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Parafermions are emergent quasiparticles which generalize Majorana fermions and possess intriguing anyonic
properties. The theoretical investigation of effective models hosting them is gaining considerable importance in
view of present-day condensed-matter realizations where they have been predicted to appear. Here we study
the simplest number-conserving model of particlelike Fock parafermions, namely a one-dimensional tight-
binding model. By means of numerical simulations based on exact diagonalization and on the density-matrix
renormalization group, we prove that this quadratic model is nonintegrable and displays bound states in the
spectrum due to its peculiar anyonic properties. Moreover, we discuss its many-body physics, characterizing
anyonic correlation functions and discussing the underlying Luttinger-liquid theory at low energies. In the case
when Fock parafermions behave as fractionalized fermions, we are able to unveil interesting similarities with
two counterpropagating edge modes of two neighboring Laughlin states at filling 1/3.
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I. INTRODUCTION

Anyons, namely emergent quasiparticles with a quantum
statistics that is neither bosonic nor fermionic, are one of the
most fascinating concepts in condensed-matter physics [1,2].
They are the hallmark of nontrivial topological phases of mat-
ter emerging in strongly correlated two-dimensional systems,
the most famous example being the fractional quantum Hall
effect [3–7]. In such case, anyons appear in the gapped bulk
of a system with nonzero topological order and, thanks to the
so-called bulk-boundary correspondence [2,4,8], are respon-
sible for the chiral metallic edge states, featuring peculiar
transport properties. Different topological phases have been
predicted [4,5], depending on the value of the filling factor
ν, showing that anyons can support fractional charges and
fractional statistics. A prominent role has been played by
the ν = 5/2 case [5–7], whose low-energy quasiparticles are
believed to possess non-Abelian statistics [2,9,10], supporting
chiral Majorana fermions on the edge. A plethora of other
platforms where nontrivial topological phases exist have been
recently put forward, thus triggering a field of investigation in
theoretical as well as experimental condensed-matter physics.

One-dimensional (1D) anyonic models have been the
object of extensive theoretical studies in the last decades
[11–30]. In this context, generalizations of Majorana
fermions, dubbed parafermions or fractionalized Majorana
fermions, have been introduced [31]. They possess a frac-
tional anyonic statistics which can be exploited for performing
topological quantum computation, thus enhancing their poten-
tialities, with respect to those of Majorana fermions [32,33].
Moreover, they have been predicted to form in some hybrid
systems, thanks to the interplay between superconductivity
and other strongly correlated systems [33–49]. The anyonic
statistics of parafermions is encoded in operators whose
commutation relations are governed by the presence of an

angle 0 � κ � 1. Such kinds of operators can be employed
to describe Zp-symmetric models with exotic critical proper-
ties [50–53], as well as topological models with zero-energy
boundary modes [54–63].

The formalism of Fock parafermions (FPs) allows for
the discussion of parafermions using a simple and intuitive
particlelike picture [64] that has been already exploited in
the study of topological and nontopological parafermionic
zero-energy modes [47,65–67]. FPs are generically labeled by
a natural number p � 2 (for p = 2, they are canonical com-
plex fermions), which determines their statistical parameter
κ = 2/p [64]. For even values of p, clusters of FPs behave
exactly as fermions [68], so that FPs can be interpreted as
fractionalized fermions.

The main motivation of this paper is to understand whether
simple lattice Hamiltonians of FPs can be employed to model
possible condensed-matter setups displaying nontrivial topo-
logical order. To this purpose, we explore a basic number-
conserving tight-binding chain of FPs (notice that previously
considered FP models do not conserve the particle number).
Despite its formal simplicity, the anyonic statistical properties
of FPs make this quadratic model nonintegrable, and thus not
amenable to exact analytic treatments. By means of a density-
matrix renormalization group (DMRG)-based analysis [69],
we show that several distinguishing features of these physical
objects can be spotlighted, giving hints on the nature of
FPs. For instance, explicitly neglecting interactions (namely,
quartic terms in the Hamiltonian) permits us to stress the role
of anyonic statistics. We also compare the properties of our
model with those of known anyonic models to underline its
peculiarities.

Specifically, we are going to focus on p = 3, a value that
yields the simplest nontrivial model of parafermions, and on
p = 6. The latter value, being even, allows for the definition
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of genuine fermionic observables (emerging from clustering
three FPs). In such case, we show that fermionic observables
display properties that cannot be easily traced back to a sim-
ple fermionic model [70]. By comparing our numerics with
the prediction of the hydrodynamic theory for the boundary
of fractional quantum Hall states [4,71], we unveil strong
analogies between our model and two counterpropagating
edge modes of neighboring Laughlin states at filling 1/3. The
importance of this latter setup in the development of schemes
to localize zero-energy parafermionic modes [33,35,36] paves
the way to further applications of our tight-binding model.

This paper is organized as follows. In Sec. II, we briefly
recall the formalism of FPs, introduce our tight-binding model
of FPs, and discuss its relation with other anyonic models.
Before discussing the main results, we present an analysis
of the one- and two-body physics as a gentle introduction
to the many-body case (Sec. III), and demonstrate the non-
integrability of the model through its level spacing statistics
(LSS) (Sec. IV). The bulk of the paper is constituted by
Sec. V, where we show the results of DMRG simulations
for the many-body problem, with emphasis on the anyonic
correlation functions. The potential relevance of our model in
describing, on a lattice, the boundary between two neighbor-
ing quantum Hall bars is discussed, relying on a phenomeno-
logical low-energy approach. Finally, Sec. VI is devoted to the
conclusions.

II. MODEL

A. Fock parafermions

We consider a set of 2L parafermions {γ̂ j} of order
p (p ∈ N and p � 2), satisfying the following algebra:

γ̂ j γ̂l = ωsgn( j−l )γ̂l γ̂ j, with ω = e2π i/p, (1)

and also

γ̂
p
j = 1, γ̂

†
j = γ̂

p−1
j . (2)

For p = 2, the {γ̂ j} are a set of Majorana modes obeying
a Clifford algebra. Since fermionic systems can be equiv-
alently described using the complex-fermion representation
ĉ(†)

j = 1
2 (γ̂2 j−1 ± iγ̂2 j ), the authors of Ref. [64] have intro-

duced FP operators F̂ (†)
j , which allow for an analogous

particlelike description of parafermionic systems. For p> 2,
the transformation becomes nonlinear and reads

F̂j = p − 1

p
γ̂2 j−1 − 1

p

p−1∑
m=1

ωm(m+1)/2 (i)m γ̂ m+1
2 j−1 γ̂

†m
2 j . (3)

If one considers a single site, a local Fock space of dimen-
sion p is associated to each pair of operators F̂ (†)

j , with basis
states

|mj〉 = F̂ †m
j |0〉 , 0 � m � p − 1. (4)

Here |mj〉 labels the state with m parafermions on site j, and
indeed it is an eigenstate of the density operator

N̂ j =
p−1∑
l=1

F̂ †l
j F̂ l

j (5)

with eigenvalue m. Thus, on each site, the system can ac-
commodate up to p − 1 parafermions. The operators F̂j and
N̂j have the following representations in the Fock basis
{|mj〉}p−1

m=0:

F̂j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1 · · · 0

0 0 0 · · · 0
...

...
...

...

0 0 0 · · · 1

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

N̂j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0

0 1 0 · · · 0

0 0 2 · · · 0
...

...
...

...

0 0 0 · · · 0

0 0 0 · · · p − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Mathematically, they obey the following relations (among
several others):

F̂ p
j = 0, F̂ †m

j F̂ m
j + F̂ p−m

j F̂ †(p−m)
j = 1. (7)

Considering different sites, FP operators obey anyonic
commutation relations:

F̂j F̂l = ωsgn(l− j)F̂l F̂j, F̂ †
j F̂l = ω−sgn(l− j)F̂l F̂

†
j , (8)

and the statistical parameter κ , defined by rewriting the pre-
vious relation as F̂j F̂l = eiπκ sgn(l− j)F̂l F̂j , is κ = 2/p. The full
Hilbert space has dimension pL, being the tensor product of
the Fock spaces associated to each site.

One of the interesting properties of FPs is that in some
cases they can be considered as roots of fermionic operators
[68]. Indeed, when p = 2m, the operator f̂ j = F̂ m

j satisfies
canonical anticommutation relations:

{ f̂ j, f̂l} = 0, { f̂ j, f̂ †
l } = δ j,l , f̂ 2

j = 0. (9)

As such, FP models offer the unique possibility of studying
genuine fermionic observables in lattice models of fractional-
ized fermions.

B. The Hamiltonian and its symmetries

In this paper, we focus on a 1D tight-binding model of FPs,
described by the Hamiltonian:

Ĥ = −t
∑

j

[F̂ †
j F̂j+1 + F̂ †

j+1F̂j], t > 0. (10)

The parameter t can be fixed to one, thus setting the system’s
energy scale. The model enjoys a U(1) symmetry related to the
conservation of the total number of particles N̂ = ∑

j N̂ j . It is
not inversion invariant, because of the asymmetric commuta-
tion relations Eqs. (8), so that F̂j → F̂− j is not a canonical
transformation that preserves the algebra of FPs. Moreover, it
is not time-reversal invariant, because the anyonic statistics
of FPs breaks time-reversal invariance (indeed, applying a
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Fradkin-Kadanoff transformation [72], the model does not en-
joy a matrix representation with real entries). Finally, we ob-
serve that it is not particle-hole symmetric, because F̂j → F̂ †

j
is a transformation that does not conserve the parafermionic
algebra. Yet, it enjoys a symmetry which is the combination
of particle-hole and inversion symmetry: F̂j → F̂ †

− j . For this
reason, it is possible to confine the analysis to densities
N/L � (p− 1)/2.

C. Comparison with previously considered anyonic models

1. Integrability

Different from most of the 1D anyonic models studied so
far (see, e.g., Refs. [12,15,16,18,19]), Hamiltonian Eq. (10)
can be shown to be nonintegrable. Indeed, parafermionic
operators written in momentum space do not satisfy an easy
algebra (this significantly contrasts with the cases of bosons
and fermions). However, there exist anyonic models which
enjoy exact solvability through Bethe ansatz. In Sec. IV,
we rule out this possibility by looking at the LSS of the
Hamiltonian spectrum.

2. Relation with fermionic and bosonic models

An important part of the literature deals with anyons that
are obtained by modifying bosonic models, as for the anyonic
Lieb-Liniger [15] or the anyon-Hubbard model [23]. There,
for κ = 0 the model is bosonic, but for κ = 1 it is not
fermionic, although the operators anticommute (an exception
is the case in which infinitely repulsive on-site interactions
are considered, where a fermionic limit can be identified).
In our case, for κ = 1 (p = 2) an exact fermionic limit is
recovered. However, for κ → 0 (p → ∞), the model is not
bosonic, although the operators commute. The reason lies in
the precise matrix elements of the operator F̂j displayed in
Eq. (6), which do not possess the proper bosonic enhance-
ment. Indeed, an ordinary bosonic annihilation operator b̂ j

obeys the following relation: b̂ j |n j〉 = √
n j |n j − 1〉. There-

fore, its matrix representation in the Fock basis would have
entries {1,

√
2, . . . ,

√
p − 1} along its first upper diagonal,

instead of a list of ones.

3. Fractionalization

As we already stressed, in a model of FPs with even p,
it is possible to study the behavior of well-defined fermionic
observables [68]. To our knowledge, this is a unique feature
of our anyonic model.

III. ONE- AND TWO-BODY PHYSICS

Before analyzing the actual many-body properties of
Hamiltonian Eq. (10), we focus on its one- and two-
body physics. When just a single parafermion is considered
(N = 1), the statistics is irrelevant and thus the model trivially
reduces to a nearest-neighbor hopping of one particle in a 1D
lattice. The system can be directly diagonalized after defining
the momentum-space operators:

F̂k = 1√
L

∑
j

eik j F̂j . (11)

Indeed, the eigenstates of Eq. (10) in the subspace with one
particle are

|k〉 = F̂ †
k |0〉 , (12)

where |0〉 denotes the vacuum state, and are associated to the
eigenvalues:

ε(k) = −2t cos(k), k = 2πm

L
, (m ∈ ZL ). (13)

The quantization of momenta follows by imposing periodic
boundary conditions (PBC).

Conversely, if one considers a higher number of
parafermions, their anyonic statistics becomes important. We
remark that the F̂k operators in momentum space are not FP
operators, since they obey an algebra which is different from
the relations in Eqs. (7) and (8). Therefore, even if at a formal
level, the Hamiltonian Eq. (10) can be rewritten in a diagonal
form as Ĥ = ∑

k ε(k)F̂ †
k F̂k , the model cannot be easily solved

because it is not the sum of commuting terms, namely

[F̂ †
k F̂k, F̂ †

q F̂q] �= Ckδk,q. (14)

Let us then proceed by steps and solve the model in the two-
particle sector (N = 2), for which the most generic form of
the wave function reads

|	〉 =
∑

1�n1�n2�L

a(n1, n2) |n1, n2〉 , (15)

where |n1, n2〉 = F̂ †
n1

F̂ †
n2

|0〉 (with n1 � n2).
In Fig. 1, we show the two-body spectrum for a system

of L = 151 sites, p = 3 (upper and lower panel), p= 6, and
p= 9 (lower panel), obtained by means of an exact diagonal-
ization (ED) of Eq. (10) with PBC. Most of the spectrum is
composed by two-parafermion scattering states, for which an
analytical solution of the form [73]

a(n1, n2) =
{

A(ei(kn1+qn2 ) + eiθ ei(qn1+kn2 ) ) n1 < n2

Bei(k+q)n1 n1 = n2,
(16)

with q, k ∈ R, can be obtained. In Fig. 2, upper panel, we
show |a(n1, n2)| for the scattering state highlighted by a
square in Fig. 1 (upper panel, for p = 3), which is clearly
delocalized over the full length of the system [note that for
the states in Eq. (16), the center-of-mass momentum is given
by K = k + q].

To further gain analytical insight in the physics of the scat-
tering states, we observe that, because of the anyonic statistics,
once we impose PBC, we obtain a(n1, n2) = ω∗a(n2, n1 + L).
This leads to the set of equations:

k = 2π

L

(
λk − 1

p

)
− θ

L
, λk ∈ {0, 1, . . . , L − 1}, (17a)

q = 2π

L

(
λq − 1

p

)
+ θ

L
, λq ∈ {0, 1, . . . , L − 1}. (17b)

As already pointed out in 1D anyonic models that are solvable
through Bethe ansatz, the momenta are shifted by a quantity
which is proportional to the statistical parameter, namely
κπ/L [15]. The value of the phase θ can be determined
numerically by solving the equations obtained by projecting
the eigenvalue equation Ĥ |	〉 = E |	〉 over a state 〈n1, n2|
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FIG. 1. Two-body spectrum (data points) for a tight-binding
model of FPs with L = 151 sites, PBC, and p = 3 (upper and lower
panel), p = 6, p = 9 (lower panel), plotted versus the center-of-
mass momentum K . In the upper panel, data points evidenced in
magenta correspond to bound states, while all others are associated
to extended states. The arrows (respectively, the square) denote the
various values of K associated to bound states (respectively, to the
scattering state) whose weight distribution is displayed in Fig. 2.

(more details are given in Appendix A). We have cross-
checked that all the obtained eigenenergies are reproduced by
ED calculation.

Comparing with typical two-body spectra of noninteract-
ing 1D quantum systems, it is immediate to recognize that
there are states whose energy behaves differently from the
two-parafermion scattering states (see the two mustaches in
Fig. 1, upper panel, highlighted in magenta). They correspond
to bound states because the ratio of the amplitudes for closer
and separated particles is large: a(n1, n1)/a(n1, n1 + L/2) 
 1
[73]. This is only possible if k and q in wave function Eq. (15)
have an imaginary part. A closer inspection at the full weight
distribution a(n1, n2) for bound states indeed shows that it
decays exponentially fast with the distance d = n2 − n1, and
is peaked at n2 = n1 (see Fig. 2, lower panel). The width
depends on the imaginary parts of k, q, θ , and reaches
its minimum for k + q = π . For states departing from this
condition, but still in the mustache, the binding of the two
particles loosens, although it remains exponential. Conversely,
for states belonging to the two lobes of Fig. 1, the weight
distribution is delocalized over all the chain, thus signaling
scattering states (see Fig. 2, upper panel). Finally, we mention
that, as expected, by increasing p, the mustaches of bound
states become less visible and merge into the continuum of
scattering states (see Fig. 1, lower panel). Indeed the width

0 25 50 75 100 125 150|a(
n

1,
n

1
+

d
)|

10 -4

10 -3

10 -2

d
0 25 50 75 100 125 150

|a(
n

1,
n

1
+

d
)|

10 -15
10 -12
10 -9
10 -6
10 -3

Increasing |K − π|

FIG. 2. Absolute value of the weight distribution |a(n1, n2)| as
a function of the distance d = n2 − n1, for various eigenstates of
the two-body tight-binding FP Hamiltonian (p = 3). Upper panel:
Weight distribution for the scattering state evidenced by a square
in Fig. 1. Lower panel: Weight distributions for the bound states
denoted by arrows in Fig. 1; the closer the states are to the two lobes,
the larger the width of the distribution.

of distribution |a(n1, n1 + d )| for bound states progressively
increases toward an extended configuration [not shown].

IV. LEVEL SPACING STATISTICS AND INTEGRABILITY

To corroborate the statement mentioned in Sec. II C that the
Hamiltonian Eq. (10), for p > 2, is not integrable and does not
enjoy Bethe-ansatz solvability, we have studied its LSS. The
statistics of the energy eigenstates of Ĥ , being a key feature
of the spectrum of a generic quantum system, represents the
standard tool to investigate its possible integrability [74]. As
a matter of fact, the key feature of integrable systems is a
tendency of levels to cluster and eventually cross when a given
Hamiltonian parameter is varied, due to the presence of a
number of integrals of motion. Conversely, in nonintegrable
systems, the absence of nontrivial conserved laws correlates
the levels in such a way to avoid crossings.

To quantitatively characterize these tendencies, it is useful
to analyze the probability distribution P(s) that the energy
difference between two adjacent levels sn = En+1 − En (nor-
malized to the average level spacing) lies in a given interval
[s, s + ds]. For integrable systems, one typically obtains a
Poissonian (P) statistics,

PP(s) = e−s, (18)

as usual for uncorrelated levels coming from different sym-
metry sectors. For nonintegrable systems, the spectrum is
conjectured to follow the rules of random matrix theory,
leading to a Wigner-Dyson (WD) surmise,

PWD(s) ∼ Asβe−Bs2
, (19)

where level repulsion manifests in the fact that

lim
s→0

PWD(s) ∼ sβ, β > 0. (20)

More in detail, depending on the symmetries of the cor-
responding Hamiltonian, the WD distribution presents a
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FIG. 3. LSS for the FP tight-binding model of Eq. (10), with
p = 3 (upper panel) and p = 6 (lower panel), for a fixed number
of N = 7 particles and different chain lengths, as specified in the
legend. The dashed curve corresponds to a GOE statistics. OBCs
have been enforced. For the largest available system sizes, the
statistics is performed over the central ∼2 × 104 energy levels.

specific shape; for example, for systems preserving one an-
tiunitary symmetry (e.g., invariance under time-reversal), the
LSS is given by a Gaussian orthogonal ensemble (GOE),
where PGOE = πs

2 e−πs2/4, with β = 1. Under more general
conditions, the LSS of complex Hamiltonians is generally
captured by a Gaussian unitary ensemble (GUE), such that
PGUE = 32s2

π2 e−4s2/π , with β = 2.
In our case, by means of ED, we have checked that the

spectrum of the FP tight-binding Hamiltonian systematically
develops level repulsion. To avoid any effect of level crossings
due to trivial symmetries, we have numerically studied the full
spectrum of Eq. (10) for a fixed number of particles, and with
open boundary conditions (OBCs). In computing the LSS, we
have also dropped the lower and upper third of the energy
levels, since generic non-integrable systems typically exhibit
level repulsion only in the central band of the spectrum.

Results for chains of various size are displayed in Fig. 3, for
a fixed number of N = 7 FPs corresponding to p = 3 (upper
panel) and p = 6 (lower panel). While at small lengths the
LSS displays a rather irregular pattern, when increasing L we
observe a clear tendency to develop a peak at intermediate
values of s, thus evidencing the behavior in Eq. (20), typical
for nonintegrable models. More specifically, for the sizes we

were able to reach, at p = 6 the distribution P(s) exhibits a
fast convergence to a GOE surmise (lower panel); at p = 3
the situation is less clear and larger sizes would be required
(upper panel). We have checked that the above scenario is not
affected by the choice of N [data not shown]. It is also worth
mentioning that the asymptotic WD distribution to which the
LSS of the FP spectrum converges, is expected to depend on
the specific symmetries of Ĥ , as detailed in Appendix B.

Finally, we wish to stress that the p = 2 case, in which FPs
turn out to be canonical fermions, is different in this respect,
since it can be trivially integrated in momentum space. This
reflects into a Poissonian LSS (see Appendix B).

V. MANY-BODY PHYSICS

We now move to the study of many-body properties of
the model, explicitly focusing on the p = 3 and p = 6 cases.
For each of them, we consider values of the density which
satisfy 0 < N/L � 1. Notice that, for p = 3, these results span
all the possibilities, since densities larger than 1 are unitarily
equivalent to smaller ones (see Sec. II B). In all situations,
we have employed a DMRG-based numerical approach [69].
Specifically, we have simulated systems with up to L = 288
sites, OBCs, and several particle numbers ranging between
N = 24 and N = 288. The number of kept states is m � 250,
such that the truncation error is always smaller than 10−8. The
simulations are performed by applying the Fradkin-Kadanoff
transformation [72] to the model, so that it is defined in terms
of more conventional commuting operators (see Appendix C
for details).

A. Low-energy properties

Let us start our many-body analysis by focusing on the
lower part of the spectrum of Hamiltonian Eq. (10). We first
compute the neutral gap 
0 of the system, namely the energy
difference between the first excited state and the ground state
for a fixed number N of particles. Results are shown in Fig. 4
for several values of N/L, in the cases of p = 3 (upper panel)
and of p = 6 (lower panel). For N/L = 1 and p = 3, we
observe the opening of an energy gap, while in all other cases
the gap closes as L−1. The latter behavior is the unambiguous
hallmark of an approximate low-energy conformal invariance.
We thus expect the system to be generally described, at low
energies, by a conformal field theory (CFT).

To further assess the low-energy properties of the system,
we have also calculated the bipartite entanglement entropy of
the ground state |	GS〉. This quantifies the amount of genuine
quantum correlations that establish among two parts of a given
bipartition of the system, that is, between the first � and the
last L − � sites. After taking the reduced density matrix of the
first part,

ρ̂� = TrL−� [|	GS〉 〈	GS|], (21)

the entanglement of the bipartition is defined through the so-
called von Neumann entropy

S(ρ̂�) = −Tr [ρ̂� log(ρ̂�)]. (22)
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FIG. 4. Energy gap between the first excited state and the ground
state for a fixed number of particles in the case p = 3 (upper panel)
and p = 6 (lower panel) plotted versus L−1. The maximal system
length considered is L = 288.

For the ground state of a 1D CFT, this can be shown to
behave as

S(ρ̂�) = a + c

6
log

[
2L

π
sin

(
π�

L

)]
, (23)

where c denotes the central charge of the theory [75].
The outcomes of our DMRG computations for the entan-

glement entropy are reported in Fig. 5. We have fitted the
numerical data (symbols) with the formula in Eq. (23), setting
c = 1 and leaving a as the only fit parameter. As is clearly
visible from the figure, the agreement is extremely good and
certifies that the low-energy theory of Hamiltonian Eq. (10)
is a CFT with c = 1. As such, the model is amenable to a
low-energy description in terms of a Luttinger liquid (LL)
(see Sec. V C). We point out that, as expected, in the gapped
case (p = 3 and N/L = 1), the entanglement entropy does not
follow the scaling in Eq. (23), while rather it satisfies an area
law, namely it saturates to a finite value without diverging with
� (green data set in upper panel of Fig. 5).

The appearance of a gapped phase at commensurate den-
sity in the tight-binding model for p = 3 is a peculiarity of the
anyonic statistics. Whereas in bosonic models the system is
always gapless, for spinless fermions it would be a trivial band
insulator, since in that case the system is completely filled.
Conversely, in the case of spin-1/2 fermions (e.g., electrons),
at N/L = 1 the system remains gapless if quartic terms are

0 72 144 216 288
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(ρ̂

)

0.5

1

1.5
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2.5
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N = 72
N = 144
N = 216
N = 288

p = 3

0 72 144 216 288

S
(ρ̂

)

0.5

1

1.5

2

2.5

N = 36
N = 72
N = 144
N = 216
N = 288

p = 6

FIG. 5. Von Neumann entropy S(ρ̂�) for several particle numbers
and L = 288, in the cases p = 3 (upper panel) and p = 6 (lower
panel). Thin black lines are the fitting curves of the numerical data
(symbols), as obtained using the formula in Eq. (23) with c = 1 and
a left as a fit parameter.

disregarded. As such, for p = 3 and N/L = 1, the system is
in an anyonic Mott-like phase (the concept of band insulator
is not easily generalizable to anyons) related to nonlinearities
of anyonic definition. It is interesting to note that, contrary to
what happens here, in the lattice anyon-Hubbard model there
is no gapped phase at commensurate fillings, in the absence of
quartic terms.

B. Anyonic correlation functions in the gapless cases

We now move to the study of some relevant observables
for our anyonic gas. The density profile does not display any
exotic property, and it resembles in several respects that of
a gas of repelling particles confined in 1D. We observed the
presence of Friedel-like oscillations with a space period equal
to the inverse density L/N [not shown].

As we shall see below, the two-point correlation functions
will reveal more insightful quantities. Let us first analyze the
one-body density matrix:

G1( j, l ) = 〈	GS|F̂ †
j F̂l |	GS〉. (24)

Since we are using OBCs to minimize boundary effects, we
measure correlations between two points that are symmetri-
cally chosen with respect to the center of the chain. Figure 6
shows the absolute value |G1(x, x + r)| as a function of the
distance r, for p = 3 (upper panel) and p = 6 (lower panel),
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FIG. 6. Absolute value of the one-body density matrix G1(x, x +
r) as a function of r in the cases p = 3 (upper panel) and p = 6
(lower panel), for several particle numbers and fixed chain length
L = 288. Thick black lines in the two panels indicate the predictions
of Refs. [15,22]. Data points (symbols) have been fitted with a power-
law function |G1| ∼ r−α1 , in the range r ∈ [10, L/2]. For p = 3, the
resulting best-fit value of the exponent is α1 = 0.74 ± 0.03 (N =
36), α1 = 0.70 ± 0.01 (N = 72), α1 = 0.675 ± 0.001 (N = 216).
For p = 6, we get α1 = 0.460 ± 0.002 (N = 72), α1 = 0.385 ±
0.001 (N = 144), α1 = 0.353 ± 0.001 (N = 216), α1 = 0.341 ±
0.001 (N = 288).

and for several values of N/L such that the ground-state
energy gap vanishes in the thermodynamic limit. A clear
power-law decay r−α1 emerges, consistently with the fact that
the phase is gapless. We observe that, whereas in the p = 3
situation the fitted exponent α1 is approximately the same in
the wide range of densities between N/L = 1/8 and 3/4, more
differences appear in the case p = 6 (see the caption of Fig. 6
for the extrapolated values of α1).

It is instructive to compare our numerical data with previ-
ously developed analytical results for anyonic gases. In par-
ticular, we now try to match them with those of Refs. [15,22],
providing a description of correlation functions for a 1D
anyonic gas, based on an effective low-energy LL description.
Let us, however, stress that it is not a priori clear that such
description is applicable to our model, since the former is
developed by deforming bosonic field operators into anyonic
ones and the second is simply introduced as a continuum
anyonic model. We now assess whether the predictions of

Refs. [15,22] in the case of noninteracting anyons describe
our model. The correlation function of Eq. (24) is predicted
to scale as |G1(x, x + r)| ∼ r−(κ2K+1/K )/2, where K is the
Luttinger parameter. Since in the anyonic Luttinger model
K = κ−1, it follows that in our case α1 = κ = 2/p. This
prediction is indicated in Fig. 6 with a thick black line.
The comparison with the fitted values of α1 improves when
increasing the density N/L. We thus conclude that our model,
in the gapless region, is well approximated by the universal LL
description proposed in Refs. [15,22] for the noninteracting
anyonic gas.

In passing, we mention that, for the special case at
unit filling and p = 3, where a gapped phase develops (see
Sec. V A), correlation functions develop important qualitative
differences. Specifically, as one should expect, the one-body
density matrix decays exponentially as e−r/ξ , ξ being the
proper (finite) correlation length (not shown).

Different from what happens in the bosonic and fermionic
version of Hamiltonian Eq. (10), the observable G1( j, l ) of
Eq. (24) for p > 2 is a complex-valued function. To further
analyze its structure, it is useful to consider the Fourier
transform of the operators F̂j [see Eq. (11)] and study the
anyonic momentum distribution function (AMDF):

n0(k) = 1

L

∑
j,l

e+ik( j−l ) G1( j, l ). (25)

A first inspection of the numerical results plotted in Fig. 7
evidences two distinctive features, which have been already
pointed out in other anyonic models [20]: (i) the absence of
symmetry k → −k, due to the lack of inversion symmetry
of the model and (ii) the presence of a spike at kmax > 0.
Following different arguments, we can qualitatively estimate
the peak position to be located at

kmax = κπN/L. (26)

First, in Sec. III we have already observed that the anyonic gas
behaves as a standard gas with twisted boundary conditions,
the twist of each momentum being κπ/L. As such, we can
naively expect that the AMDF is peaked around a wave vector
equal to N times such value. Second, each time two FP
operators are commuted, a phase ω appears. Assuming a gas
with uniform density, to compute the correlator G1(x, x + r),
a number of Nr/L anticommutations has to be performed,
and thus a phase ωNr/L is gained. This corresponds to a peak
in the AMDF at kmax. Finally, according to Ref. [15], the
low-energy theory predicts G1(x, x + r) ∝ eikmaxr , where kmax

is given by Eq. (26). The insets in both panels of Fig. 7
show that such prediction works well only at low densities,
whereas for N/L � 1/4 a significant discrepancy appears. We
interpret this as a consequence of the fact that in our model,
the local Hilbert space has a finite dimension p, whereas in the
mentioned models it is infinite.

We conclude this part by mentioning that we have
also numerically studied the anyonic correlation function
G2(x, y) = 〈	GS|F̂ †2

x F̂ 2
x+r |	GS〉, obtaining similar results. In

particular, they display a power-law decay in qualitative
agreement with the anyonic LL theory of Refs. [15,22], al-
though larger discrepancies seem to emerge for p = 3 (see
Appendix D for further details).
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FIG. 7. Momentum distribution function n0(k) for p = 3 (upper
panel) and p = 6 (lower panel), for several particle numbers and
L = 288. Inset: Plot of the peak position as a function of N . The red
line denotes the position kmax discussed in the text.

C. Fermionic correlation functions for p = 6

We now move to the study of fermionic operators f̂ j = F̂ 3
j

introduced in Eqs. (9) for the case p = 6. We first define the
fermionic correlation function

G3( j, l ) = 〈	GS| f̂ †
j f̂l |	GS〉. (27)

In Fig. 8, we plot its absolute value and observe that it
decays algebraically as |G3(x, x + r)| ∼ r−α3 . According to
the approximate LL description [15,22], α3 = 9α1 = 18/p.
In this specific case, α3 = 3. The fitted values are compatible
with 9α1; however, the agreement increases with the density
of the gas (see caption of Fig. 8). At this stage, a few remarks
are in order. First notice that the exponent of the decay rate
of G3 is clearly different from that of free fermions, whose
two-point correlation functions are known to decay as r−1.
Thus, a quadratic model of fractionalized fermions induces
effective strong correlations among quasiparticles. Moreover
and importantly, for the larger density values, the prediction
for the scaling of |G3(x, x + r)| quantitatively agrees with the
one predicted for a correlated state by Wen’s hydrodynamics
for a Laughlin state at filling ν = 1/3.
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FIG. 8. Upper panel: Absolute value of the fermionic correlation
function G3(x, x + r) as a function of r, for p = 6 and several particle
numbers. Data are for L = 288. The bosonization prediction is super-
imposed as a thick black line, and that for free fermions as a dashed
black line. Data points (symbols) have been fitted with a power-
law function |G3| ∼ r−α3 , in the range r ∈ [10, L/2]. The resulting
best-fit values of the exponent are α3 = 4.04 ± 0.05 (N = 72), α3 =
3.26 ± 0.05 (N = 144), α3 = 2.98 ± 0.05 (N = 216). These can be
matched with those for α1 (Fig. 6, lower panel): 9α1 = 4.14 ± 0, 018
(N = 72), 9α1 = 3.46 ± 0.02 (N = 144), 9α1 = 3.17 ± 0.01 (N =
216). Lower panel: Fermionic momentum distribution function n1(k)
for p = 6, N = 144 and L = 288. Inset: Same plot in semilogarith-
mic scale.

In the lower panel of Fig. 8, we plot the fermionic momen-
tum distribution function (FMDF):

n1(k) = 1

L

∑
j,l

e+ik( j−l ) G3( j, l ). (28)

Although n1(k) does not exhibit the sharp discontinuity pre-
sented by the AMDF, it is again not k → −k invariant, and
has a maximum for a nonzero value of k. The form is roughly
(but not exactly) symmetric around such point. We stress that
a similar FMDF cannot be easily traced back to any fermionic
model, highlighting the impact of fractionalization.

To better rationalize this result, we can consider the
scattering states introduced in Sec. III for p = 4 and the
fermionic operators f̂ j = F̂ 2

j . It is interesting to observe that

〈	| f̂ †
j f̂l |	〉 = |B|2ei(k+q)(l− j). The combination k + q does
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not depend on the phase θ but depends on the statistical phase
through k + q = 2π

L (λk + λq − 2/p) and thus the result is
related to that of fermions with twisted boundary conditions.
For the ground state, λk = λq = 0 and the peak of the FMDF
is shifted by − 2π

L
2
p .

Before closing, we comment on a possible low-energy
theory of the investigated lattice model. Developing a micro-
scopic bosonization theory of FPs starting from first princi-
ples is a task that goes beyond the purposes of this paper.
However, based on the numerical observations collected for
the gapless phase for p = 6, we can now argue that the model
shares some properties with a couple of counter-propagating
Laughlin boundary modes at filling factor ν = 1/3 with edge
velocities ±v.

The latter represents an example of an anyonic LL [22],
whose Hamiltonian can be written as

Ĥ = v

2

∫
[(∂x θ̂ )2 + (∂xφ̂)2]dx, (29)

where φ̂(x) and θ̂ (x) are the so-called dual fields and satisfy
[φ̂(x1), θ̂ (x2)] = i 2π

p �H(x2 − x1), and �H(x) is the Heavi-
side step function. We can define low-energy right- and
left-moving anyonic excitations using the bosonic fields of
Hamiltonian in Eq. (29), using the operators F̂R(x) and F̂L(x),
where F̂R/L (x) ∝ eiαR/L (κ )[θ̂ (x)∓φ̂(x)]. Right and left movers are
described by opposite statistical parameter, contained in the
coefficient αR/L(κ ). This property makes the anyonic LL time-
reversal invariant.

Also in the studied 1D lattice system we have both right
and left movers, but the statistical parameter is unique, and
the model is not time-reversal invariant. This motivates further
investigation to establish the possible link between anyonic
LLs and our Hamiltonian Eq. (10), where there is only one
statistical parameter. The study of boundaries between two
fractional quantum Hall states closely separated by an insu-
lating region started to attract significant attention in recent
years [33,35]. In the end, our lattice model is well suited
for developing a description for some such boundaries that
goes beyond effective field theories with linearized dispersion
relations.

VI. CONCLUSIONS

Motivated by recent proposals for an experimental re-
alization of 1D parafermionic systems in condensed-matter

devices, we addressed the simplest model of FPs, namely
a tight-binding Hamiltonian. The model is quadratic, but
different from its bosonic and fermionic counterpart, it does
not enjoy an analytical solution. Our study exploits numer-
ical methods and shows a number of remarkable properties
that can be directly ascribed to the exotic quantum statistics
of parafermions, from the presence of bound states in the
spectrum to the appearance of gapped phases. Using argu-
ments based on the LSSs, we unambiguously demonstrate that
the model is nonintegrable, and rely on numerical methods
for its characterization in the many-body case. The remark-
able feature of FPs is the fact that, in some cases, clusters
of FPs behave as fractionalized fermions. We show that,
for p = 6, our tight-binding Hamiltonian displays analogies
with the low-energy properties of the boundary between two
neighboring Laughlin states, where fractionalized electrons
counterpropagate. This paves the way to test, in a lattice
model, predictions that so far have only been checked in
continuum field theories. Moreover, it allows for a proper
modeling of phenomena that require a beyond-LL description,
including for instance curvature effects. Finally, it has been
highlighted that coupling two Hall bars with a Laughlin state
each by alternating superconducting and magnetic materials,
it is possible to localize zero-energy parafermionic modes.
Testing this prediction in a lattice tight-binding model with
electronic superconductivity will be one of the next research
directions.
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APPENDIX A: TWO-BODY SCATTERING STATES

Let us consider the ansatz of Eq. (15). From the projected
eigenvalue equation 〈m1, m2| Ĥ |	〉 = E〈m1, m2 |	〉, we can
obtain three different equations:

Ea(m1, m2) = −t[a(m1 − 1, m2) + a(m1 + 1, m2) + a(m1, m2 − 1) + a(m1, m2 + 1)], m2 > m1 + 1, (A1a)

Ea(m1, m2) = −t[a(m1 − 1, m2) + a(m1 + 1, m2) + ω∗a(m1, m2 − 1) + a(m1, m2 + 1)], m2 = m1 + 1, (A1b)

Ea(m1, m2) = −t[a(m1 − 1, m2) + ωa(m1, m2 + 1)], m2 = m1. (A1c)

Equation (A1a) admits a solution with E (k, q) = −2t cos(k) − 2t cos(q) for arbitrary values of A, A′, B, k and q. Equations
(A1b) and (A1c) yield the following expression for B/A and eiθ :

B

A
= −e−ik + eiθ e−iq + ωeiq + ωeiθ eik

2[cos(k) + cos(q)]
, (A2a)

eiθ = −E (k, q)2eiq + E (k, q)ei(q−k) + E (k, q)e2iq − F (k, q)e−ik − ωF (k, q)eiq

E (k, q)2eik + E (k, q)ei(k−q) + E (k, q)e2ik − F (k, q)e−iq − ωF (k, q)eik
, F (k, q) = ei(k+q) + ω∗, (A2b)
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FIG. 9. LSS for the fermionic tight-binding model [Eq. (10) with
p = 2] and N = 7 particles. We used OBCs, added an inhomogeneity
of strength ε = 10−2 on the first hopping, and a local chemical
potential term of strength μ1 = 10−2 on the first site. The various
data sets are for different system sizes. The dashed curve corresponds
to a GOE, while the dotted-dashed one to a Poissonian statistics.

Although the above expressions are quite involved and it is
not apparent, an explicit inspection of Eq. (A2b) shows that it
is indeed a phase. The numerical solution of Eqs. (A2) allows
for the determination of the wave vectors k and q, and thus of
the energy-momentum relation E (k, q).

APPENDIX B: DETAILS ON THE LSS

As discussed in Sec. IV, the tight-binding model of FPs
exhibits level repulsion, a fact that witnesses its absence of
integrability. Here we give further details on this issue.

First, we explicitly show that, in the specific case of or-
dinary free fermions, the situation is drastically different, the
model being trivially integrable. We have computed the LSS
for the Hamiltonian in Eq. (10) with p = 2, adopting the same
strategy employed for FPs aimed at breaking any obvious
symmetry in the model, such as translational invariance and
inversion symmetry. In particular, we have diagonalized the
tight-binding Hamiltonian with OBCs and for a fixed number
of fermions. To ensure that no trivial symmetries (as the in-
version symmetry) are left, we also admit an inhomogeneous
hopping amplitude t → t + ε between the first two sites, and
a local chemical potential term of the form −μ1F̂ †

1 F̂1. The
outcome of our ED simulations is presented in Fig. 9, where
the LSS is shown to converge to a Poissonian-like distribution,
when increasing the system size L. In particular, notice the
absence of level repulsion at small values of s (typical of
the WD surmise), which was shown to naturally emerge for
models with p > 2.

Second, we have verified that the asymptotic WD distri-
bution to which the LSS of the FP spectrum converges is
expected to depend on the specific symmetries of Ĥ . In fact,
the numerical results presented in Sec. IV support evidence
that our FP model (for p > 2) obeys a WD statistics of the
GOE type. The latter is typical for systems which preserve
an antiunitary symmetry, such as time reversal. If we now
consider a slightly different tunneling strength t → t + ε for
the hopping term between the first and the second site, Fig. 10
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FIG. 10. LSS for the tight-binding model of Eq. (10) with p = 6,
L = 12 sites, and N = 7 particles. OBCs have been enforced. The
various data sets correspond to different values of the inhomogeneity
ε on the first hopping. The dashed curve corresponds to a GOE, while
the dotted-dashed one to a GUE statistics.

shows that the shape of the resulting LSS exhibits a crossover
from GOE to GUE (as is typical for generic complex Hamil-
tonians). We conclude by noticing that a rigorous analysis
of the connection between the Hamiltonian symmetries and
the corresponding WD surmise for its LSS is generally not
obvious (see, e.g., Ref. [76]) and lies outside the purpose of
the present study.

APPENDIX C: FRADKIN-KADANOFF TRANSFORMATION

To perform DMRG simulations, it is more convenient
to preliminarily rewrite our model in terms of conventional
commuting operators rather than using FPs which obey the
complicated anyonic commutation relations Eqs. (8). This can
be done by means of a generalized Jordan-Wigner transfor-
mation (also called Fradkin-Kadanoff transformation [72]),
which maps the parafermions F̂ (†)

j ( j = 1, . . . , L) to the Weyl

hard-core boson matrices B̂(†)
j ( j = 1, . . . , L), according to

F̂j =
[

j−1∏
k=1

Ûk

]
B̂ j . (C1)

The (now commuting) operators B̂ j and Ûj have the following
representations in the Fock basis {|mj〉}p−1

j=0 :

B̂ j =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Ûj =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

...
0 0 0 · · · 0
0 0 0 · · · ωp−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (C2)
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where ω = e2π i/p. Notice that the onsite matrix representation
for B̂ j is formally the same as the one for F̂j [see Eq. (6)],
while Ûj is a diagonal unitary operator with complex entries.

Using Eq. (C1), it is thus immediate to see that

F̂ †
j F̂j+1 = B̂†

j (Û
†
1 · · · Û †

j−1)(Û1 · · · Ûj )B̂ j+1 = B̂†
jÛ j B̂ j+1

F̂ †
j+1F̂j = B̂†

j+1(Û †
1 · · · Û †

j )(Û1 · · · Ûj−1)B̂ j = B̂†
j+1Û

†
j B̂ j,

since the matrices Ûk commute on different sites. Therefore,
the tight-binding FP Hamiltonian Eq. (10) can be written in
terms of more manageable bosonic operators as

Ĥ = −t
∑

j

[B̂†
jÛ j B̂ j+1 + Û †

j B̂ j B̂
†
j+1]. (C3)

We stress that while the FP number operator N̂ j in Eq. (5)
maintains its usual representation in the bosonic language,
N̂j = ∑

l B̂†l
j B̂l

j , the anyonic correlation functions are trans-
formed into bosonic string correlators. For example, the G1

function in Eq. (24) becomes (for j < l):

G1( j, l ) = 〈	GS|B̂†
j (Ûj · · · Ûl−1)B̂l |	GS〉. (C4)

APPENDIX D: ANYONIC G2 CORRELATION
FUNCTIONS

Here we discuss the results of our numerical simulations
for the anyonic correlation function,

G2( j, l ) = 〈	GS|F̂ †2
j F̂ 2

l |	GS〉, (D1)

whose absolute value is reported in Fig. 11. In analogy
with the one-body density matrix G1 reported in Eq. (24)
(see Sec. V B), we still observe a power-law decay of the
type G2(x, x + r) ∼ r−α2 . In this case, the LL theory [15,22]
predicts an exponent α2 = 4α1 = 8/p, which nicely agrees
with our data for p = 6 (lower panel). On the contrary, for
p = 3 the fitted power-law decay rates present some dis-
crepancies from the LL prediction (upper panel). We have
also evaluated the anyonic correlation functions G1(x, x + r)
and G2(x, x + r) for p = 4 and p = 5 as well (not shown
here), where LL relations for their power-law decay are in
accordance with our numerics. As such, we can ascribe the
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FIG. 11. Absolute value of the anyonic correlation function
G2(x, x + r) as a function of r, in the cases p = 3 (upper panel)
and p = 6 (lower panel), for several particle numbers and a fixed
chain length L = 288. The LL prediction r−8/p is superimposed as a
thick black line. For p = 6, we have fitted the points r ∈ [10, L/2]
with a power-law function |G2| ∼ r−α2 , obtaining as best-fit pa-
rameter α2 = 1.85 ± 0.03 (N = 72), α2 = 1.55 ± 0.02 (N = 144),
α2 = 1.42 ± 0.01 (N = 216).

violation for the G2 correlations with p = 3 to a truncation
effect due to the dimensionality of the local Hilbert space.
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