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One bottleneck of quantum Monte Carlo (QMC) simulation of strongly correlated electron systems lies at
the scaling relation of computational complexity with respect to the system sizes. For generic lattice models of
interacting fermions, the best methodology at hand still scales with βN3 where β is the inverse temperature and
N is the system size. Such scaling behavior has greatly hampered the accessibility of the universal infrared (IR)
physics of many interesting correlated electron models at (2+1)D, let alone (3+1)D. To reduce the computational
complexity, we develop a new QMC method with inhomogeneous momentum-space mesh, dubbed elective-
momentum ultrasize quantum Monte Carlo (EQMC) method. Instead of treating all fermionic excitations on
an equal footing as in conventional QMC methods, by converting the fermion determinant into the momentum
space, our method focuses on fermion modes that are directly associated with low-energy (IR) physics in the
vicinity of the so-called hot spots, while other fermion modes irrelevant for universal properties are ignored.
As shown in the paper, for any cutoff-independent quantities, e.g., scaling exponents, this method can achieve
the same level of accuracy with orders of magnitude increase in computational efficiency. We demonstrate
this method with a model of antiferromagnetic itinerant quantum critical point, realized via coupling itinerant
fermions with a frustrated transverse-field Ising model on a triangle lattice. The system size of 48 × 48 × 32
(L × L × β, almost 3 times of previous investigations) are comfortably accessed with EQMC. With much larger
system sizes, the scaling exponents are unveiled with unprecedentedly high accuracy, and this result sheds new
light on the open debate about the nature and the universality class of itinerant quantum critical points.

DOI: 10.1103/PhysRevB.99.085114

I. INTRODUCTION

As an unbiased numerical method, determinantal quan-
tum Monte Carlo (DQMC) is widely used to study sign-
problem-free interacting-fermion systems [1–9]. Despite its
great success, for systems with large correlation lengths, such
as quantum critical systems, it is still highly challenging for
this method to accurately reveal the fate of the system at the
thermodynamic limit, because of the sharp rise in computa-
tional complexity for systems with large sizes, which scales as
O(βN3) with β being the inverse temperature and N being the
volume of the lattice [3,6]. Although polynomial, this com-
plexity becomes prohibitive for accessing low-temperature
physics in large systems, which are nevertheless necessary for
the endeavor such as itinerant quantum criticality in correlated
electron systems [10–13].
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To address this challenge, we develop a new QMC method
dubbed elective-momentum ultrasize quantum Monte Carlo
(EMUS-QMC, or EQMC in short), which applies generi-
cally to any itinerant quantum critical systems, although it
is optimized for systems with finite wavelength instabilities
(e.g., charge density waves or spin density waves). This
method drastically reduces the computational costs and thus
can be used to simulate larger systems in order to reveal
long-distance physics and universal properties near a quantum
critical point. The key to this method lies in the concept of
renormalization group (RG) and the following observation.
In DQMC, computational costs mainly come from handling
the fermionic modes. However, in itinerant fermionic systems,
fermionic excitations associated with low-energy excitations,
which dominate the universal behaviors at infrared (IR),
only inhabit a small part of the Brillouin zone (BZ). All
other fermionic modes, which are associated with high-energy
physics, are only needed for ultraviolet (UV) completion and
are irrelevant as far as universal quantum-critical phenom-
ena are concerned. In conventional DQMC simulations, all
fermionic modes are treated on an equal footing, and thus for

2469-9950/2019/99(8)/085114(11) 085114-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.085114&domain=pdf&date_stamp=2019-02-11
https://doi.org/10.1103/PhysRevB.99.085114


LIU, XU, QI, SUN, AND MENG PHYSICAL REVIEW B 99, 085114 (2019)

universal properties at IR, e.g., scaling laws, a large portion
of the computational resource is “wasted” on the high-energy
UV modes, irrelevant in the sense of RG [14].

In the EMUS-QMC method that we developed, the fermion
determinant is computed in the momentum space. Instead
of treating all fermionic modes equivalently, we select mo-
mentum points within certain patches of the BZ, in which
fermionic excitation directly contributes to low-energy (IR)
physics. When we compute the fermion determinant, only
fermionic modes with momenta inside these patches are taken
into account, while all other fermionic degrees of freedom
are ignored. As mentioned above, these ignored fermion
modes are irrelevant for universal behaviors at infrared (IR),
and thus our method will produce the same value for any
physics observables independent of UV cutoffs, e.g., scaling
exponents. Because this procedure reduces the number of
fermionic degrees of freedom, the computational complexity
can be greatly reduced from O(βN3) down to O(βN3

f ), where
N is the volume of the whole BZ and Nf is the volume of the
momentum patch that are kept in the simulation (measured
in the number of fermion modes). Speedup, to the level of
103, can be easily achieved in this method as it is easy to
reach N

Nf
∼ 10. In fact, for the model studied in Sec. III, we

showed that reliable and accurate results can be obtained even
for N

Nf
= 36, which implies an even more drastic reduction in

computational cost.
Same as many other RG-based techniques, our method

only focuses on cut-off independent universal properties. For
quantities that are sensitive to UV physics, e.g., the value
of the critical temperature or critical coupling strength, our
technique is not expected to generate the same value in com-
parison with the full-momentum-space DQMC simulations.
Examples of this type are also shown below.

Our EQMC method is particularly suitable for studying
quantum criticality in correlated itinerant electron systems,
which is a subject with great theoretical and experimen-
tal significance [10–13,15–18], and plays a vital role in
the understanding of anomalous transport, strange metal,
and non-Fermi-liquid behaviors [19–23] in heavy-fermion
materials [24,25], Cu- and Fe-based high-temperature su-
perconductors [26–28], as well as the recently discovered
pressure-driven quantum critical point (QCP) between mag-
netic order and superconductivity in transition-metal monop-
nictides, CrAs [29], MnP [30], CrAs1−xPx [31], and other
Cr/Mn-3d electron systems [32]. Despite the extensive theo-
retical efforts in the past decades [10–12,33–37], the problem
of itinerant quantum criticality is still open and among the
most difficult ones in strongly correlated electron systems, due
to its nonperturbative nature.

Admittedly, the recent development in sign-problem-free
DQMC methods paves the way to sharpen our understand-
ing on this open question. Coupling a Fermi surface (FS)
with various bosonic critical fluctuations, many itinerant
QCPs, including Ising nematic [38,39], ferromagnetic [23],
charge density wave [40,41], spin density wave [42–47], and
interaction-driven topological phase transitions [48–50] have
been studied. However, the true scaling behaviors of the itiner-
ant QCPs are yet to be explored, because the aforementioned
βN3 complexity prohibits the simulations to reach the true

thermodynamic limit, even with help of the very recent ad-
vances such as self-learning Monte Carlo method [41,51–54].
In this regard, the EQMC method, developed in this work,
provides a systematic way to reach larger system sizes, and
consequently allowing us to access the genuine scaling be-
haviors in the IR limit for itinerant quantum criticality.

The rest of the paper is organized as follows: the general
formulation of EQMC method is laid out in Sec. II, and in
Sec. III it is applied to a previously studied model [46] for
benchmarking purpose, and with much larger system sizes
simulated with EQMC, our previous conclusions are more
firmly established. Finally, remarks on future applications of
EQMC are provided in Sec. IV.

II. EMUS QUANTUM MONTE CARLO METHOD

A. General ideas

In general, DQMC simulations study the following
fermion-boson models:

H = Hf + Hf b + Hb, (1)

where Hf contains a quadratic free-fermion model,

Hf = −
∑
i ja

ti j (c
†
iac ja + H.c.), (2)

Hf b describes the coupling between the fermions and bosonic
modes, which is local and also quadratic in terms of fermion
operator c and c†s:

Hf b = λ
∑

i

c†
iaMabcibφi, (3)

Hb describes a Hamiltonian of the bosonic modes φi, which
can take any generic form. Here a, b denotes a combination
of quantum numbers, including orbits and spins, that labels
different fermion species. The summation over repeated in-
dices of fermion species are taken implicitly if not specified
explicitly. Such a model can either be obtained from an in-
teracting fermion model, through introducing auxiliary fields
using a Hubbard-Stratonovish transformation [1,2,6], or be
constructed directly as a “designer” Hamiltonian [23,46].

In DQMC simulations, configurations of the bosonic
modes φi are stochastically sampled, with weights obtained
through integrating out the fermion modes. Traditionally, real-
space fermion modes cia are chosen as eigenstates for this
computation. In EQMC, we instead treat fermion modes in
the momentum space. To this end, we rewrite Eqs. (2) and (3)
in momentum space,

Hf =
∑

k

[ε(k) − μ]c†
kacka (4)

and

Hf b = λ
∑
kk′

c†
kaMabck′bφk−k′ . (5)

Here φk denotes the k component of the Fourier transform of
the bosonic field φi:

φk = 1

N

∑
i

φie
−ik·ri . (6)
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FIG. 1. (a) The bare Fermi surface of the Hf , here as in Sec. III A,
the FS (yellow circle) is for a triangle lattice model. The folded FS
(red circles), coming from translating the bare FS by momentum Q
(blue arrows), which is the wave vector for the antiferromagnetic
fluctuations. The folded FS contains Fermi pockets and hot spots
(black dots). Two hot spots connected by momentum Q forms a hot
spot pair and we label it by {Kl , K′

l}, with l = 1, 2, . . . , 6 in case of a
triangle lattice model. (b) The inhomogeneous k mesh (red rhombus
mesh) build around hot spots, the number of momentum points inside
each mesh is denoted as Nf .

Rewriting the same problem in the momentum space gives
us the freedom of choosing arbitrary k points in the mo-
mentum summation in Eqs. (4) and (5). When studying the
low-energy and long-range physics, we choose IR fermion
modes that are particularly relevant for this physics, and
throw away other fermion modes without worrying about a
proper UV completion of a lattice model. In particular, for
studying fermionic QCPs, only fermion modes near the so-
called “hot spots,” where two patches of FSs are connected
by the ordering wave vector Q [see Fig. 1(a)], are relevant
to the universality class of the QCPs [34,35]. Therefore, we
keep modes in patches around these hot spots, and neglect
other modes in the BZ, as shown in Fig. 1(b). In this way,
the number of fermion modes used in computing the effective
weights is greatly reduced from the total size (or total volume)
N to the patch size (or patch volume) Nf , thus drastically
leave the computational burden, while retaining the same IR
physics of what a lattice DQMC simulation of system size N
can achieve.

When working with fermionic QCPs, the ratio Nf /N can
be chosen with the following principle. Naively, in a lattice
model, the lattice constant a provides a natural UV cutoff
scale � ∼ 2π

a , which is also the size of the BZ. However,
in practice, in a lattice model with the dispersions shown in
Fig. 1(a), the cutoff � can be reduced. Due to the complicated
shape of the Fermi surface, the universal scaling behavior is
achieved assuming a linearized Fermi surface around the hot
spots. Therefore, the size of the approximated linear portion
of the Fermi surface provides the real UV cutoff �, which
is much smaller than the size of the BZ. � also defines an
“optimal” patch around each hot spot: when the patch size
is larger than �, the cutoff scale is still � instead of the
patch size. Therefore, the computational cost is reduced, while
retaining the same universal physics. In other words, fermion
modes outside the optimal patch do not contribute to the
universal IR physics, and can be safely removed. However,
reducing the patch size beyond � does not offer more accel-
eration: although the computational cost is reduced, the cutoff

is also reduced proportionally, since the cutoff is now given
by the patch size. Hence, to reach the same ratio between
UV/IR scales, which is needed for studying universal scaling
behaviors, a finer mesh of momentum points in the patch
must be used, which contains the same amount of fermion
modes and thus requires no less amount of computational
time. Therefore, the ratio N/Nf should be chosen such that
the patch has the optimal size.

We emphasize that by removing fermion modes outside
of IR patches, the nonuniversal behavior of the model is
quantitatively varied. In other words, the EQMC method is
simulating a different model, which shares the same universal
IR physics, including the scaling behaviors at the QCP, as
the original lattice model. This is clearly demonstrated in the
example studied in Sec. III.

In EQMC, working in the momentum space means that
we can no longer take advantage of the locality in Eq. (3),
and therefore cannot efficiently perform local updates in the
conventional DQMC [6]. In lattice-based DQMC, the local
update [1,2,6,55], which tries to flip the bosonic spins si,τ

one by one through the space-time lattice of volume βN , can
benefit from the so-called “fast update.” The acceptance ratio
of such a flip involves a ratio of two determinants before
and after the flip. The local nature of the update enables
one to perform a fast update with a complexity O(1) to
compute this ratio, and a complexity O(N2) to update the
Green’s function if the flip is accepted [1], although generally
the computational complexity for evaluating a determinant is
O(N3). [Since flipping each spin costs O(N2), a full update
that flips spins on the order of space time volume βN costs
O(βN3), which is the well-known complexity of DQMC.] In
EQMC, due to the dense nature of the coupling in Eq. (5), one
can no longer use the fast update algorithm, and a local update
would cost βN · O(βN3

f ). Fortunately, there are global-update
algorithms one can choose, including the cumulative update
in self-learning Monte Carlo method developed recently by
some of us [52,53]. This gives rise to the complexity O(βN3

f )
for computing the fermion determinant in a full update, which
dominates the total computational cost of EQMC (see the
detailed discussion in Sec. II C). Since Nf can be much
smaller than N , speedup of ( N

Nf
)3 ∼ 103 with N

Nf
∼ 10 can be

easily foreseen.

B. Steps of the algorithm

We now describe the details of the EQMC algorithm.
Like all DQMC simulations, it samples through bosonic-field
configurations {φi,τ }, with the following weights:

W [φ] = Wb[φ] det[I + B(β, 0; φ)]. (7)

The weight has two parts: Wb[φ] denotes a bosonic weight
determined by the Hamiltonian Hb in Eq. (1), and det[I +
B(β, 0; φ)] is a fermion determinant obtained by integrating
out the fermion modes in the patches. Here I denotes the
identity matrix; and B(β, 0; φ) is a short form for the matrix
product of BMBM−1 · · · B1, where the matrix at time slice
τ is Bτ = exp(	τK) exp(V[φ]), with K the kinetic-energy
matrix of the bare system in Hf in Eq. (4): Kka,k′b = [ε(k) −
μ]δkk′δab, and V[φ] the fermion-boson coupling in Hf b in
Eq. (5): Vka,k′b = λMabφk−k′ .

085114-3



LIU, XU, QI, SUN, AND MENG PHYSICAL REVIEW B 99, 085114 (2019)

The bosonic weight Wb[φ] can be computed in standard
ways, as in bosonic QMC simulations [56]. Computing the
fermionic determinant, on the other hand, takes three steps:
(i) At each time slice, the configuration φi,τ is Fourier
transformed into momentum-space components φk,τ . (ii) The
interaction matrix V[φ] is constructed using φk,τ . (iii) The
determinant det[I + B(β, 0; φ)] is computed using the matrix
K, with all its elements fixed, and the matrix V[φ], which is
varying at each time slice.

The fermion matrices K and V[φ] are generally Nf × Nf

matrices. For the problem of fermion QCP with multiple
pairs of hot-spot patches, an approximation can be made such
that the matrices have a block-diagonalized structure, which
further reduces the computational cost. In such a problem
illustrated in Fig. 1, there are 12 hot spots, and they are divided
into six pairs, each connected by the ordering wave vector
Q. Taking two momenta k and k′ from the patches around
one pair of hot spots, the momentum transfer k′ − k � Q
corresponds to a low-energy bosonic mode. On the other hand,
the momentum transfer k′ − k between two other momenta,
which is not close to Q, corresponds to a high-energy bosonic
mode. Therefore, we make an approximation to only include
in V the scattering within a pair of hot-spot patches connected
by Q, and ignore other scattering processes. Under this ap-
proximation, the matrix V becomes block diagonalized, with
2Nf × 2Nf blocks, where 2Nf is the total number of modes
in the pair of patches. Since the matrix K is already diagonal
in momentum space, the resulting matrices Bτ is also block
diagonalized. This block-diagonalized structure allows the
determinant of different blocks to be computed individually,
thus saving both computational time and memory.

C. Complexity of the algorithm

The computational complexity of the EQMC algorithm can
be determined following the steps outlined in Sec. II B. We
first consider the complexity of computing the weight W [φ] in
Eq. (7) for a given configuration {φi}. The complexity of com-
puting the bosonic weight Wb[φ] depends on the form of Hb.
For a local Hamiltonian with finite-ranged interaction, this can
be done with complexity O(βN ). Next, the Fourier transform
from φi to φk is done using the fast Fourier transform (FFT)
algorithm, which costs O(N log N ) for each time slice, and
O(βN log N ) in total. Compared to this, the cost of computing
Wb[φ] is much smaller and thus can be neglected. Then, con-
structing the matrices V costs O(N2

f ) for each time slice, and
O(βN2

f ) in total. However, this is negligible compared to the
cost of computing the determinant det[I + B(0, β; φ)], which
costs O(βN3

f ). Therefore, the total computational cost for
computing the weight of a given bosonic-field configuration
{φi} is O(βN log N ) + O(βN3

f ).
In typical models, the optimal patch occupies about 1%–

20% of the total BZ. Therefore, in practice, we usually have
N/Nf < 100. With this parameter range, the second term
O(βN3

f ) is much larger than the first term O(βN log N ) for
a large system. Therefore, we can safely ignore the first term,
and use O(βN3

f ) as the complexity of computing the weight
W [φ].

The complexity of generating an uncorrelated configu-
ration in EQMC is also O(βN3

f ), assuming that we have

an effective global-update algorithm satisfying the following
assumptions: (i) The computational cost of generating a new
configuration {φi} is small compared to O(βN3

f ). (ii) The
autocorrelation time, measuring the number of steps in the
generated Markov chain between two uncorrelated configu-
rations, is of order one. Examples of such update algorithms,
in the form of the cumulative update scheme in the recently
developed self-learning Monte Carlo method [52,53], will
be given in Sec. III C, in the context of a concrete model.
Compared to the cost of lattice-based DQMC, O(βN3), the
EQMC thus offers a very promising acceleration factor of
( N

Nf
)3.

III. DEMONSTRATION OF EQMC

A. Model

In this section we use the model studied in Ref. [46] to
benchmark and demonstrate the power of the EQMC method.
The Hamiltonian of the model can be organized into the form
of Eq. (1), with each part given by

Hf = −t
∑

〈i j〉,λ,σ

(c†
i,λ,σ c j,λ,σ + H.c.) − μ

∑
i

ni, (8)

Hb = J
∑
〈i j〉

sz
i s

z
j − h

∑
i

sx
i , (9)

Hf b = −ξ
∑

i

sz
i

(
σ z

i,1 + σ z
i,2

)
. (10)

As shown in Fig. 2(a), fermions, subject to intralayer nearest-
neighbor hopping t and chemical potential μ, reside on two
of the layers λ = 1, 2. The middle layer is composed of Ising
spins sz

i with frustrated antiferromagnetic Ising coupling J>0
and a transverse magnetic field h along sx. Fermions and
Ising spins are coupled together via an interlayer onsite Ising
coupling Hf b, where σ z

i,λ = 1
2 (c†

i,λ,↑ci,λ,↑ − c†
i,λ,↓ci,λ,↓) is the

fermion spin along z. We set t = 1, J = 1, μ = −0.5 (electron
density 〈ni,λ〉 ∼ 0.8) and leave h and ξ as control parameters.

It is well known that Hb, describing a frustrated triangular-
lattice transverse-field Ising model, has extensive ground state
degeneracy at h = 0. At finite h, this degeneracy is lifted
by the quantum order-by-disorder effect, resulting in an or-
dered ground state with a clock pattern [58], as shown in
Fig. 2(b). The clock phase spontaneously breaks the transla-
tional symmetry [56,57] and thus has an enlarged unit cell.
This phase is characterized by a complex order parameter
meiθ = m1 + m2ei4π/3 + m3e−i4π/3, where mα = 3

N

∑N/3
i=1 sz

i,α
with α = 1, 2, 3 representing magnetization of the three sub-
lattices of the

√
3 × √

3 enlarged superlattice. In the mo-
mentum space, this order parameter has a finite wave-vector
Q = ( 2π

3 , 2π√
3

), i.e., the corner of the hexagonal Brillouin zone
as shown in Fig. 1(a). Upon introducing quantum/classical
fluctuations via increasing h or T , the ordered phase can melt.
The quantum melting is through a second-order quantum
phase transition at hc = 1.63(1) with an emergent U (1) sym-
metry [56]. Because of this emergent continuous symmetry,
despite that Hb describes an Ising model, this quantum critical
point belongs to the (2 + 1)D XY universality class and the
thermal melting of the clock phase involves an intermediate
BKT phase [56].
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FIG. 2. (a) Illustration of the triangle lattice model in Sec. III A. Fermions reside on two of the layers (λ = 1, 2) with intralayer nearest-
neighbor hopping t . The middle layer is composed of Ising spins sz

i , subject to nearest-neighbor antiferromagnetic Ising coupling J and a
transverse magnetic field h. Between the layers, an onsite Ising coupling is introduced between fermion and Ising spins (ξ ). The shaded area
in the middle layer stands for the enlarged unit cell of the clock phase before the Ising spins are polarized to the sx direction. (b) Illustration of
the spin arrangement of the clock phase when h < hc. The a1, a2 are the lattice vectors of the original triangle lattice and a′

1, a′
2 are the lattice

vectors of the clock phase with an enlarged unit cell. (c) Semiquantitative phase diagram. The dashed lines mark the phase boundaries of the
pure bosonic model Hb, with a QCP (open magenta dot) at hc = 1.63(1) [56,57]. After coupling with fermions, the QCP shifts to higher values.
The blue solid dot is the QCP of the original model in Ref. [46] with an homogeneous grid [hc = 1.83(1)], and the blue area is the quantum
critical region where Hertz-Mills-Moriya scaling has been observed. The red solid dot is the QCP of this study [hc = 1.84(1)], The position of
the QCP obtained from DQMC and EQMC is very close, and also the scaling behavior inside the quantum critical region (the red shaded area)
is consistent with that observed in the blue shaded area. The EQMC scheme can comfortably capture the IR physics of such antiferromagnetic
itinerant QCP, with much larger system sizes, 48 × 48, compared with previous study [46] 30 × 30 where great computational efforts have
been spent.

In the presence of the fermion-spin coupling, which is
relevant in the RG sense, the QCP moves to a higher value
of h, as shown in Fig. 2(c). And compared with the QCP of
DQMC, hc = 1.83(1), the QCP of EQMC is a slight different
value, hc = 1.84(1), since the position of the critical is a
nonuniversal quantity sensitive to UV cutoffs. But the univer-
sal part of the quantum critical point, as will be discussed later,
remains the same between DQMC and EQMC.

Furthermore, because fermions and Ising spins are coupled
together, the Ising-spin clock phase immediately generates
a spin density wave ordering in the fermionic sector with
finite ordering wave vector Q, which folds the Brillouin
zone and renders a new FS with pockets as schematically
shown in Fig. 1(a). Near the QCP, as shown in our previous
work [46], the quasiparticle at the tip of the FS pockets lose
their coherence, forming the so-called hot spots [35,37,59].

As shown in Ref. [46], with the help of cluster updates
(Wolff, Swendsen-Wang, and geometric cluster) [60–62]
and cumulative updates in the self-learning Monte Carlo
method [51–54], we were able to simulate systems as large
as L = 30 and temperature as low as β = 30, and overcome
the critical slowing down in the vicinity of QCP, to some
extent. Up to such system sizes, non-Fermi-liquid around the
hot spots can be clearly seen, moreover, the quantum critical
scaling in the critical region can be investigated via dynamic
susceptibility of the Ising spins, we found that the dynamic
susceptibility scales as

χ (T, h, q, ωn)

= 1

(ct T + c′
t T 2) + ch|h − hc|γ + cq|q|2 + (cωω + c′

ωω2)
,

(11)

where ct , c′
t , ch, γ , cq, cω, and c′

ω are determined from fitting
the QMC data up to L = β = 30. It is important to note
that, at low temperature and frequency, the system encounters
crossover behavior from T 2 to T and from ω2 to ω. This is
consistent with the expectation of Hertz-Millis-Moriya the-
ory [10–12]. However, we also note that to reveal the true
IR physics of this itinerant antiferromagnetic QCP, L = 30
and β = 30 are clearly not large enough, as there are higher
order perturbative RG calculations [19,34,35,37] suggesting
the existence of anomalous dimension, i.e., the momentum de-
pendence of χ−1 is not |q|2 but |q|2−η, with finite anomalous
dimension η. To address such question, we will have to go to
even large system sizes and lower temperatures, and that is
partially our motivation to develop the EQMC method in this
work.

B. Implementation of EQMC

The general practice and step of EQMC have been outlined
in Secs. II A and II B. Here we will discuss the model-specific
implementation of the algorithm.

After the Fourier transformation, the kinetic energy in
Eq. (8) becomes

Hf =
∑
k,λ,σ

[ε(k) − μ]c†
k,λ,σ ck,λ,σ , (12)

with ε(k) = −2t cos(kx ) − 4t cos(
√

3
2 ky) cos( 1

2 kx ). The boso-
nic part Hb will still be kept in the real space with size N × N .
The coupling term Hf b is then transformed as

Hf b = −ξ
∑

k,k′,λ

sz(k − k′)(c†
k,λ,↑ck′,λ,↑ − c†

k,λ,↓ck′,λ,↓), (13)
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where sz(q) = 1
N

∑
i e−iq·ri sz

i plays the role of the the bosonic
field φk in Eq. (6).

In the triangular lattice model, the ordering wave vectors
±Q connect six pairs of hot spots (12 in total) on the FS.
We denote the six pairs of hot spots as {Kl , K′

l}, with l =
1, 2, . . . , 6, as shown in Fig. 1(a). The distance between each
two of the pair is one of the two ordering wave vectors K′

l −
Kl = Ql = ±Q. In the IR limit, only the fluctuations within
a pair of hot spots {Kl , K′

l} are important to the universal
scaling behavior in the vicinity of QCP [13,19,33–35,59,63].
Hence, to study this universal behavior, we draw one patch
around each Kl and keep fermion modes therein, while ne-
glect other parts of the BZ. In this way, instead of the original
N = L × L total points one needs to keep, we will only keep
the Nf = L f × L f points inside each patch, as marked by the
12 leaflike polygons in Fig. 1(b) that covering the 12 hot spots.
Here L and L f denote the linear size of the original lattice and
the size of the patch, respectively.

For the sake of bookkeeping, we label momenta in each
patch using the relative difference q measured from the center
of the patch: the real momentum is k = Kl + q or k′ =
K′

l + q, respectively. Correspondingly, we label the fermion
mode in each pair of patches as cqlλα = cKl +q,λα and c′

qlλα =
cK′

l +q,λα , respectively. In this way, q is a small momentum
around zero. Using this notation, the Hamiltonian in Eqs. (12)
and (13) becomes

Hf =
∑
qlλσ

{[ε(q + Kl ) − μ]c†
qlλσ

cqlλσ

+ [ε(q + K′
l ) − μ]c′†

qlλσ
c′

qlλσ }, (14)

Hf b = −ξ
∑

q,q′,l,λ

[sz(q − q′ + Ql )c
†
qlλα

σ z
αβc′

q′lλβ

+ sz(q′ − q − Ql )c
′†
q′lλα

σ z
αβcqlλβ], (15)

where the sum over q are in the patches around the hot spots.
We notice that, compared to Eq. (13), only scattering

between two modes in a pair of patches is kept in Eq. (15).
This is because the distance between two momentum points
in a pair of patches can be expressed as

k − k′ = q − q′ + (Kl − K′
l )

= q − q′ + Ql , (16)

which is approximately equal to Ql = ±Q. Hence, the mo-
mentum transfers in these scattering correspond to low-energy
spin fluctuations, and such scattering processes are relevant to
the IR universal behavior. On the contrary, other scattering
processes have momentum transfers different from ±Q, and
thus are not relevant to the IR universal behavior. This ap-
proximation is discussed in the general setting of EQMC in
Sec. II B.

We now outline the construction of the K and V matrices
(defined in Sec. II B) using Eqs. (14) and (15), which are
needed in computing the fermion determinant. In total, we
keep 12 × L f × L f fermion modes. As discussed in Sec. II B,
the matrices are block diagonalized into six blocks, corre-
sponding to the six pairs of hot spots.

First, the fermion dispersion in Eq. (14) is converted into
the following K matrix:

Kσ =

⎡
⎢⎢⎣

t1σ

t2σ

. . .
tlσ

⎤
⎥⎥⎦, (17)

with

tlσ =

⎡
⎢⎢⎢⎢⎣

ε(q + Kl ) − μ 0 0 0

0
. . . 0 0

0 0 ε(q′ + K′
l ) − μ 0

0 0 0
. . .

⎤
⎥⎥⎥⎥⎦.

(18)

Here K is divided into six blocks, each corresponds to one
pair of patches. Each block is further divided into two halves,
representing patches around Kl and K′

l , respectively. Within
each half, each entry corresponds to one momentum point q
in the patch.

Second, the fermion-spin coupling in Eq. (15) is converted
into the following V matrix:

Vσ =

⎡
⎢⎢⎣

v1σ

v2σ

. . .
vlσ

⎤
⎥⎥⎦, (19)

where vl is an off-diagonal block matrix. The matrix ele-
ment in vl represents the interaction within one hot-spot pair
{Kl , K′

l}, whereas the other matrix element in V matrix, rep-
resenting the momentum modes interaction between different
hot-spots pair {Kl , K′

l ′ }, with l 
= l ′, are set to zero under our
IR limit approximation.

The structure of each vl is

vlσ =

⎡
⎢⎢⎢⎢⎣

0 0 s(q − q′ + Ql ) · · ·
0 0

...
. . .

s(q′ − q − Ql ) · · · 0 0
...

. . . 0 0

⎤
⎥⎥⎥⎥⎦,

(20)

with matrix elements in the two diagonal blocks are zero since
there is no scattering within the leaflike polygon of one hot
spot Kl or K′

l , however, the matrix element in the two off-
diagonal blocks are nonzero since it is the scatterings between
Kl and K′

l , i.e., s(q − q′ + Ql ) in Eq. (20). Since sz
i are real,

s(q − q′ + Ql ) = s∗(q′ − q − Ql ) and vl = v
†
l , such that one

only needs to handle the matrix elements coming from s(q −
q′ + Ql ).

Once having both block-diagonal matrices of Kσ and Vσ

in the fermion determinant in the configurational weight in
Eq. (7), the Fermion Green’s function matrice also becomes
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block diagonal,

Gσ =

⎡
⎢⎢⎣

G1σ

G2σ

. . .
Glσ

⎤
⎥⎥⎦, (21)

this means we can update different pair of hot spots, namely,
different Glσ , independently. As claimed in Sec. II C, this
block structure not only reduces memory usages, but also
reduces computational cost and makes it easier to parallelize
the simulation.

Finally, we describe the update scheme used in our sim-
ulation. As outlined in Sec. II A, the local-update algo-
rithm, which is widely used in conventional DQMC simula-
tions [1–3,6,55], becomes inefficient in EQMC simulations.
This is a result of the fact that the form of Eq. (15) is nonlocal
in the momentum space. Consequently, flipping one spin sz

i
in a spin configuration changes all rows and columns in the
V matrix, and all the Fourier components s(q) are affected.
As a result, the fast-update method, which computes the ratio
between two determinants differing only one row and one
column with complexity O(N ) (where N is the size of the
matrix), no longer applies.

Instead, we use global-update algorithms. In general, these
algorithms stochastically propose a completely new spin con-
figuration with a relatively low cost. The new configuration
is then either accepted or rejected, following the detailed
balance principle. Assuming that starting from a configuration
{sz

i }, the probability of constructing the configuration {s̃z
i } is

S(sz → s̃z ), then the detailed balance principle requires that
probability of accepting this new configuration is

α
(
sz → s̃z

) = min

{
S(s̃z → sz )

S(sz → s̃z )

W [s̃z]

W [sz]
, 1

}
. (22)

A good global update satisfies two conditions: (i) it generates
a new configuration sufficiently different from the original
one, such that it has almost no correlation with the previous
one. (ii) The acceptance ratio computed from Eq. (22) is close
to one. These two conditions guarantee that the autocorrela-
tion time in the generated Markov chain is on the order of
one.

In our simulations we use two types of global updates:
First, we use cluster updates guided by the bosonic part
of the Hamiltonian Hb only. In this way, a new configura-
tion is constructed using well-known algorithms, including
Wolff [61], Swendsen-Wang [60], and geometric cluster-
update schemes [62]. These cluster-update algorithms imply
that the probability S(sz → s̃z ) is determined by Hb,

S(sz → s̃z )

S(s̃z → sz )
= Wb[s̃z]

Wb[sz]
. (23)

The acception probability can then be computed using
Eq. (22).

Second, we make use of the cumulative update in the self-
learning Monte Carlo method [51–53]. To use this method,
one first learns an effective bosonic model Heff of the total
system from the training steps with the configurational weight
generated with other update methods. The effective model is
in general nonlocal both in space and time, but since it is a

bosonic model, we can update the entire space-time config-
uration through it locally with relatively low computational
cost (since this step is done without evoking the calculation
of Fermi determinant). This step is done repeatedly, until a
completely new bosonic configuration with little correlation
with the previous one is generated. The collection of all these
local steps is called the “cumulative update,” and serves as the
construction process of a global update. Similar to Eq. (23),
the selection probability is given by the learned effective
model,

S(sz → s̃z )

S(s̃z → sz )
= Weff[s̃z]

Weff[sz]
. (24)

Both types of global updates construct a new configuration
with little correlation with the previous one. Furthermore,
plugging Eqs. (23) and (24) into Eq. (22), we can see that
the resulting acceptance ratio α is close to one, if the bosonic
models guiding the construction with weight Wb and Weff,
respectively, give good approximations to the full weight W .
Hence, these update algorithms satisfy the conditions listed
above, and thus can generate statistically independent samples
with only a few [O(1)] update steps.

In these global-update algorithms, the step dominating the
computational cost is computing the true weight W [sz], in
order to determine α in Eq. (22). As discussed in Sec. II C, this
in turn is dominated by computing the fermion determinant,
which costs O(βN3

f ). It is easy to check that constructing a
new configuration, using either Wb or Weff, is much faster in
comparison. From the above analysis, we can conclude that
the computational complexity for EQMC is O(βN3

f ), at least
(N/Nf )3 times faster than that of the typical DQMCs O(βN3).
And because we can easily have N/Nf ∼ 10 (in the results in
Sec. III C, we have N

Nf
= 36), thousands times of speedup of

EQMC over DQMC can be readily accessed, as demonstrated
in the next section.

C. Results

To demonstrate the power and efficiency of EQMC, we
investigate the triangle lattice model described above, and in
particular, pay attention to the scaling behavior in the vicinity
of the antiferromagnetic quantum critical point. We chose to
fix the ratio of L/L f = 6 such that N/Nf = 36, and the size
of the leaf-patches L f = 4, 6, 8, and fixed β = 4 × L f . This
means that we can simulate the original model in Fig. 2(a)
up to size 48 × 48 × 32 (L × L × β), almost 3 times of the
largest size ever simulated in the DQMC [46].

In our previous work [46] the bosonic susceptibilities
χ (T, h, q, ω) close to the QCP, revealed with L = β = 30,
is fitted to the form of Eq. (11). In particular, at low ω,
χ−1(0, 0, 0, ω) exhibits crossover behavior from ω2 to ω. It
also scales with q as χ−1(0, 0, q, 0) ∝ |q|2.

As we discussed in Sec. II A, the model we simulated
with EQMC [Eqs. (9), (14), and (15)], which includes only
the k points inside the hot-spot patches, is different from
the original model in their nonuniversal properties, due to
approximation made in EQMC. This is shown in Fig. 2(c),
where the location of the QCP can shift from hc = 1.83(1)
obtained from DQMC in Ref. [46] to hc = 1.84(1) obtained
from EQMC. To determine the position of the new hc, we
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FIG. 3. (a) Correlation ratio Rc(h, τ = 0) and (b) Rc(h, ω = 0) of
the Ising magnetic order in clock phase, as a function of h, with Lf =
4, 6, 8 (corresponding to L = 24, 36, 48) and β = 4 × Lf , obtained
from EQMC simulation. As L increases, the crossing point is found
to be converged at hc = 1.84(1).

measure the correlation ratio [23,64] of the Ising spins as a
function of h. We first calculate the magnetic susceptibility in
the EQMC simulation

χ (T, h, q, ωn) = 1

L2

∑
i j

∫ β

0
dτ expi(ωnτ−q·ri j )

〈
sz

i (τ )sz
j (0)

〉
,

(25)

then construct the correlation ratio both from the equal-time
susceptibility (magnetic structure factor)

Rc(h, τ = 0) = 1 − χ (T, h, Q + dk, τ = 0)

χ (T, h, Q, τ = 0)
, (26)

and from the zero frequency susceptibility

Rc(h, ω = 0) = 1 − χ (T, h, Q + dk, ωn = 0)

χ (T, h, Q, ωn = 0)
, (27)

where dk can be chosen as b1 = 2π
L (1, 1√

3
) or b2 =

2π
L (0, 2

√
3), which corresponded to the minimum distance in

momentum space.
The results are shown in Figs. 3(a) and 3(b). It is clear that

with L f = 4, 6, 8, which means L = 24, 36, 48, the crossing
point of the correlation ratio is converged to hc = 1.84(1)
from EQMC simulations.

What is more important, is that the universal properties
of the QCP shall remain intact with EQMC. Therefore, we
further explore this assessment by means of analyzing the
various divergences of χ (T, h, q, ωn) in the form of Eq. (11)
in the quantum critical region. The results are shown in Fig. 4.

We first look at the q dependence, as shown in Fig. 4(a),
the momentum |q| is measured with respect to the hot-spot
position K. We plot the susceptibility data by subtraction
of the finite temperature background as χ−1(T, hc, |q|, 0) −
χ−1(T, hc, 0, 0) = cq|q|aq , and fit the curve to obtain the
coefficient cq and the power aq, as shown in the red solid

(a) (b)

(c) (d)

FIG. 4. |q|, ω, and T dependence of the bosonic susceptibilities χ (T, h, q, ω) at the itinerant QCP h = hc. Comparison of the EQMC
results with L up to 48 and β up to 32 (a) and (c), with the previous DQMC results with L and β up to 30 (b) and (d). The scaling behaviors
with system sizes as large as 48 × 48 × 32 (L × L × β) in EQMC are fully consistent with the form in Eq. (11). The universal quantum critical
scaling has been successfully captured by EQMC.
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line. With the system size as large as L = 48, the χ−1 ∼ |q|2
behavior, clearly manifests, with aq = 1.96(4). These results
are consistent with that obtained in our previous work [46],
where the anomalous dimension η of this critical point, in the
form of χ−1 ∼ |q|2−η, is zero within the error bar. For the
sake of completeness, the DQMC results from Ref. [46] are
also shown in Fig. 4(b).

As for the frequency dependence in χ , it is also con-
sistent with our previous conclusion in Ref. [46]. As
shown in Fig. 4(c), we analyze the [χ−1(T, hc, 0, ω) −
χ−1(T, hc, 0, 0)]/ω, to subtract the finite temperature back-
ground. From the plot, it is clear that there is a finite intercept
at ω = 0, and from the fit, the form of χ−1 ∼ cωω + c′

ωω2

can be observed, with cω = 0.06(1) and c′
ω = 0.14(1), fully

consistent with our previously determined the coefficients
with DQMC, as also shown in Fig. 4(d).

The results in Fig. 4 conclude that the form in Eq. (11)
accurately describe this itinerant antiferromagnetic QCP. This
form is different from the bare (2 + 1)D O(2) universal-
ity which is the description of the bare bosonic prob-
lem [56,57], and is consistent with the Hertz-Millis-Moriya
description [10–12]. However, the proposed anomalous di-
mension of this antiferromagnetic itinerant QCP with higher-
order perturbative RG calculations [34] has not been observed
with system size as large as L = 48.

IV. DISCUSSIONS

The elective-momentum ultrasize quantum Monte Carlo
method (EMUS-QMC or EQMC), developed in this work,
paves the way of performing quantum Monte Carlo simu-
lations for larger system sizes and lower temperature, such
that the genuine IR physics of many interesting yet difficult
strongly correlated electron problems, exemplified with the
itinerant antiferromagnetic quantum critical point here, are
now ready to be explored. EQMC manages to reduce the
notorious O(βN3) computational complexity of the conven-
tional DQMC down to O(βN3

f ), where Nf is the important
momentum points inside the patch around hot spots. In prac-
tice, one can choose the size of the patches such that they
cover the approximately linear-dispersing regions near the hot
spots, which contribute to the universal scaling behaviors of
the quantum critical point. Since N

Nf
∼ 10 is easy to design,

as shown in this work (here we have N
Nf

= 36), a speedup to

the order of 103 is achieved. In the benchmark example we
demonstrated, the system sizes of 48 × 48 × 32 (L × L × β)
can be comfortably simulated without the great computational
effort spent in previous work that only 30 × 30 × 30 can be
accessed.

Moreover, the speedup and model flexibility offered by
EQMC opens up opportunities to study other interesting uni-
versality classes of fermion QCPs, in particular, those that

are hard to be realized in a lattice model because the UV
completion of the desired IR fermion mode would require
many fermion modes in the BZ. For example, a similar antifer-
romagnetic square-lattice spin-fermion model can be used to
study an itinerant QCP with a Z2 symmetry, where the EQMC
method offers a speedup similar to what is demonstrated
in this work, and existence or absence of the anomalous
dimension in that case can be verified [47]. EQMC can also be
applied to models where Dirac fermions interact with bosonic
modes [48,50]. Compared to DQMC simulations using a
honeycomb-lattice model or a π -flux square-lattice model,
EQMC offers a speedup as only fermion modes with the
linear dispersion of Dirac fermions are included [65], and
therefore much larger system sizes and lower temperatures
can be accessed, to resolve the present difference between
numerical simulation on finite lattice and analytical field-
theory calculations at the thermodynamic limit on the critical
exponents of these models [66–69]. Furthermore, EQMC
can be applied to investigate interaction effects on surface
states of three-dimensional (3D) topological insulators and
topological superconductors, which cannot be realized in a
two-dimensional (2D) lattice model. With EQMC, we can
simulate the 2D surface modes without the corresponding 3D
bulk, thus greatly reduce the computational cost.
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