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We study the effect of inhomogeneous strain on transition-metal dichalcogenides with a large intrinsic gap
in their spectrum. It is found that, by tuning the chemical potential, superconductivity can preserve within
the strain-induced discrete pseudo Landau levels (LLs), which introduce interesting topological properties to
these systems. As we show, the superconductivity for integer fillings is quantum critical, and the quantum
critical coupling strength is determined by the spacing between the two LLs closest to the Fermi level. For
partial fillings, the superconducting gap is scaled linearly with the coupling strength and decreases rapidly when
the chemical potential shifts away from the middle of each LL. In the presence of a Zeeman field, a pair of
Majorana modes emerges simultaneously in the two valleys of strained dichalcogenides. When valley symmetry
is further destroyed, a single Majorana mode can be expected to emerge at the edges of the strained monolayer
dichalcogenides.
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I. INTRODUCTION

Since the remarkable discovery of graphene [1–3], the
study of physics in atomically thin two-dimensional (2D)
crystals, which could be of great potential applications in
next-generation nanoelectronic devices [4,5], has attracted
much attention on both the theoretical and experimental sides
[6,7] . In graphene, the conduction and valence band touch at
the corners, referred to as K and K ′ points, of the 2D hexag-
onal Brillouin zone. The two inequivalent points constitute
a binary index, called the valley index, for the low-energy
carriers. In the vicinity of the K (K ′) points, the low-energy
electronic excitations behave as massless Dirac quasiparticles
[8], and the dispersions form a 2D Dirac cone, whose vertex
is called the Dirac point. The two valleys are separated far
from each other in momentum space. For electronic states
closed to the Dirac points, the valley index is expected to
be robust against scattering by perturbations. Therefore, the
valley index can serve as a potential information carrier, the
use of which leads to a new concept: valleytronics [9–13].
When the inversion symmetry is broken, valley Hall effect
can emerge [11], where carriers in different valleys flow to
opposite transverse directions upon application of an electric
field. Moreover, when including the spin-orbit interaction, one
can explore spin physics and spintronics in graphene [13–17].

Interestingly, recent theoretical and experimental studies
showed that intrinsic superconductivity could be induced in

*shengli@nju.edu.cn

graphene under the application of strain fields [8,18–21]. The
strain introduces pseudo Landau levels (LLs) into graphene,
while the time-reversal (TR) symmetry remains. In the weak-
coupling regime, the critical temperature is found to scale
linearly with the coupling strength, which is quite different
from the conventional weak-coupling superconductors where
the critical temperature decreases exponentially with the ef-
fective coupling [21]. By modulating the filling factor and
magnitude of strain, one can control the superconducting
transition temperature experimentally, which has profound
significance for the manipulation of quantum states in solid
states. Moreover, in the presence of superconductivity, the
system can exhibit exotic topological properties, such as the
emergence of Majorana modes, when the inversion and TR
symmetries are broken spontaneously [22].

Although graphene has many extraordinary physical prop-
erties, the inversion symmetry is preserved and the spin-orbit
coupling (SOC) is rather weak in graphene, which challenges
some of its applications in valleytronics and spintronics. In-
stead, layered transition-metal dichalcogenides [4,5,23–28],
with broken inversion symmetry and strong SOC, represent
an alternative class of 2D materials [4], which can provide
excellent platforms towards the integration of valleytronics
and spintronics [29,30]. For example, monolayer MoS2 has
similar hexagonal lattice structure as graphene [30], but the
inversion symmetry is broken explicitly and the SOC is much
stronger in MoS2, which makes it a promising candidate
material for valleytronics and spintronics [31–33]. In fact,
the physics in monolayers of group-VI dichalcogenides MX2,
with M = Mo and X = S, Se, is essentially the same, all
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of which are identified as direct-band-gap semiconductors
[34]. It is of importance to understand theoretically how the
appearance of the intrinsic band gap and SOC influence the
superconductivity and topological properties of these emer-
gent 2D materials under strain fields.

In this paper, we investigate the superconductivity and
topological properties of the electrons in strained transition-
metal dichalcogenides. Taking MoS2 as an example, we gen-
eralize the superconductivity theory from gapless graphene
[21] to strained dichalcogenides with intrinsic band gaps
in their spectrum. We find that the superconductivity can
preserve within the discrete pseudo LLs for these gapped
systems, and the resulting topological phenomena are very
interesting. In the presence of a finite energy gap, the chemical
potential plays a very important role in the occurrence of su-
perconductivity, even for the n = 0 LL with n as the LL index.
At half fillings, the chemical potential sitting at the middle
of the LLs, the superconductivity gap is maximized. How-
ever, at integer fillings, the emergence of superconductivity
requires a minimal quantum critical coupling, whose strength
is determined by the spacing between the LLs closest to the
Fermi level. Below the quantum critical coupling strength,
the superconductivity is fully suppressed. Interestingly, in the
presence of a Zeeman field, a pair of Majorana modes emerge
simultaneously in the two valleys of strained dichalcogenides.
A single Majorana mode can be expected to emerge at the
edges of the sample, if the valley symmetry is further de-
stroyed.

The rest of this paper is organized as follows: In the next
section, we introduce the model Hamiltonian and method. The
superconductivity in strained MoS2 is discussed in Sec. III,
and its topological properties are analyzed in Sec. IV. The
final section contains a summary.

II. MODEL HAMILTONIAN AND METHOD

As demonstrated in Refs. [30,34], the underlying physics
is the same for monolayers of group-VI dichalcogenides, such
that we can take one of them, i.e., MoS2, as an example. The
low-energy electronic excitation in strained monolayer MoS2

can be described by the Hamiltonian [20,21,30]

H =
∫

dx
∑

ξ

ψ
†
ξ (x)Hp,ξψξ (x), (1)

where ψξ (x) = (cA,ξ↑, cB,ξ↑, cA,ξ↓, cB,ξ↓)T , cA(B),ξσ are elec-
tron annihilation operators, and

Hp,ξ = υF ��
ξ · �σξ + �0

2
σz −

(
λsoξ

σz − 1

2
− mz

)
sz − μ,

(2)

with σi and si being the Pauli matrices for sublattice and spin,
respectively, and ξ = ± representing the valley index. Here,
υF = at/h̄ is the Fermi velocity with a and t the lattice con-
stant and electron hopping integral. �0 is the intrinsic energy
gap due to the broken inversion symmetry, 2λso is the spin
splitting at the valence band top due to the spin-orbit coupling,
mz is the Zeeman field, and μ is the chemical potential. The
valley-dependent gauge covariant momentum operator ��ξ

x,y =
p̂x,y + ξeAx,y is modified by the pseudovector-potential

A = (δtx, δty)/eυF generated by the strain and �σξ = (ξσx, σy)
is a vector of the Pauli matrices. In the presence of an effective
attractive potential U , which stabilizes the superconducting
state, the Bogoliubov–de Gennes (BdG) Hamiltonian is given
by HBdG = 1

2

∫
dx
∑

ξ 

†
ξ (x)HBdG
ξ (x), where

HBdG =
(

Hp,ξ + mzsz �̂4

�̂
†
4 −T H−p,−ξT −1 − mzsz

)
, (3)

and 

†
ξ (x) = (ψ†

ξ , isyψ−ξ ), with �̂4 = �sz ⊗ σ0, T = isyK,
and K denoting complex conjugation. In a proper basis order,
the BdG Hamiltonian can be rewritten in the block-diagonal
form as

H̃BdG =

⎛⎜⎜⎜⎜⎝
hp,ξ↑ �̂2 0 0

�̂
†
2 −h∗

−p,−ξ↓ 0 0

0 0 hp,ξ↓ �̂2

0 0 �̂
†
2 −h∗

−p,−ξ↑

⎞⎟⎟⎟⎟⎠, (4)

with hp,ξσ = υF ��
ξ · �σξ + λξσ σz − μξσ + σmz, where λξσ =

�0+σξλso

2 and μξσ = μ + σξλso

2 .
In the absence of the Zeeman field, the spin index σ = ↑,↓

is locked to the valley index ξ , such that hp,ξσ = h∗
p,ξσ

, where
σ ≡ −σ . As it shows, the strain-induced pseudomagnetic
field does not break the TR symmetry for the system, i.e.,
H−p,−ξ = T Hp,ξT −1, which is essentially different from a
conventional magnetic field. Therefore, TR-symmetric states
can pair up by the effective attractive interaction, which favors
the formation of Cooper pairs. The pairing matrix �̂2 = �σ0

in Eq. (4), describing the formation of Cooper pairs, can be
determined self-consistently by �2 = U tr〈ψk,ξσ |�̂2|ψ−k,ξσ 〉,
where ψk,ξσ is the two-component spinor for hp,ξσ . In the
Landau gauge A = (−By, 0), with B as the pseudomagnetic
field, the spinor for hp,ξσ takes the following form:

ψ
(n)
k,ξσ

= eikx

√
2

(
snα

(n)
ξσ,+φ|n|−1(ζ )

α
(n)
ξσ,−φ|n|(ζ )

)
, (5)

when μξσ = mz = 0. Here, sn ≡ sgn(n), φ|n|(ζ ) is the har-
monic wave function, and

α
(n)
ξσ,± =

√
1 ± λξσ /�n

ξσ , (6)

with �n
ξσ = sn[2|n|(h̄ωc)2 + λ2

ξσ ]1/2 − λξσ δn,0 and
ζ = ξklB − y/lB. The cyclotron frequency is defined as
ωc = υF/lB, in which lB = √

h̄/eB denotes the magnetic
length.

III. SUPERCONDUCTING STATES

Since the Zeeman field is irrelevant to the emergence of
superconductivity, we would omit it in the discussions of
the properties of superconducting states, for simplicity, and
it will be considered later in the discussions of the topological
properties in Sec. IV. By projecting H̃BdG onto the Hilbert
space {�(n)}, with �(n) = (ψ (n)

k,ξ↑, ψ
(n)∗
−k,ξ↓, ψ

(n)
k,ξ↓, ψ

(n)∗
−k,ξ↑), the

BdG Hamiltonian can be written in the diagonal form as

H̃(m,n)
BdG = 〈�(m)|H̃BdG|�(n)〉 =

(H+ 0

0 H−

)
δm,n, (7)
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where Hχ = (�n
χ − μχ )τz + �τx, with χ = ± labeling the

product of the valley and spin indices (ξ × σ ) and τi being the
Pauli matrix for Bogoliubov isospin in Nambu space. Some
details of derivation are given in the Appendix, e.g., Eq. (A5).
In the presence of finite energy gap �0 and spin-orbit coupling
λso, the n = 0 LL �0

ξσ − μξσ in strained MoS2 shifts away
from zero energy, which is different from the case in gapless
graphene [21]. As a result, for μ = 0, to preserve the super-
conductivity in the discrete spectrum of LLs, a finite coupling
is needed to overcome the energy gap between the electron
and hole LLs, even for the n = 0 LL. With tuning the chemical
potential, the electron and hole LLs could approach each other
and encounter at the Fermi level, such that the gap between
the electron and hole LLs would decrease, which reduces the
critical coupling strength. Therefore, in the presence of an
intrinsic gap, the chemical potential plays a very important
role in the occurrence of superconductivity.

Due to Pauli blocking, the electronic states are incompress-
ible, so that the chemical potential would exhibit a discontin-
uous behavior with changing the pseudomagnetic field and
filling factor. As shown in Eq. (7), H± are block diagonal
and there is no particle exchange between the two subspaces.
Consequently, we can concentrate on one subspace, say Hχ ,
and the conclusions can be generalized to the other subspace
straightforwardly. Following Ref. [21], we calculate the chem-
ical potential by fixing the number of particles Nχ , which can
be determined by the fluctuation-dissipation theorem [35]

Nχ = −gNφ

∑
n

∫ ∞

−∞
dω Im

[
Gr

χ,11(ω)/π
]

f (ω), (8)

where g = 2 is the valley × spin degeneracy and Nφ =
A/(2π l2

B) is degeneracy of the LL originating from the sum-
mation over k, with A = LxLy as area of the sample. f (ω) =
1/(1 + eω/kBT ) is the Fermi–Dirac distribution function and
the retarded Green’s function

Gr
χ (ω) = 1

ω + i0+ − Hχ

= 1

2

∑
η=±

1

ω+ − ηEχ
n

[
τ0 + 1

ηEχ
n

(
εn,χ �

� −εn,χ

)]
(9)

is a 2 × 2 matrix in Nambu space, with Eχ
n = (ε2

n,χ + �2)1/2

and εn,χ = �n
χ − μχ , where we adopted the abbreviation

ω+ = ω + i0+. The subscripts of the retarded Green’s func-
tion, e.g., Gr

χ,11(ω) and Gr
χ,12(ω), stand for the matrix ele-

ments of Gr
χ (ω). If the deep-energy states n < nF are fully

occupied, with nF labeling the highest occupied LL, we can
derive

Nχ = gNφ

2

nF∑
n=−nD

(
1 − εn,χ tanh

[
Eχ

n /(2kBT )
]

Eχ
n

)
, (10)

where nD is an ultraviolet cutoff related to the bandwidth D.
More details are presented in the Appendix.

In the low-temperature and weak-coupling limit kBT , � �
h̄ωc, we can further reduce Eq. (10) to

2(νχ/g − nF) = −εnF,χ tanh
[
Eχ

nF
/(2kBT )

]
Eχ

nF

, (11)

with νχ = Nχ/Nφ − g(nD + 1/2) being the filling factor. For
kBT � �, the chemical potential can be approximated as

μχ (T, νχ ) = �nF
χ + 2�(T, νχ )(νχ/g − nF)√

1 − 4(νχ/g − nF)2
. (12)

As can be seen, at half fillings νχ/g = nF, the low temper-
ature chemical potential, pinned to the nFth LL for relative
small �(T, νχ ), is robust against the strain. At integer fillings
νχ/g = nF ± 1/2, however, Eq. (12) predicts an unphysical
diverging chemical potential if �(T, νχ ) = 0. This implies
that the superconductivity must be fully suppressed for integer
filling factors, i.e., �(T, νχ ) = 0 for νχ/g = nF ± 1/2.

As analyzed, the superconducting gap and chemical poten-
tial are interactive, so that, to determine the superconductivity,
the chemical potential must be accounted self-consistently
into the equation of the superconducting gap. The gap equa-
tion, as defined in Eq. (A11), is obtained self-consistently by

�(T, νχ ) = −UgNφ

∑
n

∫ ∞

−∞
dω Im

[
Gr

χ,12(ω)/π
]

f (ω),

(13)

with Nφ = Nφ/A as the number of flux quanta per unit area.
Substituting the retarded Green’s function (A9) into Eq. (13)
leads to

1 = −(U/2)gNφ

∑
n

tanh
[
Eχ

n /(2kBT )
]
/Eχ

n . (14)

Combining Eqs. (12) and (14), we obtain for the zero temper-
ature gap, in the weak-coupling regime, as

�(0, νχ ) = h̄υF

√
1 − 4(νχ/g − nF)2

2lB
[
1 − γ

(1)
nF x

] x, (15)

where

γ (k)
nF

=
∑
n<nF

1

2|(εχ,nF − εχ,n)/h̄ωc|k (16)

is a constant, and x = |U |gNφ/(h̄ωc) is a dimensionless
coupling strength of the attractive interaction. As shown by
Eq. (15), �(0, νχ ) = 0 if νχ/g = nF ± 1/2, which confirms
the inference that the superconductivity is fully suppressed for
integer filling factors. By substituting Eq. (15) into Eq. (12),
the zero-temperature chemical potential is obtained as

μχ (0, νχ ) = �nF
χ + h̄υF(νχ/g − nF)

lB
[
1 − γ

(1)
nF x

] x. (17)

As it shows, the zero-temperature chemical potential at half
filling is robust against the strain for relative small x. At half
fillings, the electron and hole density of states (DOSs) at the
Fermi level are maximal, which is optimum for the emergence
of superconductivity. Consequently, the superconducting gap
reaches its maximum for half-filling factors, as shown by
Eq. (15). Interestingly, the chemical potential, away from
the half fillings |νχ/g − nF| > 0, is linearly scaled with the
coupling strength x. With |νχ/g − nF| increasing from 0,
μχ (0, νχ ) will shift away from the nFth LL and the DOSs at
the Fermi level decrease rapidly, which is unfavorable for the
formation of Cooper pairs. As a result, �(0, νχ ) diminishes
rapidly as the chemical potential shifts away from half fillings.
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FIG. 1. (a) The filling factor νχ/g (left) and zero-temperature gap
� (right) as functions of the chemical potential μ, for x = 0.035.
(b) The zero-temperature gap �(0, νχ ) versus the filling factor νχ/g
for x = 0.010, 0.011, and 0.012, from bottom up. Other parameters
are set to be χ = +, h̄ωc = �0, 2λso/�0 = 0.15/1.66, and �0 = 1
(1.66 eV for MoS2 [21]).

Exactly at integer fillings, the superconductivity, as indicated
by Eq. (15), is fully suppressed, i.e., �(0, νχ ) = 0. As a
consequence, the electronic states, in the weak-interaction
regime, cannot form the superconducting condensation at
integer fillings.

The above analysis can be easily verified by the numer-
ical results displayed in Fig. 1, which is calculated self-
consistently by Eqs. (8) and (13). As shown by the dark
curve in Fig. 1(a), for a fixed x, the zero-temperature chem-
ical potential depends linearly on the factor νχ/g − n ∈
[−1/2, 1/2), which characterizes the width of peaks of the
zero-temperature gap around half fillings, as shown by the red
curve in Fig. 1(a). The numerical results are consistent with
the analytical ones given by Eq. (17). As shown in Fig. 1(b),
for small coupling strength x → 0, the zero-temperature gap
peaks around half fillings νχ/g = n. The peaks are separated
by zero plateaus in the vicinities of integer fillings νχ/g =
n ± 1/2, where formation of Cooper pairs is suppressed.
With increasing coupling strength, the zero plateaus reduce in
width and, meanwhile, the peaks rapidly increase in height. If
the coupling is strong enough � → h̄ωc, transitions between
different LLs become allowable, such that the zero plateaus
could be fully filled by the peaks, leading to the emergence of
superconductivity for integer fillings. Therefore, there exists
a quantum critical coupling strength for the emergence of
superconductivity at integer fillings.

The quantum critical coupling strength can be derived from
the expression (15) for the zero-temperature gap. For integer
fillings, at which the chemical potential sits halfway between
the two LLs nearest to the Fermi level, i.e., εnF−1,χ = −εnF,χ ,
the zero-temperature energy gap is derived to be

�
(
0, νI

χ

) = h̄(υF/lB)|�χ (nF)|
√

(x/xc)2 − 1, (18)

0.01 0.02 0.03
0

1

2

3
(a)

0.02 0.022 0.024
0

1

2

3
(b)

Normal
state

SC
state

Normal
state

SC
state

FIG. 2. The phase diagram of superconducting transition for
strained monolayer MoS2 for (a) half fillings and (b) integer fillings.
Other parameters are the same as Fig. 1.

where νI
χ = g(nF − 1/2),

xc = 1

γ
(1)

nF−1 + |�χ (nF)|−1
(19)

is the critical coupling strength, and

�χ (nF) = εnF,χ − εnF−1,χ

2h̄ωc
. (20)

As can be seen, the critical coupling strength is determined by
the spacing between the LLs nearest to the Fermi level. For
�0 = λso = 0, corresponding to case of a graphene sheet, the
spacing of the LLs,

|εn,χ − εn−1,χ | = 2(h̄ωc)2∣∣�n
χ + �n−1

χ

∣∣ , (21)

distributes symmetrically with respect to the n = 0 LL, and
decreases monotonically with increasing |n|. However, in the
presence of finite �0 and λso, corresponding to the MoS2

monolayer, the zeroth LL ε0,χ shifts away from the symmetry
point μ = 0, which results in the asymmetric spacings be-
tween the n = 0 and n = ±1 LLs, i.e., |ε1,χ − ε0,χ | > |ε0,χ −
ε−1,χ |, as demonstrated in Fig. 1(a). As a result, the critical
coupling strength for νχ/g = 1/2 is the largest. In other
words, as x increases from 0, the zero plateaus in Fig. 1(b)
will vanish first for the higher LLs, later for νχ/g = −1/2,
and last for νχ/g = 1/2.

For finite temperatures, there exists a critical temperature
Tc, above which the superconductivity vanishes, i.e., �(T �
Tc, νχ ) = 0. In Fig. 2, we plot the phase diagram of super-
conducting transition for strained monolayer MoS2 in the T -x
parameter space. In the critical regime T → Tc � �, by using
the Poisson sum formula

f (ξ ) = kBT
∞∑

m=−∞

eiωmδ

iωm − ξ
, (22)

with ωm = (2m + 1)πkBT and δ → 0+, we can convert the
gap equation to be

1 = xkBT
∑

n

∞∑
m=−∞

h̄ωc

ω2
m + ε2

n,χ + �2(T, νχ )
. (23)

For T → Tc, �(Tc, νχ ) → 0, we can expand the gap equation
with respect to �2(Tc, νχ ). To the first order in �2(Tc, νχ ), we
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arrive at

1 = x

2
h̄ωc

∑
n

tanh[|εn,χ |/(2kBT )]

|εn,χ |

− xh̄ωckBT
∑

n

∞∑
m=−∞

�2(T, νχ )(
ω2

m + ε2
n,χ

)2 . (24)

By using Eq. (14) and replacing the summation in Eq. (24)
with an integral

∑
m → 1

kBT

∫
dε
2π

, we finally derive the super-
conducting gap at half filling factors to be

�
(
T, νH

χ

) = (h̄υF/lB)3/2
√

1 − T/Tc/
[
2kBTcγ

(3)
nF

]1/2
, (25)

with νH
χ = gnF, where the critical temperature is Tc =

�(0, νH
χ )/(2kB). Consequently, in the weak-coupling limit,

Tc ∼ h̄υFx/(4kBlB) = g|U |eB/(4hkB), is linearly scaled with
the interaction strength U and the amount of strain B, which
is similar to the case in strained graphene [21]. In fact, at
partial filling of the LLs, Tc ∝ x in the x → 0 limit, while,
at the integer fillings, the transition is quantum critical below
the critical coupling xc, as seen in Fig. 2(b). The behavior of
the critical coupling here is different from that for strained
graphene in Ref. [21]. For strained graphene, the critical
coupling strength xc distributes symmetrically with respect to
the n = 0 LL, due to the symmetrically distributed LLs. For
strained MoS2 monolayer, however, the zeroth LL no longer
locates at the symmetry point μ = 0 and, as a result, the
critical coupling is asymmetric for νχ = 1/2 and νχ = −1/2,
as reflected by the critical temperature in Fig. 2(b). From
Fig. 2(b), we can also find that the critical coupling decreases
monotonically with the LL spacing, which is consistent with
the analytical result presented in Eq. (19). The linearly scaled
property of the critical temperature with x is distinct from
that in conventional weak-coupling superconductors, where
Tc ∼ exp(−1/x) decreases exponentially with the effective
coupling. With the coupling x further increased, the system
would crossover to the strong-coupling regime Tc � h̄ωc.

IV. TOPOLOGICAL INDEX AND PHASE DIAGRAM

In the presence of the Zeeman field, the TR symmetry
is broken for the system. The BdG Hamiltonian without TR
symmetry belongs to class D [22,36] and is characterized in
2D by a topological invariant C1, termed as the first Chern
number. The topological index Cξσ

1 here can be calculated
using the Kubo formula [37]

Cξσ
1 = i2πh2

A

∑
mn

∑
k,λλ′

(
f ξσ

m,λ − f ξσ

n,λ′
)

×
〈
�

ξσ
m,λ

∣∣υx,ξσ

∣∣�ξσ

n,λ′
〉〈
�

ξσ

n,λ′
∣∣υy,ξσ

∣∣�ξσ
m,λ

〉(
E ξσ

m,λ − E ξσ

n,λ′
)2 , (26)

where υx(y),ξσ = h̄−1∂H̃BdG/∂kx(y), f ξσ
n,λ = f (E ξσ

n,λ) represents
the Fermi–Dirac distribution function, and

E ξσ
n,λ = λ

√(
�n

ξσ − μξσ

)2 + �2 + σmz, (27)

�
ξσ
n,λ = 1√

2

(
β

(n,λ)
ξσ,+

λβ
(n,λ)
ξσ,−

)
⊗ ψ

(n)
k,ξσ

, (28)

FIG. 3. The topological index (a) C+↑
1 , (b) C+↓

1 , and (c) their
summation C+

1 = C+↑
1 + C+↓

1 as functions of the chemical potential
μ and Zeeman field mz, for � = 0.1�0. C+

1 takes values 0 (green
area), +1 (yellow area) and −1 (blue area). Due to the valley

symmetry E ξσ

n,λ
= −E ξσ

n,λ, the total topological index C1 = C+
1 + C−

1

is of the same shape as in panel (c), but takes values 0 (green area),
or ±2 (yellow and blue areas).

are the eigenenergy and wave function of Hamiltonian (4),
respectively, with λ = ± being the band index and

β
(n,λ)
ξσ,± =

√
1 ± (

�n
ξσ − μξσ

)/(
E ξσ

n,λ − σmz
)
. (29)

By using the expressions above, we can derive the topological
index to be

Cξσ
1 = ξ

nD∑
n=0

[
λξσ

2

(
f ξσ
n+1 − f ξσ

−n−1

�n+1
ξσ

− f ξσ
n − f ξσ

−n

�n
ξσ

)

+ (n + 1/2)
(

f ξσ
n − f ξσ

n+1 + f ξσ
−n − f ξσ

−n−1

)]
, (30)

where f ξσ
n = f ξσ

n,+ + f ξσ
n,−. The first line of Eq. (30) vanishes

after the summation over n and, finally, Cξσ
1 can be rewritten

as

Cξσ
1 = ξ

nD∑
n=0

(
n + 1

2

)[(
f ξσ
n,+ − f ξσ

n+1,+ + f ξσ
−n,+ − f ξσ

−n−1,+
)

− (
f ξσ
−n−1,− − f ξσ

−n,− + f ξσ
n+1,− − f ξσ

n,−
)]

. (31)

At zero or very low temperatures and for the case of mz = 0,
according to Eq. (27), f ξσ

n,+ = 0 and f ξσ
n,− = 1, such that Cξσ

1 =
0 always satisfies. However, for a finite Zeeman field, mz =
0, by tuning the parameters, E ξσ

n,+ < 0 or E ξσ
n,− > 0 could

occur, which changes Cξσ
1 from zero to an integer, with the

phase boundaries determined by m2
z − (μξσ − �n

ξσ )2 = �2.
For example, when nF = 0, the topological index reduces to

Cξσ
1 = (

f ξσ
0,+ + f ξσ

0,− − 1
)
ξ, (32)

such that Cξσ
1 = ξ (−ξ ) if E ξσ

0,+ < 0 (E ξσ
0,− > 0). For |mz| >

[(μ + �0
2 + σξλso)2 + �2]1/2, |Cξσ

1 | = 1, which can also be
seen from the numerical results displayed in Figs. 3(a)
and 3(b). As a result, the Chern number for the ξ valley, Cξ

1 =
Cξ↑

1 + Cξ↓
1 , will be |Cξ

1 | = 1, when (μ + �0
2 + σξλso)2 <

m2
z − �2 < (μ + �0

2 − σξλso)2, as shown in Figs. 3(a)
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and 3(b). Odd values of the Chern number |Cξ
1 | for the BdG

Hamiltonian implies the emergence of Majorana modes for
valley ξ . With tuning the chemical potential, the filling factors
will change, and larger values of Cξσ

1 will emerge. However,
the difference between Cξ↑

1 and −Cξ↓
1 can only be 0 or

±1, as shown in Fig. 3(c). Therefore, |Cξ
1 | = 0 and 1 occur

alternately in the parameter space, as seen from Fig. 3(c). Due

to the valley symmetry E ξσ

n,λ
= −E ξσ

n,λ, Cξσ
1 = Cξσ

1 . As a result,

the total Chern number for the system C1 = C+
1 + C−

1 = 2Cξ
1

is even, as illustrated in Fig. 3(c). In other words, a pair of
Majorana modes emerge simultaneously in two valleys, when
C1 = ±2. The realization of odd values of the total Chern
number for the present system requires to further break the
valley symmetry. For example, when the Rashba spin-orbit
interaction is taken into account, the intervalley coupling
would destroy the valley symmetry [22], and then we can
expect the emergence of a single Majorana mode for the edges
of the present system.

We have assumed that the s-wave pairing for the con-
venience of calculation. As proposed in Ref. [21], in the
presence of substrates, superconductivity can be triggered
by conventional electron-phonon coupling, meaning that the
s-wave pairing can possibly be realized in such a system. Our
conclusions, being insensitive to the phase information of the
pairing potential, may not be limited to the s-wave pairing.
There could possibly be other mechanisms [7,38–41], such as
a density wave [40], leading to the superconductivity, but it
may not affect our discussions on the topological properties
of the superconductivity phase.

Theoretically, a topological superconductor in two dimen-
sions with odd integer Chern numbers is predicted to host
topologically protected gapless chiral Majorana edge modes.
In experiments, while intensive efforts have been made to
search for the chiral Majorana edge modes, the exclusive
signature for such exotic fermions is still under debate. Very
recently, following the theoretical proposal in Ref. [42], He
et al. [43] observed the characteristic half-integer longitudinal
conductance. However, the half-integer longitudinal conduc-
tance, as argued by Ji et al. [44], is only a necessary con-
dition for identifying the Majorana edge modes, but not a
sufficient condition. Here, we propose that the Majorana edge
modes can be realized by splitting of the pseudo LLs. The
strained MoS2 monolayer can be realized by using the method
proposed in Ref. [18]. By placing the grown sample on the
setup proposed in Refs. [42,43], we can expect to observe an
integer–to–half-integer transition of the longitudinal conduc-
tance, when the Zeeman field is turned on gradually, for an
appropriate chemical potential. The half-integer longitudinal
conductance will be a valuable signature, but possibly not
exclusive evidence of the Majorana edge modes. Searching for
unambiguous experimental fingerprint of the Majorana edge
modes is still a challenging task at the research front in the
condensed-matter physics.

V. SUMMARY

In summary, we have investigated the superconductivity
and topological properties in strained dichalcogenides. We

generalized the superconducting theory for gapless graphene
to dichalcogenides with an intrinsic band gap. It is found that
superconductivity can emerge in the pseudo LLs induced by
strain. In the weak-coupling limit, the superconducting gap
is linearly scaled with the coupling strength for the partial
fillings, in contrast to conventional weak-coupling supercon-
ductors. The superconductivity gap is maximized when the
LLs are half filled, but for integer fillings the superconductiv-
ity is fully suppressed, when the coupling strength is below a
quantum critical value. We find the quantum critical coupling
strength is determined by the spacing between the two LLs
closest to the Fermi level. Interestingly, in the presence of a
Zeeman field, a pair of Majorana modes emerge simultane-
ously in the two valleys of strained dichalcogenides. A single
Majorana mode can be realized if the valley symmetry is
further lifted.
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APPENDIX: DERIVATION FOR THE NUMBER OF
PARTICLES AND SUPERCONDUCTING GAP EQUATION

In the Hilbert space {�(n)}, with �(n) =
(ψ (n)

k,ξ↑, ψ
(n)∗
−k,ξ↓, ψ

(n)
k,ξ↓, ψ

(n)∗
−k,ξ↑), the matrix elements of

the BdG Hamiltonian are calculated by

H̃(m,n)
BdG = 〈�(m)|H̃BdG|�(n)〉

=

⎛⎜⎜⎜⎜⎜⎝
ψ

(m)
k,ξ↑

ψ
(m)∗
−k,ξ↓

ψ
(m)
k,ξ↓

ψ
(m)∗
−k,ξ↑

⎞⎟⎟⎟⎟⎟⎠
†⎛⎜⎜⎜⎜⎝

hp,ξ↑ �̂2 0 0

�̂
†
2 −h∗

−p,−ξ↓ 0 0

0 0 hp,ξ↓ �̂2

0 0 �̂
†
2 −h∗

−p,−ξ↑

⎞⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎝
ψ

(n)
k,ξ↑

ψ
(n)∗
−k,ξ↓

ψ
(n)
k,ξ↓

ψ
(n)∗
−k,ξ↑

⎞⎟⎟⎟⎟⎟⎠, (A1)

where ψ
(n)∗
−k,ξσ

is the wave function corresponding to the hole
Hamiltonian h∗

−p,ξσ . By using the relations below:

〈
ψ

(m)
k,ξσ

∣∣hp,ξσ

∣∣ψ (n)
k,ξσ

〉 = (
�n

ξσ − μξσ

)
δm,n, (A2)〈

ψ
(m)∗
−k,ξσ

∣∣h∗
−p,ξσ

∣∣ψ (n)∗
−k,ξσ

〉 = (
μξσ − �n

ξσ

)
δm,n, (A3)〈

ψ
(m)
k,ξσ

∣∣�̂2

∣∣ψ (n)∗
−k,ξσ

〉 = �δm,n, (A4)
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we can derive the matrix elements of the BdG Hamiltonian to
be

H̃(m,n)
BdG =

⎛⎜⎜⎜⎝
�n,ξ↑ � 0 0

� −�n,−ξ↓ 0 0

0 0 �n,ξ↓ �

0 0 � −�n,−ξ↑

⎞⎟⎟⎟⎠δm,n,

(A5)

with �n,ξσ = �n
ξσ − μξσ . Since the spin index σ is locked to

the valley index ξ , �n,ξσ = �n,ξσ and, by labeling χ = ξσ

for brevity, we can express the BdG Hamiltonian as presented
in Eq. (7) of the main text.

To calculate the number of particles, we express the BdG
Hamiltonian in second-quantized form as

H̃BdG =
∑

ξσ,n,k

[�n,ξσ c†
n,k,ξσ

cn,k,ξσ − �n,ξσ cn,−k,ξσ c†
n,−k,ξσ

]

+
∑

ξσ,n,k

(�c†
n,k,ξσ

c†
n,−k,ξσ

+ H.c.), (A6)

where c†
n,k,ξσ

(cn,k,ξσ ) creates (annihilates) an electron in the

state |ψ (n)
k,ξσ

〉. The number of particles now can be defined

as Nξσ = ∑
nk〈c†

n,k,ξσ
cn,k,ξσ 〉. According to the fluctuation-

dissipation theorem [35], i.e.,

〈c†
n,k,ξσ

cn,k,ξσ 〉 = −
∫

dω

π
f (ω)Im〈〈cn,k,ξσ |c†

n,k,ξσ
〉〉r

ω, (A7)

where 〈〈cn,k,ξσ |c†
n,k,ξσ

〉〉r
ω represents the retarded Green’s

function and f (ω) = 1/(1 + eω/kBT ) is the Fermi–Dirac dis-
tribution function, the number of particles can be expressed as

Nχ = −gNφ

∑
n

∫ ∞

−∞
dω Im

[
Gr

χ,11(ω)/π
]

f (ω), (A8)

where g = 2 is the valley × spin degeneracy and Nφ =
A/(2π l2

B) is degeneracy of the LL originating from the sum-
mation over k, with A = LxLy being the area of the sample.
The retarded Green’s function, with respect to Hχ , is defined

as

Gr
χ (ω) = 1

ω + i0+ − Hχ

= 1

2

∑
η=±

1

ω+ − ηEχ
n

[
τ0 + 1

ηEχ
n

(
εn,χ �

� −εn,χ

)]
,

(A9)

with Eχ
n = (ε2

n,χ + �2)1/2 and εn,χ = �n
χ − μχ , where we

adopted the abbreviation ω+ = ω + i0+. Therefore, we can
obtain for

Nχ = gNφ

2

∑
n

{
1 − εn,χ

Eχ
n

[
f
(− Eχ

n

)− f
(
Eχ

n

)]}

= gNφ

2

∑
n

{
1 − εn,χ tanh

[
Eχ

n /(2kBT )
]

Eχ
n

}
. (A10)

If the deep-energy states n < nF are fully occupied, with
nF labeling the highest occupied LL, we can reduce
Eq. (A10) to Eq. (10) in the main text. In the low-
temperature and weak-interaction limit T,� � h̄ωc, we can
approximate tanh[(ε2

n,χ + �2)1/2/(2kBT )] � 1 for n < nF and
(ε2

nF,χ + �2)1/2 � |εnF,χ |. Therefore, we can further reduce
Eq. (10) to Eq. (11). For kBT � �, tanh[Eχ

nF
/(2kBT )] � 1 and

from Eq. (11), it is easy to solve the chemical potential, as
given by Eq. (12).

The gap equation, similar to Eq. (8), is obtained self-
consistently by the mean-field approximation, i.e.,

�(T, νχ ) = Ug
1

A

∑
nk

〈c†
n,−k,ξσ

c†
n,k,ξσ

〉

= −UgNφ

∑
n

∫
dω

π
f (ω)Im〈〈c†

n,k,ξσ
|c†

n,−k,ξσ
〉〉r

ω

= −UgNφ

∑
n

∫ ∞

−∞

dω

π
Im
[
Gr

χ,12(ω)
]

f (ω),

(A11)

with Nφ = Nφ/A being the number of flux quanta per unit
area. By substituting the retarded Green’s function (A9) into
the above equation, we can derive Eq. (14).
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