both sides of Eq. (38) shows that
√|R2x|
|H2x| = |H2x+1|√|R2x+1|

≡ indf (Y ) (40)

is independent of x. Furthermore, this equation shows that
(indf (Y ))2 is a rational number p/q with all of the prime
factors of p and q being divisors of the site Hilbert space
dimensions. However, one can say more. As we show in
Appendix A, the algebras Ry are simple in the Z2-graded
sense [32,33]. Such simple Z2-graded algebras come in pre-
cisely two forms: (1) even algebras, which are matrix algebras
over a Z2-graded vector space and have dimension d2, or (2)
odd algebras, which are matrix algebras over an odd Clifford
algebra and have dimension 2d2. This shows that indf (Y ) is
either a rational number or a rational number times the square
root of two. ν f (Y ) is defined by taking its logarithm:

ν f (Y ) = ln indf (Y ). (41)
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Thus ν f (Y ) must be of the form

ν f (Y ) = ζ

2
ln 2 + ln

p

q
. (42)

C. Properties of ν f

1. Rational versus radical

The fact that indf (U ), defined in Eq. (A14), does not
depend on x implies that the Ry are either all even simple
Z2-graded algebras, or they are all odd. In the former case,
indf (U ) is a rational number [we will refer to this case as
“rational” (ζ = 0)] and in the latter case, it is a rational
number times the square root of 2 [we will refer to this case
as “radical” (ζ = 1)].

2. Invariance under deformation by finite depth circuits

We claim that indf (U ) = indf (VUV ′) for any finite depth
circuits V and V ′. Indeed, VUV ′ can be continuously con-
nected to U in the space of locality-preserving unitaries,
simply by continuously deforming V and V ′ to the iden-
tity. Since indf is a continuous discrete valued function on
locality-preserving unitaries, it must be constant on connected
components, and hence indf (U ) = indf (VUV ′).

3. Multiplicativity

The fermionic index also satisfies the property that, for two
different locality-preserving unitaries U, U ′,

indf (UU ′) = indf (U )indf (U ′). (43)

Furthermore, stacking two disjoint systems with locality-
preserving unitaries U,U ′, we obtain

indf (U ⊗ U ′) = indf (U )indf (U ′). (44)

The proof of Eq. (44) follows directly from the formula
(A14). Since U ⊗ U ′ can be smoothly connected to UU ′ ⊗ 1,
Eq. (43) follows from the fact that indf is locally constant.

Taking logarithms, the fermionic chiral unitary index satis-
fies corresponding additivity properties:

ν f (UU ′) = ν f (U ) + ν f (U ′), (45)

ν f (U ⊗ U ′) = ν f (U ) + ν f (U ′). (46)

4. Completeness of classification

The most nontrivial property of indf , and hence ν f , is
that it completely classifies 1d fermionic locality-preserving
unitaries. Let us explain carefully what we mean by this,
because the fermionic situation is somewhat more subtle than
the bosonic one studied in Refs. [22,23]. In the bosonic
situation, if two locality-preserving unitaries Y and Y ′ had the
same chiral unitary index, then they were necessarily related
by finite depth circuits U,V : Y ′ = UYV . However, in the case
of fermions this is not true. For example, consider stacking a
bosonic spin-1/2 system, with site Hilbert spaces C2|0, on top
of a spinless fermion system, with site Hilbert spaces C1|1,
so that the total system has site Hilbert spaces C2|0 ⊗ C1|1 =
C2|2. Now, a translation by one site in the bosonic subsystem
turns out to be not deformable to a translation by one site in

the fermionic subsystem, even though the two have the same
ν f = 2.

To claim that ν f gives a complete classification in the
fermionic case will thus require a more general notion of
equivalence. To this end, two fermionic locality-preserving
unitaries Y and Y ′ on the same Hilbert space are said to be
stably equivalent if upon appropriately enlarging the Hilbert
space by appending inert ancilla fermionic degrees of free-
dom, one can find finite depth circuits U,V in this larger
Hilbert space such that

Y ′ ⊗ 1 f = U (Y ⊗ 1 f )V. (47)

Then we prove in Appendix A that
Claim. If ν f (Y ) = ν f (Y ′), then Y and Y ′ are stably equiva-

lent.
The physical implications of this claim are as follows.

First, for any rational fermionic Y , which has ν f (Y ) = ln p
q

for some integers p and q, we can find a bosonic system Y ′
with the same value of the chiral unitary index. If we consider
this bosonic system in the setting of Z2-graded Hilbert spaces,
then the result above implies that Y and Y ′ are stably equiv-
alent. Thus all rational fermionic locality-preserving unitaries
are stably equivalent to bosonic ones. Furthermore, modulo
such bosonic locality-preserving unitaries, there is only one
nontrivial fermionic locality-preserving unitary, namely the
Majorana translation, with ζ = 1.

IV. BULK-BOUNDARY CORRESPONDENCE FOR ANYON
PERMUTING SYMMETRY IN THE TORIC CODE

One problematic feature of the Majorana SWAP model is
that its driving Hamiltonian violates particle number conser-
vation, conserving only the fermionic parity. Thus a physical
realization of this model in a particle number conserving
setting will require a spontaneous U(1) symmetry breaking,
leading to Goldstone modes, which are problematic for MBL.
On the other hand, fermions can also arise as emergent excita-
tions in a bosonic model with topological order, and arbitrary
fermion parity conserving interactions can be engineered in
this setting. Ref. [2] uses this strategy in the context of the
spin-1/2 Honeycomb model [34] to design a driving Hamilto-
nian that is effectively a fermion-parity gauged version of the
Majorana SWAP model.

The model of Ref. [2] has two interesting properties. First,
the Floquet unitary exchanges e and m excitations for all
eigenstates. Second, it has a chiral edge. Because the e and
m excitations are exchanged rather than truly conserved in the
bulk, one cannot decouple an edge directly. Rather, Ref. [2]
shows that U (2T ), which does have a full set of conserved
bulk quantities, performs a chiral translation at the edge, and
shows that its chiral unitary index is ln 2. This means that,
insofar as an edge for U (T ) could be decoupled, it would have
a fractional index 1

2 ln 2. More generally, Ref. [2] proposes
that such a fractional chiral edge occurs for any Floquet
evolution that exchanges e and m excitations in a system with
eigenstate topological order.

In the rest of this section, we use the fermionic machinery
developed above to prove this correspondence. We first give
a precise “strong” definition of eigenstate topological order,
in terms of stable equivalence to toric code projectors. This
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definition is strong in the sense that any system that satisfies
it will also have eigenstate topological order [25,28,29] ac-
cording to any other definition, such as one that uses the exis-
tence of string operators that commute with the Hamiltonian.
However, this strong definition is also sufficiently robust to
capture the honeycomb Majorana SWAP model, as we show
in Appendix B. We conjecture that it is actually equivalent
to other definitions of eigenstate topological order, but leave
this for future work. We then show that although there is
no way to decouple a bosonic edge for a Floquet unitary
U (T ) that exchanges e and m excitations in a system with
eigenstate topological order, one can decouple a well defined
fermionic edge. Using the fermionic machinery developed
above we then show that this fermionic edge has ζ = 1,
i.e., is in the radical class, which proves the bulk-boundary
correspondence.

It should be noted that it is possible to exchange e and
m excitations in a model with ground state topological order
using a purely onsite unitary operator [26,27,35]. However,
our proof makes explicit use of topological order in all eigen-
states, not just the ground state, in the form of the “strong”
eigenstate topological order mentioned above. This is the
essential difference between our setting and the ground state
situation: although the models of Refs. [26,27,35] are built
out of commuting projectors, these commuting projectors do
not lead to eigenstate topological order in the “strong” sense.
Indeed, these models are built in such a way that the only
nontrivial dynamics occurs close to the ground state, leading
to large degeneracies in excited states, in opposition to the
case of eigenstate topological order.

A. Eigenstate topological order and anyon-permuting
Floquet evolutions

Consider two many-body Hilbert spaces 1 and 2, each
with a full set of commuting local operators (FSCLO) {O(1)

j }
and {O(2)

j } respectively. By full set we mean simply that
specifying all their eigenvalues determines a state uniquely
[36]. We do not necessarily demand that these many-body
Hilbert spaces are built on identical microscopic degrees of
freedom. However, suppose that it is possible to add ancilla
local degrees of freedom, e.g., spin 1/2’s, to both many-body
Hilbert spaces, such that the resulting enlarged Hilbert spaces
do have identical microscopic degrees of freedom (see Fig. 4).
Enlarging the FSCLO’s by appending σ z operators for all of
the ancilla spins results in FSCLOs {O′(1)

j } and {O′(2)
j } for the

enlarged Hilbert space. We then say that the original FSCLOs
for system 1 and system 2 are stably equivalent if there exists a
finite depth circuit of local unitaries V in the enlarged Hilbert
space that maps the commuting algebra generated by {O′(1)

j }
to the commuting algebra generated by {O′(2)

j }. This definition
can readily be generalized to the case of ancilla degrees
of freedom with more general site Hilbert space dimension
p > 2.

In Appendix B, we construct a honeycomb model which is
a slight variant of that constructed in Ref. [2], and show that
its FSCLO is stably equivalent to the usual square lattice toric
code projectors. These are the standard vertex and plaquette
terms AV and BF , associated to vertices V and faces F of the

FIG. 4. The spin-1/2 systems in the first row are built on dif-
ferent microscopic Hilbert spaces. However, after the addition of
appropriate ancilla spins in each case (blue and red, respectively),
the microscopic Hilbert spaces become equivalent.

toric code square lattice:

AV =
∏
l∼V

Sx
l , (48)

BF =
∏
l∈∂F

Sz
l , (49)

where l labels the links of the square toric code lattice. We
will use stable equivalence to the toric code as our “strong”
definition of Z2 eigenstate topological order. In particular,
as shown in Appendix B, the honeycomb model conserved
quantities used in Ref. [2] are stably equivalent to the square
lattice toric code, and hence exhibit “strong” eigenstate order
in our sense.

Assuming now that we have a system with a FSCLO {O j}
that is stably equivalent—via a finite depth circuit U—to the
standard toric code, let us try to understand Floquet dynamics
that is compatible with this FSCLO. Demanding that all of the
O j are conserved under Floquet evolution, i.e., U †

FO jUF =
O j , is overly restrictive, because it rules out Floquet operators
of the sort we want to study, namely, ones that exchange e and
m. Instead, we will demand the following weaker.

Compatibility condition. The local operators {U †
FO jUF }

can all be written in terms of the {O j}, i.e., they generate the
same commuting algebra.

An additional condition we can impose is that U N
F = 1 for

some N . We expect that these two conditions will lead to some
sort of stability against heating, via an argument exploiting the
many-body localizability of U N

F or the prethermalization ideas
of Refs. [37–39] that were used in the time crystal context
[16,17], but we leave this analysis to future work.

The key consequence of the compatibility property above
is that Floquet evolution UF takes string operators X to other
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string operators U †
F XUF . Indeed, the defining property of a

string operator in a model stably equivalent to the toric code is
that it commute with all of the vertex and plaquette operators
in the bulk of the string—i.e., away from the endpoints—as
well as all of the ancilla Sz spins (since it should not act on the
latter in the bulk of the string). This is just the requirement that
the bulk of the string X commute with the FSCLO, and since
the constraint algebra generated by the FSCLO is invariant
under UF , this implies the same for U †

F XUF .
Now, the braiding properties of the topological excitations,

encoded in the algebraic commutation properties of the string
operators and preserved by local unitary conjugation, imply
that an e string operator can only map to an e string operator
or to an m string operator. In the later case, we say that the
original UF exchanges e and m. In Appendix B, we give
an example of a honeycomb Floquet unitary that exchanges
e and m.

B. Chiral edge

We now demonstrate how in a system with bulk toric code
eigenstate order, enforcing the bulk conserved quantities as
constraints yields a constrained Hilbert space that can be
naturally interpreted as a Hilbert space of a quasi-1d fermionic
system coupled to a Z2 gauge field. By assumption, our
system is stably equivalent to the toric code, and hence to the
honeycomb model. Recall that the honeycomb model [2,34]
consists of spin-1/2’s �Sr at sites r of a honeycomb. A useful
representation of this Hilbert space is obtained by writing each
spin-1/2 in terms of four Majorana mode variables {cr, bx,y,z

r }:
Si

r = icrbi
r (50)

together with the constraint bx
rby

rbz
rcr = 1. Graphically, the cr

operators are represented as sitting at the honeycomb sites,
and the bi

r as sitting on the corresponding links, near the site.
i = x, y, z corresponds to the three possible link orientations.
We also define Z2 gauge link variables σr,r′ = ibj

rbj
r′ , where

j ∈ x, y, z according to the type of link 〈r, r′〉, choosing an
orientation so that each link 〈r, r′〉 is always oriented from
one arbitrarily chosen sublattice towards the other. As we
show in Appendix B, whatever the FSCLO of our original
model, under the local unitary equivalence to the honeycomb
model it must map to the canonical honeycomb model con-
served quantities (plus possible ancilla σ z spins, which are
not relevant to the subsequent discussion). These are the flux
operators FP, given by the product of σr,r′ along the links
〈r, r′〉 of a hexagonal plaquette P, together with fermion parity
operators Pr,r′ = icrσr,r′cr′ for the vertical links 〈r, r′〉. In the
fermionic representation, it is easy to see that this is a full
set of local commuting quantities: specifying all of the fluxes
and all of the occupation numbers for the vertical-link pairing
of Majorana modes specifies a state uniquely up to gauge
equivalence.

Now introduce an edge into the system. At some distance
greater than all relevant Lieb-Robinson lengths away from
the physical cut, the truncated Floquet unitary, unitarily trans-
formed into the honeycomb model variables as in Eq. (16),
commutes with the honeycomb model FP,Pr,r′ conserved
quantities. We consider all spins closer than this distance
to the edge to be part of the effective quasi-1d edge, and

FIG. 5. Majorana representation of the honeycomb model. The
spins above the blue cut are part of the edge, and the ones below the
blue cut are part of the bulk. A fermionic string operator is indicated
in red: its bulk portion contains the product of σr,r′ Z2 gauge field
variables over a string. Acting on the constrained Hilbert space where
the bulk plaquette fluxes FP take on prescribed values, it is equivalent
to a string operator acting at the edge. Here the open red rectangles
run along a lattice Z2 gauge field defined at the edge.

the remaining spins to be part of the bulk—see Fig. 5. The
constrained Hilbert space is then defined by fixing (arbitrarily)
the eigenvalues of FP,Pr,r′ operators in the bulk.

The algebra of all operators that commute with the bulk
constraints is given by operators that act only on the edge
spins, together with string operators that can tunnel through
the bulk. Taking the quotient by the closed string operators
in the bulk, which act as ±1 on the constrained Hilbert space,
gives the operator algebra of the edge. As is shown graphically
and explained in Figs. 5 and 6, this is simply the algebra
of operators of a quasi-1d fermion coupled to a Z2 gauge
field. The idea is simply that one can use the fixed values
of the bulk conserved quantities to deform the various string
operators to the edge. Under this correspondence, the fermion

FIG. 6. Majorana representation of the honeycomb model. A
string operator that tunnels a Z2 vortex is indicated in green rectan-
gles, corresponding to either an e or m string operator depending on
the sublattice hexagons on which the string terminates. By perform-
ing a global Z2 gauge transformation in the green region, and using
the fact that in the constrained Hilbert space the Pr,r′ quantities take
on prescribed values in the bulk, we see that the action of this string
operator on the constrained Hilbert space is equal to the product of
the Majorana modes indicated in purple. This product measures the
fermion parity in the interval between the left and right tunneling
endpoint.
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string operator maps to the product of two fermion parity
odd operators connected by a Z2 gauge field string (Fig. 5),
whereas e and m string map, modulo endpoint operators, to
operators which measure the fermion parity on the interval
between the two tunneling endpoints.

C. Bulk boundary correspondence

Now consider a 2d Floquet operator UF that preserves
the algebra generated by the bulk FSCLOs. Note that this
does not necessarily mean that all of these commuting local
operators transform to precisely themselves times a phase
under UF ; rather, all we demand is that the algebra generated
by them is preserved under UF . Indeed, the fact that UF

preserves the bulk FSCLO means that it maps string operators
to string operators, and hence maps the operator algebra of the
constrained edge defined above to itself. As we saw above, this
is just the operator algebra of a quasi-1d fermion coupled to a
Z2 gauge field.

In order to apply our fermionic classification results, how-
ever, we have to extend this to an action on the full operator
algebra of a fermionic quasi-1d system. By picking a gauge
we see that we already have an action on the set of all
fermion parity even operators in this system, so all we have
to do is to define an action on the odd operators. Because
fermionic string operators map to other nearby fermionic
string operators, we see that an operator of the form X1X2,
with X1 and X2 spatially separated along the edge and fermion
parity odd, must map to X ′

1, X ′
2, where the X ′

i are fermion
parity odd and supported near the corresponding Xi. One is
then tempted to say that X1 should map to X ′

1 and X2 to X ′
2.

However, this definition is ambiguous up to a phase, since
only the overall phase of X ′

1X ′
2 is well defined. However, if we

demand that Hermitian operators map to Hermitian operators,
the ambiguity is reduced to only a sign. Furthermore, since
the sign is fixed for any product of two odd local operators,
this is a global sign ambiguity. This global ambiguity cannot
be fixed further: it corresponds to the fact that we can always
modify the fermionic edge operator by multiplying it by the
global edge fermion parity. As an example, applying this
construction to the honeycomb model of Appendix B, we see
that the fermionic edge automorphism is simply a Majorana
translation, as illustrated in Fig. 9.

We thus see that for any system stably equivalent to the
toric code, a Floquet evolution that is compatible with the
FSCLO (namely, preserves the commuting algebra generated
by the FSCLO) induces a locality-preserving unitary Y of
a quasi-1d fermionic edge. We are now in a position to
apply our classification results for fermionic quasi-1d locality-
preserving unitaries. Indeed, we claim that the 1d operator Y
is radical (i.e., has ζ = 1 in the above notation) if and only
if the bulk Floquet evolution exchanges e and m. To see this,
consider a string operator Xe that tunnels an e quasiparticle
into the bulk at point a and out at point b, as in Fig. 6. Then

X ′ = Xe(U F †
XeUF ) (51)

is a string operator that either tunnels no topological charge
(if UF fixes e and m) or is a fermionic string operator (if UF

exchanges e and m). However, on the edge, according to the
dictionary established above, the operator Xe simply measures

the total fermion parity PI of the interval I = [a, b], so that X ′
acts on the edge as PI (Y †PIY ). According to Eq. (17), this is
nothing but ALAR, where AL and AR are local operators acting
near a and b respectively, whose fermion parities diagnose the
radical nature of Y . Thus Y is radical if and only if X ′ is a
fermionic string operator, which is the case precisely when UF

exchanges e and m in the bulk. This proves the bulk-boundary
correspondence.

V. DISCUSSION

In this work, we constructed a many-body quantized invari-
ant that classifies interacting two-dimensional Floquet phases
of fermions in the MBL setting. The value of the invariant
can be diagnosed by exposing an edge in the system and
examining the action of the Floquet operator at the edge.
The signature of a nontrivial phase is that despite being
locality-preserving, the edge evolution nevertheless cannot be
generated by any truly 1d Floquet Hamiltonian. We showed
that such nontrivial 1d fermionic locality-preserving operators
are completely classified by an index that takes values in
either the rational numbers (the rational case) or rational
numbers times the square root of 2 (the radical case). The
radical case is an intrinsically fermionic phenomenon, having
no bosonic counterpart, and corresponds to a translation by a
single Majorana mode. Beyond the intricate construction of
the many-body index, we also gave a simpler diagnostic for
determining whether a given edge is radical or rational.

The Majorana SWAP model Hamiltonian explicitly breaks
fermion number conservation, leaving only the fermion parity
symmetry unbroken. Although it can be realized as a mean
field description of a paired state, the gapless Goldstone
modes in a pair superfluid would cause problems for MBL, as
would the long range interactions in a superconductor. On the
other hand, Z2 fermions can also be realized as an emergent
description of a bosonic system with Z2 eigenstate topological
order, and Ref. [2] constructed a honeycomb model, which
had both an effective radical edge and had the bulk Floquet
unitary acting as an anyonic symmetry, exchanging the e and
m toric code excitations in the bulk. In this case, at a finite
density of e and m excitations the system behaves like a time
crystal with a response at period 2T . In this work we used
our classification of 1d locality-preserving unitaries to give
a general proof of this bulk-boundary correspondence. In the
course of this argument, we used the idea of stable equivalence
to introduce a ‘strong’ notion of eigenstate topological order.

On the other hand, there do exist models with equilibrium
toric code topological order where the e and m excitations are
exchanged by an onsite Z2 symmetry, which certainly cannot
have an edge chirality [26,35]. The implication of the bulk-
boundary correspondence is thus that, despite having ground
state topological order, these models cannot have topological
order in all eigenstates. Indeed, these models are constructed
using commuting projectors in such a way that the projectors
are nonzero only if the state they act on satisfies some local
constraints, leading to a massive degeneracy in their excited
state spectrum. The bulk-boundary correspondence implies
that this degeneracy cannot be lifted, i.e., that it is impossible
to construct a full set of toric-code like local integrals of
motion compatible with the Z2 symmetry. In particular, it
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implies that these models cannot be many-body localized
by disordering the coefficients of their commuting projectors
[28,29].

There are several avenues for extending the present work.
One is to relate the ‘strong’ notion of eigenstate topological
order introduced in this paper to other ways of characterizing
eigenstate topological order, e.g., in terms of the existence
of string operators commuting with the Hamiltonian. Indeed,
we expect that “strong” eigenstate topological order is actu-
ally equivalent to any other sufficiently precise definition of
eigenstate topological order, but leave this issue for future
investigation.

Another possible extension is to study more general topo-
logical orders, e.g., Zn gauge theories. In this case, a defect
that exchanges the charge and flux excitations is known to
bind parafermion zero modes [40–42], and it would be inter-
esting to generalize the Z2-graded algebra based fermionic
classification to a parafermionic one based on ZN -graded
algebras. We expect that this is possible, and will yield an
extension of the many body index valued in rational numbers
times

√
N . Furthermore, it is natural to try to extend the

present work to the case of models with additional global
symmetries, such as U(1) particle number conservation.
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APPENDIX A: CLASSIFICATION OF 1D FERMIONIC
LOCALITY-PRESERVING UNITARIES

Our goal will be to extend the results of Ref. [23] to clas-
sify locality-preserving unitary operators in fermionic Hilbert
spaces. We will follow the approach of Ref. [23] closely,
generalizing their results on algebras to the case of Z2-graded
algebras.

1. Notation and terminology

For any set S, it will be useful to define Sn as the enlarge-
ment of S consisting of all sites at distance at most n from
some site in S. We will then call an even unitary operator U
on H “locality-preserving” with range n if, for any operator X
supported on a finite set S, U †XU is supported on Sn.

Step 1: Constructing the Z2-graded support algebras

Suppose we have a locality-preserving unitary U . The first
step in our construction of the index of U will be to define
certain Z2-graded “support algebras” that characterize the
quantum information flow associated to U . To define these, we
first coarse grain the Hilbert space by grouping sites in such a
way that U is locality-preserving with range 1. Now consider
the operator algebra on two neighboring sites, O2x ⊗ O2x+1.

We have

U †(O2x ⊗ O2x+1)U (A1)

⊂ (O2x−1 ⊗ O2x ) ⊗ (O2x+1 ⊗ O2x+2). (A2)

We now want to quantify the extent to which
U †(O2x ⊗ O2x+1)U is supported on either of the two tensor
factors in brackets on the right-hand side of the above
equation. To do this, we need to introduce the notion of a
Z2-graded “support algebra.”
Z2-graded support algebra. Let B1 and B2 be Z2-graded

algebras of all linear operators on finite-dimensional Z2-
graded Hilbert spaces H1, H2 respectively, and let A ⊂ B1 ⊗
B2 be some Z2-graded subalgebra, closed under the taking
of adjoints, i.e., under Hermitian conjugation. Pick bases—
i.e., complete linearly independent sets of operators—{Ei

μ} of
Bi

2 (i = 0, 1), the even and odd parts of B2. Here μ ranges
from 1 to |H0

1 |2 + |H1
1 |2 for i = 0, and from 1 to 2|H0

1 ||H1
1 |

for i = 1. Similarly, pick bases {Ai
ν} of Ai.

Then any Ai
ν ∈ Ai has a unique expansion

Ai
ν =

∑
μ

Ai0
νμ ⊗ E0

μ +
∑

μ

Ai1
νμ ⊗ E1

μ. (A3)

The algebra generated by all of the Ai j
νμ ∈ B1 is denoted

S(A,B1) and called the support algebra of A in B1. Since
each Ai j

νμ ∈ B1 has well defined fermion parity i + j, S(A,B1)
is a Z2-graded algebra. Clearly, it has the property that A ⊂
S(A,B1) ⊗ B2. We claim that it is also the smallest Z2-graded
algebra with this property, i.e., that for any other Z2-graded
subalgebra C ⊂ B1 for which A ⊂ C ⊗ B2, we must have
S(A,B1) ⊂ C. Indeed, this just follows from the fact that
we can expand each Ai

ν uniquely as a sum of operators in
C tensored with the E j

μ, showing that all of the Ai j
νμ are in

C. In particular, this shows that our definition of S(A,B1) is
independent of the choice of bases taken above. Furthermore,
since A was closed under the taking of adjoints, S(A,B1)
must also have this property.

We now construct the support algebras:

R2x = S(U †(O2x ⊗ O2x+1)U, O2x−1 ⊗ O2x ), (A4)

R2x+1 = S(U †(O2x ⊗ O2x+1)U, O2x+1 ⊗ O2x+2). (A5)

Let us examine some of the properties of the Ry. The
most important of these is that they all graded-commute.
Indeed, taking R2x+1 for example, it is immediate that it
graded-commutes with all Rz, except possibly R2x+2. To
see that R2x+1 and R2x+2-graded-commute, we appeal to the
following general result, the Z2-graded analog of lemma 8 in
Sec. 7 of Ref. [23]:

Claim. Suppose A ⊂ B1 ⊗ B2 and A′ ⊂ B2 ⊗ B3-graded-
commute in B1 ⊗ B2 ⊗ B3. Then S(A,B2) and S(A′,B2)-
graded-commute in B2.

Proof. We use the following general fact:

[E ⊗ X ⊗ 1, 1 ⊗ X ′ ⊗ E ′]g = E ⊗ [X, X ′]g ⊗ E ′ (A6)

for all E ∈ B1, X, X ′ ∈ B2, E ′ ∈ B3. This can be checked
directly on elements E , X, X ′, E ′ with well defined
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fermion parity, and then extended to all elements by
linearity.

Now pick bases {Eμ} of B1 and {E ′
ν} of B2, with each

Eμ, E ′
ν having well defined fermion parity. Take any A ∈

A, A′ ∈ A′, and expand

A =
∑

μ

Eμ ⊗ Aμ, (A7)

A′ =
∑

ν

A′
ν ⊗ E ′

ν . (A8)

We then have, using Eq. (A6),

0 = [A, A′]g (A9)

=
∑
μ,ν

Eμ ⊗ [Aμ, A′
ν]g ⊗ E ′

ν . (A10)

Using the linear independence of the {Eμ} and of the {E ′
ν},

this implies that [Aμ, A′
ν]g = 0 for all μ, ν. Since the set of

all such Aμ and A′
ν generate S(A,B2) and S(A′,B2) respec-

tively, as we range over all A ∈ A, A′ ∈ A′, we conclude that
[S(A,B2), S(A′,B2)]g = 0, as desired.

Applying the above claim to A = U †(O2x ⊗ O2x+1)U ,
A′ = U †(O2x+2 ⊗ O2x+3)U , which clearly graded-commute
and are contained in B1 ⊗ B2 and B2 ⊗ B3, respectively,
with B j = O2x−3+2 j ⊗ O2x−2+2 j for j = 1, 2, 3, we see that
R2x+1 = S(A,B2) and R2x+2 = S(A′,B2)-graded-commute,
as desired.

Another important property of the Ry follows from the fact
that taken together, they generate the entire operator algebra
O. Indeed, since R2x ⊗ R2x+1 contains U †(O2x ⊗ O2x+1)U ,
the algebra generated by all of the Ry contains all of the
U †(O2x ⊗ O2x+1)U . However, since U is unitary, the latter
generate all of O as we range over all x.

The fact that the Ry generate all of O implies that each Ry

has trivial graded center: in other words any element Y ∈ Ry

that graded-commutes with all of Ry must be a multiple of 1.
Indeed, any such Y would then graded-commute with all the
Rz, and hence all of O, but since O is a matrix algebra, this
means that Y would be a multiple of the identity.

Step 2: Characterizing the Z2-graded support algebras

The properties of the Ry that we derived above allow us to
derive strong constraints on their form, which will be used in
the definition of the fermionic index. It will be instructive to
first recall the bosonic case covered in Ref. [23], where the Ry

are ordinary algebras. The fact that each Ry is a subalgebra
of a matrix algebra and closed under the taking of adjoints
implies that it is semisimple. The fact that Ry also has trivial
center then implies, using Wedderburn’s theorem, that Ry =
C(dy), the algebra of r(y) by r(y) complex matrices, where
r(y) is some integer.

In our present Z2-graded case, each Ry is still a subalgebra
of a matrix algebra and closed under the taking of adjoints,
and so is still semisimple when viewed as an ordinary algebra,
forgetting the Z2-graded structure. Furthermore, as shown in
the previous subsection, it has trivial graded center. Z2-graded
algebras that satisfy these two conditions are called “cen-
tral simple superalgebras” (see golem.ph.utexas.edu/category/
2014/08/ the underscore tenfold underscore way underscore

part underscore 3.html). There turns out to be a generalization
of the Wedderburn theorem, the super-Wedderburn theorem
(see above link), that states that these must be of one of
two forms: (1) Ry = C(p|q), the Z2-graded algebra of matrix
operators on Cp|q. This has dimension |Ry| = (p + q)2 as a
vector space over the complex numbers. (2) Ry = C�1(p|q),
the Z2-graded algebra of matrix operators on Cp|q with matrix
entries taking values in the Clifford algebra C�1 over the
complex numbers. Recall that C�1 = C ⊕ C is the Z2-graded
algebra consisting of elements of the form a + bγ , where γ is
an odd Hermitian generator (i.e., a Majorana mode). Ry then
has dimension |Ry| = 2(p + q)2 as a vector space over the
complex numbers.

These two cases are referred to as even and odd simple Z2-
graded algebras respectively [32]. For example, the Clifford
algebras Cln over the complex numbers are even or odd
according to the parity of n.

2. Definition of fermionic index

Having characterized the support algebras as above, we can
prove one more useful fact, namely that

U †(O2x ⊗ O2x+1)U = R2x ⊗ R2x+1. (A11)

Indeed, we already know that U †(O2x ⊗ O2x+1)U ⊂ R2x ⊗
R2x+1, so all we have to prove is that the inclusion is an
equality. If it were not, then we could find an element Z ∈
R2x ⊗ R2x+1, not proportional to 1, that would commute with
all of U †(O2x ⊗ O2x+1)U . Z would also commute with all
of the other U †(O2x′ ⊗ O2x′+1)U ⊂ R2x′ ⊗ R2x′+1, and hence
with all of O, which is impossible since O is a matrix algebra.

Taking the dimensions of the left- and right-hand sides of
Eq. (A11), we obtain

(p2x + q2x )2(p2x+1 + q2x+1)2 = |R2x||R2x+1|. (A12)

Also, because R2x+1 and R2x+2-graded-commute, together
their tensor product spans a Z2-graded subalgebra of size
|R2x+1||R2x+2| inside O2x+1 ⊗ O2x+2. This is again an inclu-
sion of Z2-graded even algebras, and by the same argument as
above this inclusion cannot be strict, i.e., must be an equality.
From this we get

|R2x+1||R2x+2|= (p2x+1 + q2x+1)2(p2x+2 + q2x+2)2. (A13)

These two equations now show that the quantity
√|R2x|

(p2x + q2x )
= (p2x+1 + q2x+1)√|R2x+1|

≡ indf (U ) (A14)

is independent of x; we call it the fermionic index of U . Taking
its logarithm, we define the fermionic chiral unitary index as

ν f (U ) ≡ ln indf (U ). (A15)

a. Properties of the fermionic index

Explicit formula. The fermionic index ν f can also be
expressed in terms of an explicit formula, given in Eq. (28).
The proof of Eq. (28) parallels that of lemma 12, proposition
13, and lemma 14 in Sec. 7 of Ref. [23]. First, we define the
measure η(A,B) that describes the extent to which Z2-graded
algebras A and B fail to graded-commute.
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For the case of the site Hilbert spaces being 2n-dimensional
fermionic Fock spaces, we can let A and B be generated by
2nA and 2nB Majorana modes respectively. Then form mono-
mials of these to generate sets of pA = 22nA and pB = 22nB or-
thonormal operators ea

i , i = 1, . . . , pA and eb
j, j = 1, . . . , pB

spanning A and B, respectively. Then, as in the main text, we
define

η(A,B) = 2−n�

√√√√ pA∑
i=1

pB∑
j=1

∣∣Tr�
(
ea

i
†eb

j

)∣∣2
, (A16)

where

n� =
∑
x∈�

nx (A17)

is the total number of fermionic modes in the whole system,
and the trace in Eq. (26) is taken in the Hilbert space of the
whole system.

For the case of general Z2-graded site Hilbert spaces, we
parallel the definition in Sec. 7 of Ref. [23]; instead of a
basis generated by monomials of Majorana modes, we can
take a general orthonormal linearly independent set. The only
subtlety is the issue of normalization—the inner product in
the space of operators is given by Tr(A†B), and depends on
the size of the Hilbert space where A and B act. However,
this can be resolved just as in the case of bosonic site Hilbert
spaces—the Z2-graded nature of the Hilbert spaces poses
no essential complication. The final formula for η(A,B) is
analogous to that given in Eq. (19) of Ref. [22], but slightly
more cumbersome and not particularly enlightening, because
the sums must be broken up into separate even and odd sector
sums.

Then the fermionic analogues of lemma 12, proposition
13, and lemma 14 follow by replacing commutators with
Z2-graded commutators and matrix algebras with even simple
Z2-graded algebras. These results show that the quantity

ln

(
η(Y †ALY,AR)

η(AL,Y †ARY )

)
(A18)

is equal to 1 on finite depth circuits. Since, as we have
seen, it is equal to

√
2 on the Majorana translation, by the

completeness property discussed below, it must be equal to
ν f . This proves Eq. (28).

b. Completeness of classification

Claim. If indf (U ) = indf (U ′), then U and U ′ are stably
equivalent.

Proof. Our proof is a refinement of the argument in theorem
9 of Sec. 7 of Ref. [23]. First, we assume to have coarse-
grained our Hilbert space so that U and U ′ are both locality-
preserving with range 1. Let Ry denote the support algebras
in the above construction for U , and R′

y those for U ′. Since
indf (U ) = indf (U ′), Ry and R′

y have the same dimension for
all y. Now, there are two cases: either U and U ′ are both
radical or both rational. We claim that one can always reduce
to the case when they are both rational. Indeed, if they are
both radical, one can append two ancilla spinless fermion
systems. Since performing opposite Majorana translations in
these wires constitutes a finite depth quantum circuit, all one

has to show is that U and U ′, when tensored with this circuit,
are stably equivalent. But this follows from showing that U
and U ′, when tensored with one single such wire are stably
equivalent, and these are both rational.

Thus we have reduced to the case that U and U ′ are both
rational. Now, even though Ry and R′

y are both even simple
Z2-graded algebras of the same dimension, they might not
necessarily be isomorphic. This is different from the bosonic
case, where we have ordinary simple algebras, i.e., matrix
algebras C(n), which are uniquely determined by their di-
mension n2. This difference is what complicates the fermionic
case and requires the additional notion of stable equivalence.
Indeed, in the fermionic case, all we can conclude is that Ry =
C(ry|sy), R′

y = C(r′
y|s′

y) with ry + sy = r′
y + s′

y = ny. We will
now simply tensor with an ancilla system consisting of single
spinless fermion wire, with site Hilbert spaces C1|1. Then the
support algebras of U ⊗ 1 and U ′ ⊗ 1, denoted R̃y and R̃′

y,
are just graded tensor products:

R̃y = C(ry|sy) ⊗ C(1|1) = C(ny|ny), (A19)

R̃′
y = C(r′

y|s′
y) ⊗ C(1|1) = C(ny|ny). (A20)

Thus, by tensoring with the spinless fermion wire ancilla,
we can make the corresponding support algebras isomorphic.
For simplicity, I will now drop the tilde notation, and simply
assume Ry and R′

y are isomorphic. The proof now proceeds
as in the bosonic case: because Ry and R′

y are isomorphic for
all y, there exists a unitary operator V2x−1 ∈ O2x−1 ⊗ O2x such
that V †

2x−1RyV2x−1 = R′
y for y = 2x and y = 2x − 1. Let

V =
∏

x

V2x−1. (A21)

Then, since U maps the operator algebra O2x ⊗ O2x+1 to
R2x ⊗ R2x+1, V maps R2x ⊗ R2x+1 to R′

2x ⊗ R′
2x+1, and U ′

maps O2x ⊗ O2x+1 to R′
2x ⊗ R′

2x+1, we see that (U ′)−1VU
maps each O2x ⊗ O2x+1 to itself. Thus we have

(U ′)−1VU =
∏

x

V ′
2x, (A22)

where V ′
2x ∈ O2x ⊗ O2x+1 are unitaries. Letting V ′ = ∏

x V ′
2x,

we then get that

U = V −1U ′V ′ (A23)

so that U and U ′ differ by stacking finite depth unitaries, as
desired.

c. Examples

Majorana chain. Let us take the Hilbert space of spinless
fermions, with Hi = C1|1 on each site. Under coarse graining,
we can only generate sites whose dimensions are powers of
2. Equations (A11) and (A12) then imply that |Ry| is then
an integral power of 2 for all y, and hence the index of
any locality-preserving U must also be the square root of an
integral power of 2.

The algebra of operators Oi = C(1|1) = C�2 on each Hi

is simply that generated by two Majorana modes, which
we will call γ2i−1 and γ2i. The total operator algebra Oi

is then O = C(2N−1|2N−1) = C�2N , and is generated by the
Majorana modes γ1, . . . , γ2N .
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Now, let R be the 2N by 2N matrix defined by Ri,i+1 =
1 for i = 1, . . . , 2N − 1, R2N,1 = −1, and all other Ri, j = 0.
Since R is in SO(2N ), we can write it as R = exp(A), with A
real and antisymmetric. Then define

UMaj = exp

⎡
⎣1

4

∑
i, j

Ai, jγiγ j

⎤
⎦. (A24)

UMaj then implements a Majorana translation: U †
MajγiUMaj =

γi+1 for i = 1, . . . , 2N − 1 and U †γ2NU = −γ1. Using
Eq. (A14), we find indf (UMaj) = 1/

√
2.

General case. We claim that any locality-preserving uni-
tary in any fermionic system is stably equivalent to either
a bosonic locality-preserving unitary in a bosonic system,
or to such a bosonic locality-preserving unitary stacked on
top of the Majorana translation constructed above. Indeed,
since such systems span out the set of possible values for
indf , this just follows from the completeness of the fermionic
classification discussed above.

3. Diagnosing radical locality-preserving unitaries

In this section, we describe a simple way to determine
whether U is rational or radical, which avoids the complicated
computation of indf (U ) described in Eq. (A14). First, let
Pi ∈ Oi be the operator that measures fermion parity at site
i. For any set S, let

PS =
∏
i∈S

Pi (A25)

be the fermion parity within S, and let P be the total fermion
parity operator of the system:

P =
∏

i=1,...,N

Pi. (A26)

Now, given a locality-preserving unitary U , which we assume
to have been coarse-grained to have range 1, and an interval
I = [a, b], consider the operator TI (U ) defined by

TI (U ) = U −1PIUPI . (A27)

Note that since the total fermion parity P commutes with U
and with PI , we have

TI (U ) = P2TI (U ) = U −1(PPI )U (PPI ) (A28)

= U −1PĪUPĪ , (A29)

where Ī is the complement of I . Now, let’s take an operator
X supported away from I1, i.e., supported at least 2 sites
away from I . Then U †XU is also supported away from I ,
so both X and U †XU commute with PI . Using Eq. (A27),
we then see that X must commute with TI (U ). By virtue of
Eq. (A28), the same is true of any operator X supported away
from Ī1, i.e., in the interior of I at least one site away from the
endpoints.

More formally, this means that conjugating by TI (U ) takes
Oi to itself for all i except possibly i = a − 1, a, b, b + 1.
Thus conjugating by TI (U ) takes Oa−1 ⊗ Oa to some sub-
algebra of Oa−1 ⊗ Oa ⊗ Ob ⊗ Ob+1. Let us assume that I
is longer than 2 sites, i.e., a > b + 1. Then, since TI (U )
is locality-preserving with range at most 2, this subalgebra

FIG. 7. Honeycomb model. During the Floquet evolution, the
observable Pt associated with red supersites picks up an Aharonov-
Bohm phase FPt associated with the Z2 flux through plaquette Pt

located to the left of t . Similarly, for blue supersites, the relevant
plaquette is located to the right of r.

can only be Oa−1 ⊗ Oa itself, i.e., conjugating by TI (U )
takes Oa−1 ⊗ Oa to itself, and similarly for Ob ⊗ Ob+1. This
means that TI (U ) = T L

I (U )T R
I (U ), with T L

I (U ) ∈ Oa−1 ⊗
Oa, T R

I (U ) ∈ Ob ⊗ Ob+1 being some unitary operators. These
two operators can either both be even or both be odd.

We now claim that T L
I (U ) and T R

I (U ) are both odd pre-
cisely when U is radical. To see this, we note first that the
parity of these two operators depends only on the stable-
equivalence class of U , is clearly multiplicative under stack-
ing, and is clearly even for all bosonic locality-preserving
unitaries. Using the fact that any locality-preserving fermionic
unitary is stably equivalent to either a bosonic one or a bosonic
one stacked with a Majorana translation, all we have to show
is that the parity is odd for the Majorana translation defined
in Eq. (21). But for this specific case, we see directly that
conjugating by TI (UMaj) negates γa−1 and γb, and fixes all of
the other γi. Thus TI (UMaj) = γa−1γb up to phase, so that, up
to phase, T L

I (UMaj) = γa−1 and T R
I (UMaj) = γb are both odd,

as required.

APPENDIX B: A MODIFIED HONEYCOMB MODEL

Let us define a slight variant of the honeycomb model of
Ref. [2]. Our construction is based on Kitaev’s honeycomb
spin model, consisting of spin-1/2’s �StL, sitting on sites of
a honeycomb. Here t denotes a supersite consisting of two
vertically aligned nearest neighbor sites and L = A, B is a
sublattice index, as illustrated in Fig. 7. As in Ref. [34], it
will be useful for us to represent this Hilbert space by writing
each spin-1/2 in terms of four Majorana modes {crL, bx,y,z

rL }:
Si

rL = icrLbi
rL. (B1)

We must impose the constraint bx
rLby

rLbz
rLcrL = 1 to reproduce

a spin-1/2 Hilbert space. Graphically, we represent the crL

as sitting at the honeycomb sites, and the bi
rL as sitting on

085115-14



INTERACTING INVARIANTS FOR FLOQUET PHASES OF … PHYSICAL REVIEW B 99, 085115 (2019)

FIG. 8. Majorana representation of honeycomb model.

the corresponding links nearby (see Fig. 8). We also define
Z2 gauge link variables σrA,r′B = ibj

rAbj
r′B, where j ∈ x, y, z

according to the type of link 〈rA, r′B〉. For definiteness we
have taken the orientation to always go from the A to the B
sublattice.

Our Hamiltonian H (t ), periodic with period T , consists
of 4 piecewise constant driving terms Hj , j = 1, . . . 4, turned
on for time ( j − 1)T/4 � t < jT/4, and is a slight variation
on the one given in Ref. [2], in order to more directly relate
it to the standard toric code below. It is easiest to express
in the fermionic variables. The terms Hj are each associated
with hopping B-sublattice Majorana modes crB between two
nearest-neighbor supersites, illustrated in Fig. 9 as yellow,
blue, purple, and orange for j = 1, 2, 3, 4, respectively:

Hj =
∑

(u,t )∈ j

π
J

4
icuB(σtA,uB σtA,tB)ctB, (B2)

where (u, t ) ∈ j means a pair of nearest neighbor supersites
of the color associated to j. If we fix all the Z2 gauge field
variables to be equal to 1, this is just the Majorana SWAP
model.

FIG. 9. Action of Floquet unitary on the edge.

Let us now analyze the resulting Floquet unitary

UF (T ) = T exp

(
i
∫ T

0
dt H (t )

)
. (B3)

First, note that it leaves the gauge flux

FP =
∏

(rA,r′B)∈∂P

σrA,r′B (B4)

through each hexagonal plaquette P unaffected:

UF (T )†FPUF (T ) = FP. (B5)

Now let

Pt = StAStB = ctA σtA,tB ctB. (B6)

During the course of the Floquet evolution, the Majorana
mode ctB hops around a plaquette Pt , located either to the left
or to the right of t as illustrated in Fig. 7, and picks up an
associated Aharonov-Bohm phase:

UF (T )†PtUF (T ) = PtFPt . (B7)

This means that if there is a Z2 flux through plaquette Pt ,
then Pt changes sign. Since Pt can be interpreted as fermion
parity, this means that fermion parity changes in the presence
of a Z2 flux, and hence e and m excitations get exchanged,
as argued in Ref. [2]. Furthermore, as illustrated in Fig. 9, the
action on the edge consists of a Majorana translation. Just as
in Ref. [2], one can show that U (2T ) has an edge with well
defined chiral unitary index equal to ln 2, implying a fractional
index of 1

2 ln 2—for more details, see Refs. [2,22].

1. Full set of commuting local operators
for the honeycomb model

Let us now take the following FSCLO in the honeycomb
model: {F ′

P,Pr}. Here, F ′
P is a dressed version of the plaque-

tte flux operator, defined as

F ′
P = FPPrP1PrP2 , (B8)

where rP1 and rP2 are the lower and right supersites of P ,
respectively, as illustrated in Figs. 10 and 11. This is equiv-

FIG. 10. Honeycomb model.
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FIG. 11. Toric code with additional ancilla spins.

alent to the original FSCLO {FP,Pr} in that we can recover
each conserved quantity in one set as a product of conserved
quantites in the other set.

Now consider a completely different system, namely the
toric code on the square lattice. We can take a FSLCO for the
toric code consists of the standard vertex and plaquette terms
AV and BF , associated to vertices V and faces F of the toric
code square lattice:

AV =
∏
r∼V

Sx
rB, (B9)

BF =
∏

r∈∂F

Sz
rB. (B10)

Here r labels the links of the toric code lattice, and B plays no
role yet—it is just an extra label.

We now claim that the FSCLOs {F ′
P,Pr} and {AV ,BF } are

stably equivalent. To show this, we first have to establish an
equivalence between the microscopic degrees of freedom in
the toric code and the honeycomb model—this is illustrated
in Figs. 10 and 11. For the toric code, we take the Hilbert
space consisting of a spin-1/2 on each link of a square lattice,
and add an equal number of ancilla spin-1/2’s, as illustrated
in Fig. 11. We will denote the operators associated to the spin
on link r by Si

rB, and those associated to the corresponding
ancilla spin by Si

rA. These microscopic degrees of freedom can
be naturally identified with those of the honeycomb model,
illustrated in Fig. 10. Furthermore, the honeycomb plaquettes
can be naturally identified with those of the 45◦ rotated 1√

2
a

lattice illustrated in Fig. 11. Half of these correspond to faces
F in the toric code square lattice—we call these PF —and
the other half correspond to vertices of the toric code square
lattice and are denoted PV .

The FSLCO for the toric code consists of the standard
vertex and plaquette terms AV and BF , associated to vertices
V and faces F of the toric code square lattice:

AV =
∏
r∼V

Sx
rB, (B11)

BF =
∏

r∈∂F

Sz
rB. (B12)

We claim that the FSCLOs {AV , BF } and {F ′
P,Pr} are stably

equivalent. We demonstrate this by explicitly defining a finite
depth circuity unitary U , which actually turns out to be onsite,
that takes one FSCLO to the other:

U †F ′
PV

U = AV , (B13)

U †F ′
PF

U = BF , (B14)

U †PrU = Sz
rA. (B15)

Specifically, we define

U =
( ∏

r∈blue

Ur

)( ∏
r∈red

U ′
r

)
, (B16)

where the colors refer to Fig. 10, and where

Ur = exp
[
i
π

4

(
Sx

rASz
rB − Sx

rA

)]
(B17)

and

U ′
r = exp

[
i
π

4

(
Sx

sA − 1
)(

Sz
sB − 1

)]
exp

(
−i

π

4
Sz

sB

)
(B18)

× exp
(
−i

π

4
Sy

sB

)
. (B19)

The unitary that maps between the honeycomb model and
toric code conserved quantities is defined by

U =
( ∏

r∈blue

Ur

)( ∏
r∈red

U ′
r

)
(B20)

where the colors refer to Fig. 10, and where

Ur = exp
[
i
π

4

(
Sx

rASz
rB − Sx

rA

)]
(B21)

and

U ′
r = exp

[
i
π

4

(
Sx

sA − 1
)(

Sz
sB − 1

)]
exp

(
−i

π

4
Sz

sB

)
(B22)

× exp
(
−i

π

4
Sy

sB

)
. (B23)

To see that this is the case, let us first examine Ur . It acts on
the two spin-1/2 degrees of freedom in the r vertical link of
the honeycomb model as follows:

U †
r Sx

rBUr = iSz
rBSx

rASx
rB, (B24)

U †
r Sz

rBUr = Sz
rB, (B25)

U †
r Sx

rAUr = Sx
rA, (B26)

U †
r Sz

rAUr = Sz
rASz

rB. (B27)

This fully determines the action of Ur on the operator algebra
associated with the two spin-1/2’s. Similarly, for the case of
U ′

r , we have

(U ′)†
r Sx

rBU ′
r = Sz

rB, (B28)

(U ′)†
r Sz

rBU ′
r = iSz

rBSx
rASx

rB, (B29)

085115-16



INTERACTING INVARIANTS FOR FLOQUET PHASES OF … PHYSICAL REVIEW B 99, 085115 (2019)

(U ′)†
r Sx

rAU ′
r = Sx

rA, (B30)

(U ′)†
r Sz

rAU ′
r = Sz

rASz
rB. (B31)

Using these equations, we explicitly verify that

U †F ′
PV

U = AV , (B32)

U †F ′
PF

U = BF , (B33)

U †PrU = Sz
rA, (B34)

i.e., the conserved quantities of the honeycomb model map to
those of the standard toric code, with ancilla spins added to
the latter.

2. Floquet unitary exchanges e and m excitations

Let us see that the Floquet unitary UF (T ) defined in
Eq. (B3) exchanges e and m. First, since it preserves the
flux operators FP and takes Pr to PrFPr , it satisfies the
compatibility condition of Sec. IV A. It can also be checked
that UF (T )4 = 1, although we will not need this fact for the
present analysis.

Now consider an e string operator Xe in our model. This
is just a string operator that creates Z2 flux excitations on
widely separated e-type hexagonal plaquettes PV and PW , as
illustrated in Fig. 12. Formally, it is an operator which near its
left endpoint anticommutes with F ′

PV
and commutes with the

FIG. 12. The action of UF (T ) turns an e string operator into an
m string operator.

rest of the FSCLO. Now let

X̃e = UF (T )†XeUF (T ) (B35)

be the conjugated string operator. Note that UF (T ) and
UF (T )† flip the sign of any supersite operator Pr whenever
the corresponding nearby plaquette Pr has a nontrivial Z2

flux. This means that all such supersite operators are flipped
an even number of times by X̃e, except those directly to the
right of PV and PW , where the Z2 flux changes between the
application of UF (T ) and UF (T )†. Furthermore, all of the FP

operators are fixed by X̃e. Taken together, these facts imply
that X̃e flips the sign of F ′

P for P = PF , PG, as illustrated in
Fig. 12. Thus X̃e is an m string operator (which also creates
a local excitation corresponding to flipping the some ancilla
spins near the string endpoints).
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