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We consider in depth the applicability of the Wiedemann-Franz (WF) law, namely that the electronic thermal
conductivity (κ) is proportional to the product of the absolute temperature (T ) and the electrical conductivity (σ )
in a metal with the constant of proportionality, the so-called Lorenz number L0, being a materials-independent
universal constant in all systems obeying the Fermi liquid (FL) paradigm. It has been often stated that the validity
(invalidity) of the WF law is the hallmark of an FL [non-Fermi liquid (NFL)]. We consider, both in two (2D)
and three (3D) dimensions, a system of conduction electrons at a finite temperature T coupled to a bath of
acoustic phonons and quenched impurities, ignoring effects of electron-electron interactions. We find that the
WF law is violated arbitrarily strongly with the effective Lorenz number vanishing at low temperatures as long
as phonon scattering is stronger than impurity scattering. This happens both in 2D and in 3D for T < TBG, where
TBG is the Bloch-Grüneisen temperature of the system. In the absence of phonon scattering (or equivalently,
when impurity scattering is much stronger than the phonon scattering), however, the WF law is restored at low
temperatures even if the impurity scattering is mostly small angle forward scattering. Thus, strictly at T = 0 the
WF law is always valid in a FL in the presence of infinitesimal impurity scattering. For strong phonon scattering,
the WF law is restored for T > TBG (or the Debye temperature TD , whichever is lower) as in usual metals. At
very high temperatures, thermal smearing of the Fermi surface causes the effective Lorenz number to go below
L0, manifesting a quantitative deviation from the WF law. Our paper establishes definitively that the uncritical
association of an NFL behavior with the failure of the WF law is incorrect.
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I. INTRODUCTION

In 1853, Franz and Wiedemann [1] made the experimental
discovery that the ratio of the thermal (κ) to the electrical
conductivity (σ ) in several metals is approximately the same
at the same temperature. Almost 30 years after this discovery,
Lorenz established [2] that this ratio of κ/σ is in fact propor-
tional to the absolute temperature T , and therefore κ/(σT ) is
a universal constant in all metals:

κ

σT
= L(T ) = L0, (1)

where L0, dependent only on the fundamental constants kB

and electron charge e, is universally called the Lorenz number,
given by

L0 = π2

3

(
kB

e

)2

= 2.45×10−8 W�/K2. (2)

We will call L0 the ideal Lorenz number, and L(T ) the
effective Lorenz number in case this ratio deviates from the
ideal L0 value. The finding that κ/(σT ) = L0 is univer-
sally called the Wiedemann-Franz (WF) law. In usual three-
dimensional (3D) metals, the room temperature value of L0

is remarkably universal (with L ∼ L0 within 5%), making the
WF law one of the most applicable defining characteristics
of metallic [and hence, Fermi liquid (FL)] properties [3].
If L(T ) deviates from L0 in a substantive manner, it is
referred to as the failure of the WF law, which is then often
attributed to the breakdown of the underlying quasiparticle
picture and a failure of the FL description for the relevant
physics. The current paper is on a theoretical study of L(T ) in

two-dimensional (2D) and 3D metals (FLs) where the electron
liquid is coupled to static random impurities (disorder) and
acoustic phonons (phonon bath). We show that L(T ), depend-
ing on the temperature and the details of the parameters de-
scribing the coupled electron-impurity-phonon system, could
manifest arbitrary values of L(T ) with the effective Lorenz
number strongly suppressed from the ideal value L0 entirely
within the FL theory without invoking either a breakdown of
the quasiparticle picture or the FL paradigm. We establish
beyond any doubt that the mere inapplicability of the WF
law to a metal does not necessarily imply an underlying non-
Fermi-liquid (NFL) behavior, and the widespread use of the
validity (invalidity) of the WF law as a smoking gun for an
underlying FL (NFL) behavior is unwarranted.

Drude [4,5] provided a simple classical kinetic theory for
the WF law, leading to the following formula:

L(T ) = 3

2

(
kB

e

)2

= 1.24×10−8 W�/K2. (3)

It is interesting that Drude’s purely classical derivation of
the WF law provides a result which is fortuitously within a
factor of 2 of the ideal Lorenz number later derived by Som-
merfeld [6] using the appropriate quantum theory of solids.
This arises from the fact that both derivations use elastic
impurity scattering (e.g., quenched impurities or defects) as
the driving kinetic mechanism for the electrical (σ ) or thermal
(κ) transport by the same carriers, consequently leading to
the canceling out of the materials parameters (e.g., effective
mass, carrier density) in the ratio κ/σ of the system. This
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has led to the belief that any lack of such a cancellation, with
L(T ) manifesting strong temperature dependence, must auto-
matically imply a hypothetical NFL situation where the “par-
ticles” carrying charge current and the “particles” carrying
heat current are distinct, leading to the failure of the WF law.
While an intrinsic separation of charge and energy transport
occurring through different channels would most likely lead to
a failure of the WF law (since the two transport mechanisms
are then no longer kinetically connected), such a failure does
not have to necessarily imply the breakdown of the FL theory.
By contrast, it has actually been known [7] since the early
days of the theory of metals that the same “particles” (namely,
electrons or FL quasiparticles) could, in fact, carry charge
and heat current through very different kinetic rates if the
operational scattering mechanism is inelastic. Since phonons
provide such an inelastic scattering mechanism, in general,
a coupled electron-phonon system should always violate the
WF law. The fact that ordinary metals obey the WF law at
room temperatures in spite of their transport properties (both
electrical and thermal) being dominated by phonons is simply
a manifestation of the fact that the room temperature is a very
high (very low) characteristic temperature for phonons (elec-
trons) since the typical phonon Debye temperature TD (Fermi
temperature TF ) for metals is TD ∼ 100 (TF ∼ 50 000) K. In
any system with high Debye temperature (much higher than
room temperature), the WF law should be violated even at
room temperatures (since, then, the phonon scattering will be
inelastic even at room temperatures), and in all metals, the WF
law is indeed strongly violated at low temperatures T � TD

unless impurity scattering starts dominating over phonon scat-
tering. In a very clean metal, L(T ) will be vanishingly small
at T � TD as long as impurity scattering is negligible.

Thus, the validity or the failure of the WF law has little
to do with NFL behavior, and is connected with the elas-
tic or inelastic nature of the resistive scattering mechanism
dominating transport in the system in the temperature regime
where L(T ) is being measured. In particular, in a FL coupled
to impurities and phonons, there are two important energy
scales (assuming the Fermi temperature TF to be very high
as it always is in the usual 3D metals): Ti and Tp. For
T < Ti , impurity scattering dominates, and the WF law is
strictly valid by virtue of scattering by quenched impurities
being elastic. For Ti < T < Tp, inelastic phonon scattering
dominates, and the WF law is strongly violated. For T > Tp,
phonon scattering is quasielastic as one enters the so-called
equipartition regime, and the WF law is restored again. Note
that for strongly disordered systems, where Ti > Tp, WF law
is obeyed at all temperatures. These are the main theoretical
results we present for both 2D and 3D metals in our paper.
We note that Tp may or may not be directly connected to the
Debye temperature TD except that Tp < TD . In particular, Tp

may be of the order of the characteristic temperature scale
TBG, where TBG is the so-called Bloch-Gruneisen temperature
of the system associated with the energy of a phonon with
wave vector equal to 2kF , i.e., kBTBG = 2h̄cskF , where cs

is the phonon velocity. In situations where TBG > TD (as in
normal metals), Tp ∼ TD/3. In our paper, we consider the
situation TBG < TD in contrast to regular 3D normal metals
where TD < TBG. The reason for our choice of TBG < TD

is that our interest is in relatively low-density metals (e.g.,

cuprates), where this condition is likely to be met by virtue
of kF being small.

There are a few caveats one must keep in mind in this
context. First, when optical phonons with a fixed energy EO ,
are present in the system (we consider only acoustic phonons
whose energy goes as csq for phonon wave number q) then
the definition of Tp simply becomes Tp ∼ EO . Thus, in the
presence of strong optical phonon scattering, the violation of
the WF law may persist to rather high temperatures since
EO could be large. We do not consider optical phonons
since they are typically absent in metals as a strong scat-
tering mechanism. Second, if the Fermi temperature is low
(e.g., low-density systems) so that T ∼ TF (an impossibility
in usual metals since TF > 10 000 K), then the WF law is
weakly violated even for T > Tp because thermal Fermi
surface smearing makes the system behave classically. Third,
all effects of electron-electron interaction are ignored in this
paper; electron-electron interaction effects on the WF law
(without any phonon effects) have recently been discussed
in Ref. [8]. Thus, our paper includes disorder and phonons
whereas Ref. [8] includes disorder and electron-electron scat-
tering effects. Finally, the physics should be similar if phonons
are replaced by some other bosonic scattering mechanisms
leading to the resistivity, e.g., magnons, paramagnons, or spin
fluctuations. This type of scattering, if present, should also
produce the violation of the WF law at low enough temper-
atures in clean enough systems as long as the temperature
for measuring L(T ) is below the characteristic temperature
scale for inelastic scattering by these bosonic excitations to be
operational.

In this paper we have studied the WF law in the context of
Fermi liquids in presence of impurity and phonon scatterings,
covering both 2D and 3D systems. Although some of the
results we present are qualitatively known, we believe that
it is important to have all these results for the temperature-
dependent WF law in one comprehensive paper since there
seems to be much confusion on this topic. In particular, a large
fraction of the community seems to believe that the failure of
the WF law (i.e., L(T ) < L0) is sufficient to conclude that the
underlying material is a NFL with no well-defined quasiparti-
cles. This is simply untrue. The violation of the WF law may
or may not be a necessary condition for the NFL behavior [9],
but an observation of such a violation most certainly is not
sufficient to conclude that the relevant system is a NFL. We
refrain from reviewing the rather large literature connecting
the violation of the WF law as an automatic signature for
NFL behavior since our focus is entirely on a well-defined FL
theory (with impurities and acoustic phonons) for the validity
or not of the WF law. There are many publications discussing
the violation of the WF law in the context of putative NFL
behavior, and we cite a few here as representative examples
[10–13] simply to emphasize the importance of the subject
matter of our paper where the violation of the WF law is
studied entirely in the context of FL physics.

The rest of this paper is organized as follows: In Sec. II, we
provide the main theory and the associated numerical results
for the calculated effective Lorenz number as a function of
temperature for both 2D and 3D systems; Sec. III provides
extensive discussions and a conclusion putting our results in
the appropriate context of the violation or not of the WF law
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with reference to the applicability or not of the FL paradigm.
Five relevant Appendices A–E provide the details of the
theory complementing the presented results in the main text.
We relegated the theoretical details to a series of appendices
so our main message (Secs. II and III and the figures in the
main text) can be read and understood without referring at all
to the theoretical details.

II. THEORY AND RESULTS

We use the standard Boltzmann kinetic theory with appro-
priate approximations to calculate the temperature-dependent
effective Lorenz number in a FL metal in the presence of
static disorder (arising from random quenched impurities) and
acoustic phonons (treated within the Debye model) in the
continuum long wavelength jellium model. We start with a
brief review of the Boltzmann equation and the mathemati-
cal framework we used to study transport coefficients while
highlighting the approximations which were employed to this
end. We only present the final results in this section and
leave most of the detailed and step-by-step calculations to the
Appendices A–E, which should be consulted for the technical
details.

A. Boltzmann equation

Let f (r, k, t ) denote the distribution function of electron
wave packets at position r with wave vector k at time t .
Evolution of f (r, k, t ) is governed by the Boltzmann equation
[14]:

∂f

∂t
+ ṙ · ∂f

∂ r
+ k̇ · ∂f

∂k
= Ik{f }, (4)

where ṙ and k̇ are given by semiclassical equations of motion
[15]:

ṙ = v = 1

h̄

∂ε(k)

∂k
− k̇ × �(k),

k̇ = − e

h̄
E(r, t ) − e

h̄c
ṙ × B(r, t ), (5)

where ε(k) is the band dispersion, �(k) is the Berry curvature,
and E (B) is the external electric (magnetic) field. For the
parabolic band dispersion which we assume in this paper,
�(k) = 0. We also set B to zero since we are only interested
in the zero-field longitudinal conductivity.

Ik{f } in Eq. (4) is the collision integral given by

Ik{f } = −
∫

d3k′

(2π )3
[S(k, k′)fk(1 − fk′ )

+ S(k′, k)fk′ (1 − fk )], (6)

where S(k, k′) is the differential scattering rate from state k
to state k′ and can be computed using Fermi’s golden rule for
various scattering mechanisms.

We write f as

f (r, k, t ) = f0(r, k, t ) + δf (r, k, t ),

where f0 is the distribution function of fermions in local
equilibrium, given by the Dirac distribution

f0(r, k, t ) =
[

exp

(
ε(k) − μ(r, t )

kBT (r, t )

)
+ 1

]−1

,

and δf is the deviation from that. If we plug in this form into
the Boltzmann equation and only keep terms of first order
in external fields and temperature gradient, we arrive at the
linearized Boltzmann equation

∂δfk

∂t
+ v ·

[
eE + ε(k) − μ

T
∇T

](
−∂f0

∂ε

)
= Ik{f0 + δf },

(7)

where E = E + ∇μ/e is the electrochemical force and δfk =
δf (r, k, t ). We have assumed that temperature and electric
field are both slowly varying in space. Since our interest is in
linear response, we will work with the linearized Boltzmann
equation in the rest of this paper.

We are interested in the steady-state solution and hence the
first term in Eq. (7) can be dropped. In the linear response
regime, considering the symmetries of the problem, the fol-
lowing ansatz can be used to solve the linearized Boltzmann
equation [7]:

δfk = τσ (ε, T ) e v · E
(

∂f0

∂ε

)

+ τκ (ε, T )
ε(k) − μ

T
v · ∇T

(
∂f0

∂ε

)
, (8)

where τσ and τκ are generally unknown functions which are
generically distinct (hence allowing for the generic possibility
of a failure of the WF law). We call τσ and τκ electrical and
thermal relaxation times, respectively. As we will mention
shortly, whenever the scattering mechanism is elastic, these
two relaxation times become equal, leading necessarily to
the WF law. By contrast, for inelastic scattering, thermal
and electrical relaxation times could be completely different,
thus leading to a total failure of the WF law independent
of the validity or not of the FL paradigm. The key for the
validity (or not) of the WF law is the elastic or inelastic nature
of carrier scattering, and not the FL or NFL nature of the
underlying electron system. Whenever transport is dominated
by inelastic scattering (e.g., low temperatures T � TD for
acoustic phonons), the corresponding scattering mechanism
may strongly violate the WF law.

Some formal details of the Boltzmann transport theory are
provided in Appendix A for completeness.

B. Transport coefficients

For a given external electric field and temperature gradient
in the linear response regime, electrical current J e and thermal
current Jq would be(

J e

Jq

)
=

(
LEE LET

LT E LT T

)( E
∇T

)
. (9)

Once the relaxation times appearing in the ansatz Eq. (8)
have been calculated, transport coefficients can be obtained
using the following expressions:

LEE = e2
∫ +∞

−∞
dε

(
−∂f0

∂ε

)
D(ε) v2

x (ε)τσ (ε),

LET = e

T

∫ +∞

−∞
dε

(
−∂f0

∂ε

)
(ε − μ) D(ε) v2

x (ε)τκ (ε),
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FIG. 1. (a) Electrical conductivity versus temperature for free-electron model in presence of random impurity. (b) Thermal conductivity for
the same system. (c) The Lorenz ratio L/L0 for the same system. In all figures, solid lines and dashed lines correspond to 2D and 3D systems,
respectively. Note that electrical and thermal conductance has been plotted relative to their value at T = 0.1 TF to make them dimensionless.

LT E = −e

∫ +∞

−∞
dε

(
−∂f0

∂ε

)
(ε − μ) D(ε) v2

x (ε)τσ (ε),

LT T = −1

T

∫ +∞

−∞
dε

(
−∂f0

∂ε

)
(ε − μ)2 D(ε) v2

x (ε)τκ (ε),

(10)

where D(ε) is the density of states at energy ε.
Electrical conductivity σ is simply the LEE coefficient.

The thermal conductivity κ , is defined such that Jq = −κ∇T

when J e = 0, and with a little bit of algebra turns out to be
κ = −(LT T − LT ELET

LEE
).

In the following sections, we study transport properties of
FL in the presence of two different scattering mechanisms:
electron-impurity scattering and electron-phonon scattering.
First, we consider each scattering mechanism separately and
then we study their combined effect.

C. Impurity scattering

We consider the model of randomly distributed impurities
with short-range potential,

Vimp(r) = u0 δ(r), (11)

where u0 is some constant characterizing the scattering
strength. The impurities are assumed to be fixed and hence
the scattering would be elastic. The differential scattering rate
can be calculated by using Fermi’s golden rule and averaging
over impurity locations:

S(k, k′) = 2π

h̄
nimp u2

0 δ(ε(k) − ε(k′)), (12)

where nimp corresponds to the number density of impurities.
Due to the elasticity of scattering, the ansatz in Eq. (8)
makes it simple to find an exact solution of the linearized
Boltzmann equation for any arbitrary external electric field
and temperature gradient.

By plugging the ansatz in Eq. (8) into Eq. (7), we can find
an explicit closed form for the relaxation times. As is shown
in Appendix B, due to the elasticity of scattering, thermal and
electrical relaxation times are equal and can be determined

from the following integral:

τ (ε)−1 =
∫

ddk′

(2π )d
(1 − cos(θ ))S(k, k′), (13)

where θ is the so-called scattering angle between k and k′.
The integral can be carried out and we get a temperature-
independent relaxation time with different energy dependence
in 2D and 3D (we note that there could be temperature
dependence if somehow the impurity potential u0 itself has
temperature dependence, a possibility we ignore in the current
paper):

τ (ε) ∝
{

ε0 2D

ε−1/2 3D
. (14)

The constant of proportionality depends on the parameters of
the system and can be found in Appendix B. Having computed
the relaxation time, one can obtain the electrical and thermal
conductivities using Eq. (10). The calculated results are shown
using dimensionless units in Figs. 1(a) and 1(b). As is clear
from the plots, the only temperature scale that appears in this
model is the Fermi temperature defining the zero point energy
of the noninteracting electrons. For T � TF , the electrical
conductivity does not have any temperature dependence and
the thermal conductivity is linear in T :

σ (T ) ∝ T 0, κ (T ) ∝ T . (15)

The WF law is obeyed in this regime [see Fig. 1(c)]:

L

L0
= 1 (T � TF ). (16)

On the other hand, for T � TF , we get the following temper-
ature scalings, which differ based on the spatial dimension:

σ (T ) ∝
{
T 0 2D

T −1/2 3D
, κ (T ) ∝

{
T 2D

T 1/2 3D.
(17)

System parameters still cancel out in the κ/σ ratio in this
regime, which is related to the fact that the energy and charge
currents both relax with the same rate. However, smearing of
the Fermi surface at T � TF causes the Lorenz ratio L/L0 to
deviate from 1, approaching 6

π2 < 1 as is shown in Fig. 1(c).
The full expressions for σ (T ) and κ (T ) as well as details of
the calculation can be found in Appendix B.
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Thus, a modified WF law still applies for elastic impurity
scattering at very high temperatures with a suppressed effec-
tive Lorenz number L < L0. This is of possible experimental
relevance in low-density metallic systems where the T > TF

regime may be attainable. Obviously, this high-T result is of
no relevance to normal metals where TF ∼ 50 000 K.

D. Phonon scattering

In this section, we consider the effect of electron-phonon
scattering on transport coefficients. Other than the electron-
phonon interaction, we do not incorporate any other lattice
effect into our model and work in the continuum approxima-
tion. In particular, we assume a parabolic energy dispersion
for the electrons and ignore Umklapp scattering. We also
neglect phonon drag. Finally, since our interest is strictly in
the behavior of the FL itself, we calculate only the electronic
contribution to the thermal conductivity.

The electron-phonon interaction is given by the so-called
deformation potential model:

He-ph = 1√
V

∑
k,k′,q

[√
h̄D2

2ρωq

q

]
(aq + a

†
−q ) ck

†ck′ δk−k′−q,0,

(18)

where a† and c† are phonon and electron creation operators,
respectively. Here D is the deformation potential strength, ρ is
the ion density, and ωq corresponds to the energy of a phonon
with momentum q, which, for acoustic phonons, is given as

ωq = csq, (19)

with cs the speed of sound. The corresponding scattering rate,
obtained from Fermi’s golden rule, is

S(k, k′) = 2π

h̄

(
h̄

2ρωq

D2q2

)
[Nq δ(εk − εk′ + h̄ωq )

+ (Nq + 1) δ(εk − εk′ − h̄ωq )], (20)

where

q = k − k′, (21)

and Nq is the phonon distribution function. Since all calcula-
tions are carried out to the leading order in external fields, Nq

can be replaced by the equilibrium Bose-Einstein distribution
function,

Nq = 1

eβh̄ωq − 1
. (22)

In contrast to the elastic case, the linearized Boltzmann
equation cannot be solved exactly here because inelastic
electron-phonon scattering couples the distribution function
at one energy to the distribution function at another energy.
To arrive at a closed form for the relaxation times, we use
the relaxation time approximation (RTA), discussed in detail
in Appendix C; this uncontrolled approximation assumes that
the relaxation time changes slowly enough as a function
of energy that, within the collision integral, τ (ε) ≈ τ (ε′).
Importantly, we find that the relaxation times for electrical
transport and thermal transport are generally different.

Note that we are not getting into the discussion of whether
a RTA is valid here or not as we are simply and uncritically
assuming it to apply. (See Appendices C and E for more
details.) One can, of course, solve the linearized Boltzmann
integral equation directly, numerically, without assuming the
RTA (which may indeed be necessary if one is interested in a
quantitative comparison with experimental results), but such
a completely numerical calculation would destroy the whole
purpose of our paper since we are then unable to make general
comments about the validity or not of the WF law. Assuming
the existence of a relaxation time (albeit possibly different
ones for charge and heat transport) enables us to make con-
siderable analytical progress without losing generality (but
sacrificing quantitative accuracy).

To get the relaxation time for charge transport, we use the
ansatz in Eq. (8) with ∇T set to zero. Assuming T � TF and
using the RTA, we get

τσ (ε)−1 =
∫

ddk′

(2π )d
1 − f (ε′)
1 − f (ε)

(1 − cos(θ ))S(k, k′). (23)

On the other hand, to obtain the thermal relaxation time
τκ , we set electrochemical force E to zero and solve the
linearized Boltzmann equation in the presence of a nonzero
temperature gradient ∇T . By comparing to a more direct (but
more complicated) calculation, we show in Appendix C that
the universal features of the thermal relaxation time can be
approximately captured by the same expression as in Eq. (23),
but by simply dropping the (1 − cos(θ )) “forward-scattering”
suppression factor in the integral [16]:

τκ (ε)−1 =
∫

ddk′

(2π )d
1 − f (ε′)
1 − f (ε)

S(k, k′). (24)

Intuitively, one can understand this difference between τσ

and τκ by noting that different types of scatterings are re-
sponsible for relaxing charge and heat currents. Note that
forward-scattering events cannot change the charge current
significantly; a fact that explains the (1 − cos(θ )) factor in
Eq. (23). On the other hand, the thermal current which is
caused by the imbalance in the populations of electrons and
holes in the vicinity of the Fermi surface [see Eq. (8)], can
be relaxed effectively by forward scattering, which justifies
the absence of (1 − cos(θ )) in Eq. (24) [16,17]. Thus, in
the presence of inelastic scattering processes, it is sensible
to include (exclude) the forward-scattering suppression factor
for charge (heat) current within the RTA. We remark that when
the scattering is elastic, e.g., the impurity scattering, backscat-
tering is the only relaxation mechanism for the thermal current
(as well as the charge current) and hence the (1 − cos(θ ))
factor cannot be dropped in that case. Detailed calculation of
relaxation times is left to Appendix C, whereas in Appendix E
we provide a detailed discussion of the RTA in this context.
In particular, we discuss how using different relaxation times
could result in violations of the Onsager relations.

With electron-phonon scattering present, both thermal and
electrical relaxation times become functions of temperature.
Figure 2(a) shows their temperature dependence over a range
of temperatures which covers multiple orders of magnitude.
There are two different regimes, with the crossover occurring
roughly at kBTBG = 2h̄cskF . Note that because T is much less
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FIG. 2. (a) Scattering rate τ−1 versus temperature for thermal and electrical transport. (b) Electrical conductivity σ versus temperature.
(c) Thermal conductivity κ versus temperature. (d) Lorenz ratio L/L0 versus temperature. In all graphs, solid and dashed lines correspond
to 2D and 3D systems, respectively. Relaxation rates and transport coefficients are plotted relative to their values at T = TBG to make them
dimensionless. The Fermi energy is chosen such that TF = 103TBG.

than TF , only electrons in the vicinity of the Fermi surface
participate in charge and energy transport. This in turn means
that momentum transfer in a scattering event is bounded by
∼2kF . Therefore, kBTBG represents an upper bound on the
energy of phonons contributing to the current relaxation. We
assume that TBG < TD , where TD is the Debye temperature;
since TD only enters the problem as another upper bound on
phonon energy, TD is not an important scale in the problem.
We note that textbooks usually do not emphasize the impor-
tance of TBG in the context of metallic transport limited by
phonon scattering [14] since for normal metals, kF is typically
very large (since normal metals have very high carrier density)
leading to TBG > TD , and hence the phonon energy cutoff for
normal metals is invariably TD and not TBG. Since the results
for TD being the cutoff are already available in the litera-
ture, we focus on the relatively low-density situation where
TBG < TD , leading to TBG being the appropriate phonon cut-
off. For high-density regular metals, TBG in our results should
simply be replaced by TD; basically, the phonon cutoff is
either TBG or TD depending on whichever is smaller for the
particular material.

For T � TBG, thermal and electrical relaxation rates be-
come equal and scale linearly with temperature, indepen-
dent of the spacial dimension (this is the so-called phonon
equipartition regime where the acoustic phonon scattering is
essentially quasielastic in metals):

τσ (T )−1 = τ−1
κ (T ) ∝ T . (25)

But for T � TBG, charge current relaxes at a smaller rate than
the thermal current [see Fig. 2(a)]:

τ−1
σ (T ) ∝

{
T 4 2D

T 5 3D,
τ−1
κ (T ) ∝

{
T 2 2D

T 3 3D.
(26)

This can be understood intuitively as follows. Note that charge
and thermal current carried by an electron can be roughly writ-
ten as its charge and energy, respectively, times its velocity:

j e ∼ e v, jq ∼ ε v, (27)

where ε denotes the energy relative to the chemical potential.
Now, the only way a scattering event can relax the charge
current is by changing the electron’s velocity vector since its
charge is strictly conserved. This is the reason that backscat-
tering is the most effective way to relax the charge current. On
the other hand, the thermal current can be relaxed by either
changing the electron’s velocity or just changing its energy
when inelastic scattering processes are operational. When
TBG � T , the scattering becomes quasielastic since phonon’s
energy is bounded by TBG so a single scattering event can
only change an electron’s energy by a small fraction of its
average value ε ∼ T . As a result, both thermal and charge
current relaxations are dominated by backscattering events
for T � TBG and hence the two relaxation times become
equal. On the other hand, for T � TBG, backscattering is
exponentially suppressed due to the Bose distribution function
whereas thermal current can now be relaxed effectively by
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changing the electrons’ energy. As a result, charge current
relaxes much more slowly than the thermal current. As can
be seen from Eqs. (26), for both 2D and 3D we have

τ−1
σ

τ−1
κ

∝ T 2, (28)

and this ratio goes to zero as as T goes to 0. As one would
expect, due to different relaxation times, the WF law will no
longer be obeyed in this regime. In fact, if the electron-phonon
scattering is the only resistive mechanism (i.e., very clean
metals with no impurities), then this WF law violation is
arbitrarily strong since L(T ) vanishes as T approaches zero,
making L(T ) � L0 even for a simple FL! Thus, all one needs
is a very clean FL to see an arbitrarily strong violation of the
WF law at low temperatures.

Note that to violate the WF law, suppressing backward
scattering just by itself is insufficient; it is crucial to allow for
inelasticity. To see this clearly, one may consider the simple
case of random impurities, but with a scattering potential
which suppresses scattering events with momentum transfers
larger than some constant value q0. This situation actually
arises in, for example, delta-doped 2D electron gases where
the mobile carriers and impurities live in different layers; q0

is then given by 2πh̄/z0, where z0 is the layer separation [18].
Although backscattering is suppressed in these systems for
q0 < kF , WF law is still obeyed due to the elastic nature of the
scatterings. This problem is studied in detail in Appendix B 2,
clearly establishing that the absence of backscattering by
itself, without any inelasticity, does not lead to any violation
of the WF law.

By plugging in the thermal and charge relaxation times into
Eq. (10), electrical and thermal conductivity, σ (T ) and κ (T )
can be obtained (see Appendix C). The result is plotted in
Figs. 2(b) and 2(c). Although we expect the RTA to become
less valid as one approaches T ∼ TF , we have used the same
expression for the relaxation time throughout all temperature
scales, even for T � TF . Hence, our results at T � TF should
not be interpreted quantitatively but are rather only intended
to demonstrate qualitatively that at high temperatures, the
Lorenz number would deviate from unity due to the smearing
of the Fermi surface.

In the equipartition regime where TBG � T � TF , thermal
conductivity is independent of temperature whereas electrical
conductivity decreases as 1/T (the well-known linear growth
of resistivity in metals due to phonons [19]), both independent
of dimension:

σ (T ) ∝ T −1, κ (T ) ∝ T 0. (29)

The WF law is obeyed in this regime due to the quasielastic
nature of scatterings,

L

L0
= 1 (TBG � T � TF ). (30)

On the other hand, for T � TBG, temperature scalings of σ

and κ become dimension dependent:

σ (T ) ∝
{

T −4 2D

T −5 3D,
κ (T ) ∝

{
T −1 2D

T −2 3D,
(31)

recovering the well-known T 5 scaling for electrical resistivity
(known as the Bloch-Grüneisen formula [20,21]) and T 2

scaling for thermal resistivity (1/κ) in 3D metals [22]. As one
also expects from Eq. (28), WF law is parametrically violated
in this regime with the Lorenz ratio vanishing as

L

L0
∝ T 2 (T � TBG), (32)

for small temperatures. The calculated Lorenz ratio through-
out all three temperature regimes is plotted in Fig. 2(d) for
both 2D and 3D systems.

We remark that even though the violation of the WF law
in this system can be traced back to different relaxation times
[see Eq. (28)], the WF law in FL could still be violated at
low temperatures when both energy and charge transport are
characterized by a single relaxation time. In Appendix D, we
provide results under the assumption of a single relaxation
time controlling both charge and heat currents (which is not
valid generally for phonon scattering). This violation is, how-
ever, not arbitrarily strong as L(T )/L0 eventually becomes a
constant (<1) for T � TBG.

E. Impurity and phonon scattering

Finally, we consider the case where both scattering mecha-
nisms (impurity scattering and electron phonon scattering) are
present. With our current approximations, the scattering rates
add, which leads to

1

τtotal(ε)
= 1

τimp(ε)
+ 1

τel-ph(ε)
, (33)

where τ−1
imp and τ−1

el-ph correspond to the scattering rate from
impurities and phonons, respectively. Using Eq. (10), it is
straightforward to compute transport coefficients and hence
the Lorenz ratio.

The Lorenz ratio for 2D and 3D systems for three different
impurity coupling strengths is plotted in Fig. 3. As can be
seen in the figure, at low enough temperatures, the WF law
is always obeyed due to the fact that, eventually, impurity
scattering dominates transport because phonons will no longer
be thermally excited at sufficiently low temperatures (but
the impurity scattering is present even at T = 0). However,
as one increases the temperature, phonon scattering become
stronger and, at some intermediate temperature scale Ti ,
eventually overcomes impurity scattering as the dominant
scattering mechanism. At Ti , the Lorenz ratio starts to deviate
from unity. Clearly, Ti is not universal and depends on the
specific parameters of the sample. WF law is violated for
Ti � T � TBG, but is recovered again for TBG � T � TF

where the system is in the equipartition regime. Thus, the
violation or not of the WF law in a pure FL depends entirely
on the details of the electron-phonon and electron-impurity
scattering. As long as the impurity scattering is weak (i.e., in
a relatively clean metal), the WF law will be violated strongly
for Ti � T � TBG, where Ti is determined by the strength of
the impurity scattering in the system. For a hypothetical abso-
lutely clean FL, Ti = 0 and the WF law is violated infinitely
strongly at low temperatures (T � TBG) as L(T ) vanishes.
At “high” temperatures (T � TBG), however, the WF law is
strictly obeyed since phonon scattering becomes quasielastic
in this equipartition regime (where the electrical resistivity of
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FIG. 3. (a) Lorenz ratio versus temperature for 2D electron gas
in presence of impurity and phonons for three different impurity
densities. (b) The same results for 3D system. For both systems,
TF = 103 TBG.

the metal should manifest the well-known linear-in-T metallic
behavior due to electron-phonon scattering) even if impurity
scattering is weak (i.e., even for a very clean metal). Thus,
NFL is by no means necessary for violating the WF law; the
violation is automatic in a standard FL at low temperatures
provided the system is clean. Note that in relatively dirty
impure metals, we may have Ti > TBG, leading to the WF law
being obeyed at all temperatures.

III. DISCUSSION AND CONCLUSION

We have revisited the old topic of the WF law in 2D
and 3D electron liquids interacting with quenched impuri-
ties and acoustic phonons, providing detailed results for the
temperature-dependent effective Lorenz number (defined as
the ratio of κ/σ T ) from T = 0 to T = TF . We neglect
effects of electron-electron interaction, and use the Boltzmann
transport theory for obtaining the results. Our main qualitative
finding is that the WF law is strongly violated at “low”
temperatures (T < TBG) in clean FLs coupled to phonons.

While most of our presented theoretical results are new, the
main conclusion is neither surprising nor unknown, but seems
to have been forgotten or overlooked in the currently active re-
search on NFL physics where one often associates the failure
of the WF law as synonymous with the breakdown of the FL
paradigm. Of course, in a narrow technical sense, a coupled
electron-phonon system is not a precise FL [23,24] because
the interacting system has additional structures associated
with phonon coupling with no analogs in the corresponding
noninteracting Fermi gas, so perhaps the statement that the
failure of the WF law may imply an NFL behavior is, strictly
speaking, applicable to our system. But the WF law is in fact
restored in the coupled electron-phonon system, as our results
clearly show (and as is well-known), at higher temperatures
(T > TBG), and indeed normal metals all obey the WF law
rather accurately at room temperatures in spite of being a cou-
pled electron-phonon system. In any case, electron-phonon
coupling is generic in all electronic materials, and branding
such a common system to be an NFL simply because it
strongly violates the WF law at low temperatures is not a
meaningful advance.

We show that in the presence of both impurity and phonon
scattering, both 2D and 3D metals have four distinct tem-
perature regimes, in principle, with respect to the WF law
behavior: At very low temperatures, where impurity scat-
tering dominates over phonon scattering (with the electrical
resistivity not manifesting any temperature dependence), the
WF law is obeyed; at low to intermediate temperatures (but
T < TBG), where phonon scattering is stronger than impurity
scattering (e.g., in clean systems) and the phonon-induced
electrical resistivity shows the strong Bloch-Grüneisen tem-
perature dependence, the WF law is strongly violated due
to the inelastic nature of phonon scattering; at intermediate
to high temperatures, where phonons are in the equipartition
regime with phonon scattering being quasielastic in nature
with the electrical resistivity reflecting a linear-in-T resistivity
(as normal metals always do at room temperatures), the WF
law is obeyed; and, finally, at very high temperatures, where
T approaches TF , the system becomes nondegenerate and the
WF law is violated weakly with the effective Lorenz number
being somewhat smaller than the ideal Lorenz number. The
existence of these four distinct regimes is generic both in
2D and 3D, but it is quite possible that a real material may
not manifest all of these distinct regimes, depending on the
parameter values controlling the various scattering strengths.
For example, a normal 3D metal with TF ∼ 50 000 K obvi-
ously never manifests the nondegeneracy effect of L(T ) < L0

at high temperatures, but 2D and 3D doped semiconductors,
with TF ∼ 100 K or less, should have a room temperature
Lorenz number typically smaller than the ideal Lorenz num-
ber by virtue of the Fermi surface nondegeneracy effect. If
the impurity scattering is strong (i.e., relatively dirty sys-
tems), then it is possible that the WF law is obeyed at all
temperatures with the impurity scattering dominating at low
to intermediate temperatures (up to TBG or above) and then
quasielastic phonon scattering taking over at intermediate to
high temperatures (T > TBG). This appears to be the situation
in most normal metals where any violation of the WF law
is uncommon at any temperature and requires very clean
samples. In fact, this accidental universal applicability of the
WF law in normal 3D metals, by virtue of the overlapping
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elastic phonon and impurity scattering at intermediate temper-
atures, is what may have led to the misleading characterization
of the validity or not of the WF law as implying the validity
or not of the FL theory. In fact, an arbitrarily clean FL metal
would violate the WF law at arbitrarily low temperature with
L(T )/L0 ∼ T 2 for T � TBG, directly reflecting the inelastic
nature of low-temperature phonon scattering (and the absence
of elastic impurity scattering by virtue of purity). Our results
clearly bring this physics out both for 2D and 3D metals.

Our paper shows that it is, in principle, possible to use the
validity or not of the WF law to check the applicability of
the FL paradigm through careful measurements with some
caveats (and some assumptions about the applicable mate-
rials parameter values for the system under consideration).
For example, the quasielastic acoustic phonon scattering for
T > TBG invariably produces a temperature-dependent elec-
trical resistivity going as linear in T . In a FL, however, this
linear-in-T resistivity regime should manifestly obey the WF
law as our paper shows, provided that T � TF constraint is
also satisfied. So, if a metallic system clearly manifesting
a linear-in-T electrical resistivity over a temperature regime
also violates the WF law at the same time, this would be a
strong indicator of a possible NFL behavior. Similarly, impu-
rity scattering typically leads to T -independent electrical re-
sistivity (again assuming TF � T ), and therefore, an observed
violation of the WF law concomitant with a T -independent
resistivity (or a linear-in-T resistivity) would be an indicator
of a possible NFL behavior. It may be worthwhile to mention
in this context that the cuprate high-Tc superconductors often
exhibit a linear-in-T resistivity in the normal phase (although
the origin of this linear-in-T resistivity is not agreed upon and
is considered by most to be caused by a nonphononic mech-
anism in contrast to a similar linear-in-T resistivity in normal
metals at room temperatures). The WF law seems to be well-
obeyed experimentally by the cuprate systems in the normal
phase, indicating that a dominant part of its normal state trans-
port is likely to be of a FL nature, but our lack of understand-
ing of the underlying transport mechanism makes a definitive
conclusion difficult. It is, however, interesting to note that the
cuprates are often referred to as “strange” or “bad” metals, but
the fact that such strange metals seem to obey the WF law is
itself rather strange. One possibility is that the main transport
scattering mechanism in the cuprate normal phase arises from
spin fluctuations associated with the nearby antiferromagnetic
Mott phase, which could provide a simple explanation for
the validity of the WF law (as well as the linear-in-T re-
sistivity), assuming that the corresponding Bloch-Grüneisen
temperature for the bosonic spin fluctuations is low so that
the scattering is primarily quasielastic in nature. Of course,
it is also possible that the linear-in-T resistivity does indeed
arise from phonon scattering with a low TBG, in which case
the WF law emerges naturally. Obviously, much more work is
necessary before a definitive conclusion is possible, and our
comments here should be construed only as speculative ideas.

There have been experimental studies of the violation
of the WF law in the context of the breakdown of the
quasiparticle picture and the FL description. In most of these
studies, the WF failure seems to occur near a quantum critical
point (e.g., magnetic criticality [10], metal-insulator transition
[11], Dirac poin [25]) where the quasiparticle picture may
indeed be questionable, but it is also possible that this failure is

an inherent effect of electron-electron interactions (neglected
in our paper) within the FL description. A complete theory of
the WF behavior leading to a quantitative calculation of L(T )
including electron-impurity, electron-phonon, and electron-
electron interactions for arbitrary system parameters is a
challenging task which has not been undertaken yet even for
a model FL, let alone for systems with complicated quantum
phase transitions. Recent work has considered the status of
the WF law in the presence of electron-electron and electron-
impurity interactions (but without any phonons) in continuum
FLs using the hydrodynamic approximation within the
Boltzmann theory [26]. The key finding is that the ideal WF
law is indeed violated at some intermediate temperature range,
but the WF law is recovered at low enough temperatures with
L(T ) going as L/L0 = �

γ+�
, where � (γ ) is, respectively,

the electron-impurity (electron-electron) interaction strength.
Thus, the electron-electron interaction effects vanish in the
clean limit (� = 0) as it must in the absence of Umklapp
and Baber scattering since the electron-electron interaction is
manifestly momentum conserving by itself. This is, of course,
very different from the effect of electron-phonon scattering,
where the Lorenz number vanishes at low temperatures in the
absence of electron-impurity scattering with L/L0 ∼ T 2 for
T � TBG in a perfectly clean metal. Using the fact that in
a FL, γ ∼ (T/TF )2 for T � TF , we conclude, the violation
of the WF law due to the electron-electron interaction is
a higher-order effect, going as L/L0 ∼ (1 − O(T 2)) in
a dirty system for T � TF , whereas the corresponding
electron-phonon interaction induced violation of the WF
law is a leading-order effect in a clean system, going as
L/L0 ∼ T 2 for T � TBG. This difference arises because the
electron-phonon interaction breaks momentum conservation
and leads to resistive scattering even without any disorder
whereas electron-electron interaction necessitates the
presence of disorder (within the hydrodynamic theory)
for breaking the momentum conservation. (Inclusion of
Umklapp scattering in a lattice changes the picture somewhat,
but not qualitatively, and is not considered here.) Thus, in
principle it should be possible using detailed low-temperature
(T � TBG) measurements of L(T ) in samples with controlled
disorder to distinguish between effects of electron-phonon
and electron-electron interactions, but it is likely to be an
extremely challenging task.

Before concluding, we note that inelastic scattering pro-
cesses considered in the current paper always suppress the
effective Lorenz number L(T ) below the ideal Lorenz number
L0, i.e., L(T ) < L0 in all our results, a point also emphasized
in Ref. [9]. This implies that inelastic scattering generically
enhances the thermal resistivity compared with the electri-
cal resistivity, arising simply from the fact that the elec-
trical resistivity is dominated by large-angle backscattering
(2kF -scattering) across the Fermi surface relaxing the max-
imum possible momentum whereas the thermal resistivity
is affected equally by large-angle and small-angle inelas-
tic scattering processes. At low temperatures, when kBT is
much smaller than the typical phonon energy, large-angle
scattering is strongly suppressed compared with the small-
angle scattering, thus enhancing thermal resistivity relative to
the electrical resistivity, thus suppressing L(T ) well below L0.
This suppression of L(T ) well below L0 thus is generic in
the presence of strong inelastic scattering independent of the
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FL or NFL nature of the underlying system. It is, however,
possible for L(T ) to exceed L0 in special situations. Experi-
mentally, this can happen (and often does) when lattice ther-
mal conductivity cannot be separated out from the electronic
contribution. Since the lattice (i.e., phonons themselves) can
carry heat rather efficiently, but does not carry any charge,
any lattice contribution would enhance the thermal conduc-
tivity, making the apparent L(T ) exceed L0. Ensuring that
the measured thermal conductivity is all electronic without
any lattice contribution whatsoever is a difficult experimental
challenge. Thus, if phonons themselves are conducting heat,
the WF law can be violated with the apparent L(T ) > L0.
In a similar vein, it is possible for the electrons to lose
energy directly to the lattice via electron-phonon interaction
through the hot-electron energy-relaxation process. Such a
direct energy loss from the electrons to the phonons is not
a transport or conduction phenomenon, but experimentally
this may appear as an enhanced thermal conductivity with
L(T ) > L0 and an apparent violation of the WF law. This
process could in fact enhance L(T ) arbitrarily above L0 unless
one is careful. In the presence of bipolar diffusion (i.e., when
both electrons and holes are present in the system in equal
numbers), again the thermal conductivity would surpass the
WF constraint making L(T ) > L0. In fact, if the electrons
and holes are strongly interacting, the L/L0 ratio could be
very large as found recently in graphene [25]. There could
be other processes, not considered by us, which could also
enhance L/L0 above unity in violation of the WF law. Our
paper has focused entirely on the issue of electron-phonon
scattering leading to a parametric violation of the WF law at
low temperatures in clean systems, where the inelasticity of
the scattering process suppresses electrical conductivity much
more strongly than the thermal conductivity making L/L0 ∼
T 2 at low temperatures in the absence of impurity scattering.

Finally, we mention several other complications which are
likely to cause problems in the study of the WF law in real ma-
terials. In particular, as mentioned above, phonons themselves
carry heat (but not electricity) and hence all measurement of
L(T ) must necessarily ensure that any lattice thermal conduc-
tivity contributions are either absent or carefully subtracted

out. This is not an easy task in general. Second, phonon drag,
whence the carriers carry the lattice phonons with them, could
be important complicating the extraction of an electronic ther-
mal conductivity. Similarly, the electrons may not be in equi-
librium with the lattice (the so-called hot electron effect men-
tioned above where the electrons and the phonons are at dif-
ferent temperatures), and in such a situation, the direct energy
loss of the electrons to the lattice (through phonon emission
for example) may manifest itself as a heat loss from the elec-
trons, but this energy loss (the so-called hot electron energy re-
laxation) is completely distinct from the heat diffusion process
associated with the electronic thermal conductivity. It is not al-
ways easy to separate hot-electron energy loss from electronic
thermal conduction, which may again produce erroneous ex-
perimental values of L(T ). Thus, there could be many rea-
sons, some fundamental (e.g., inelastic scattering, nondegen-
eracy) and some practical (e.g., hot electron energy loss, lat-
tice thermal conductivity), contributing to a breakdown of the
WF law, and therefore, it is unwise to automatically accept a
breakdown of the WF law (i.e., finding that L(T ) differs from
L0) as an indicator of an underlying NFL description. One
must carefully consider all the carrier-scattering processes
contributing to κ and σ in quantitative depth to see if a FL de-
scription with quantitative corrections arising from the details
of the scattering processes themselves are leading to the devi-
ation of L(T ) from L0. This is the key message of our paper.

Note added in proof. A recent work by Hwang and Das
Sarma [27], shows that the linear-in-T resistivity, often as-
sociated with the failure of Fermi liquid paradigm, is also
consistent with electron-phonon interactions just as we find
that the breakdown of the WF law may arise from electron-
phonon interactions.

ACKNOWLEDGMENTS

This paper is supported by Laboratory for Physical Sci-
ences. A.L. was supported by JQI-PFC-UMD. The authors
thank Maissam Barkeshli for several discussions before and
during the course of this paper.

APPENDIX A: BOLTZMANN EQUATION FORMALISM

In this Appendix, we show the explicit form of the linearized Boltzmann equation, including the collision integral. In all
appendices, we have set h̄ = kB = 1.

To use the linearized Boltzmann equation Eq. (7), the collision integral Eq. (6) must also be linearized. Using the detailed
balance relation,

S(k, k′)f0(k)(1 − f0(k′)) = S(k′, k)(1 − f0(k))f0(k′), (A1)

the linearized collision integral is

Ik = −
∫

ddk′

(2π )d
S(k, k′)

[
δf (k)

1 − f0(k′)
1 − f0(k)

− δf (k′)
f0(k)

f0(k′)

]
. (A2)

For simplicity, we assume throughout this paper an isotropic quadratic band of effective mass m. Substituting in the ansatz
Eq. (8), the linearization allows the integral equation to be broken into separate equations for the thermal and electrical lifetimes:

1 =
∫

ddk′

(2π )d
S(k, k′)

1 − f0(ε′)
1 − f0(ε)

[
τσ (ε) − k′ cos α′

k cos α
τσ (ε′)

]
, (A3)

1 =
∫

ddk′

(2π )d
S(k, k′)

1 − f0(ε′)
1 − f0(ε)

[
τκ (ε) − ε′ − μ

ε − μ

k′ cos α′

k cos α
τκ (ε′)

]
, (A4)

where α (α′) is the angle between k (k′) and the applied field.
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With a bit of algebra, it is straightforward to show that

cos α′

cos α
=

{
cos θ + tan α sin θ cos φ d = 3

cos θ − tan α sin θ d = 2,
(A5)

where θ is the angle between k and k′ and φ is the polar angle for k′ about k. In all cases we consider in this paper, S depends
only on k, k′, and cos θ , where θ is the angle between k and k′. Therefore, in d = 3, the integral over φ of the cos φ term will be
zero. In d = 2, since S depends on θ only as cos θ , by orthogonality the sin θ term will integrate to zero. The upshot is that we
may replace cos α′/ cos α with cos θ in both d = 2 and d = 3.

Once these equations have been solved for τ , the transport coefficients may be obtained using Eq. (10).

APPENDIX B: IMPURITY SCATTERING

In this Appendix, we calculate the electrical and thermal conductivities in Boltzmann theory for impurity scattering, including
a model where the impurity scattering is purely elastic but also primarily forward. We show that the WF law still holds when
T � TF .

Impurity scattering is elastic, so S(k, k′) ∝ δ(ε − ε′). The lifetime Eqs. (A3) and (A4) simplify dramatically and actually
become the same equation, which is easy to solve:

1

τσ (ε)
= 1

τκ (ε)
= −

∫
ddk′

(2π )d
S(k, k′)(1 − cos θ ). (B1)

We now consider specific impurity scattering models.

1. Conventional impurity scattering

The textbook impurity model is isotropic and short-range with the scattering rate Eq. (12). The Boltzmann equation Eq. (B1)
amounts to a simple integral in this case and we find

1

τ (ε)
=

{
nimpmu2

0 d = 2

nimpu
2
0

√
2m3ε

π
d = 3.

(B2)

Substitution into Eq. (10) leads to the conductivities (per spin)

σ = e2AT log(1 + eμ/T ),

S = μ

T
+ π2

3 log(1 + eμ/T )
− log(1 + eμ/T ) − 2Li2((1 + eμ/T )−1)

log(1 + eμ/T )
, (B3)

LT T = A

[
μ2(log(1 + eμ/T ) − 4) + 2T μ

(
log2(1 + eμ/T ) + Li2((1 + eμ/T )−1) − 2π2

3

)
− 6T 2Li3(−eμ/T )

]
,

with the thermopower S = LET /σ = −LT E/(T σ ). One must remember that the chemical potential μ is a function of T and

A−1 =
{

2πnimpmu2
0 d = 2

3πnimpmu2
0 d = 3.

(B4)

Note that nimp and u0 have different units in d = 2 and d = 3, and that the functional dependence μ(T ) is different in d = 2 and
d = 3.

In the regime T � TF , μ ≈ TF and we expand the polylogarithm Lis (−ex ) at large values of x using the series representation,

Lis (−ex ) =
∞∑

k=0

(−1)k (1 − 21−2k )(2π )2k B2k

(2k)!

xs−2k

�(s + 1 − 2k)
, (B5)

where the B2k are the Bernoulli numbers. This series is essentially the Sommerfeld expansion. The resulting conductivities are

σ (T � TF ) =
⎧⎨
⎩

e2

4πnimpu
2
0m

2 d = 2

e2TF

3πmnimpu
2
0

d = 3,
(B6)

κ (T � TF ) =
⎧⎨
⎩

πT

12nimpu
2
0m

2 d = 2

πTF

9mnimpu
2
0

d = 3,
(B7)

and the WF law is obeyed (S is of order T/TF and can be neglected).
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At T � TF , the temperature dependence of the equilibrium chemical potential μ must be accounted for. A textbook
calculation yields ⎧⎨

⎩
μ = T log(eEF /T − 1) ≈ T log

(
EF

T

)
d = 2

μ ≈ T log
(

4
3
√

π

(
EF

T

)3/2)
d = 3.

(B8)

Plugging this in and expanding Eq. (B3) leads to

σ ≈ e2A

⎧⎨
⎩

EF d = 2

4E
3/2
F

3
√

π
T −1/2 d = 3,

(B9)

S ≈
⎧⎨
⎩

2 − log
(

EF

T

)
d = 2

2 − log
(

4
3
√

π

(
EF

T

)3/2)
d = 3,

(B10)

LT T ≈ A

⎧⎨
⎩

T EF

(
6 − 4 log

(
EF

T

) + log2
(

EF

T

))
d = 2

4
3
√

π
E

3/2
F

√
T

(
6 − 4 log

(
4

3
√

π

(
EF

T

)3/2) + log2
(

4
3
√

π

(
EF

T

)3/2))
d = 3.

(B11)

The Lorenz number can then be computed straightforwardly for T � TF ; in both d = 2 and d = 3,

L = 2 = 6

π2
L0. (B12)

2. Forward scattering

We now demonstrate that even when the dominant scattering mechanism is elastic forward scattering (i.e., not isotropic as in
Appendix B as above), the WF law is still obeyed at low temperature. Thus, pure elastic scattering always leads to the WF law
independent of the isotropic or strongly anisotropic nature of the scattering. This result is a special case of what is known on very
general grounds from the Sommerfeld expansion [28], but we still find these calculations enlightening; we can show explicitly
that even when there is a parameter which we can tune to be in the forward-scattering limit, WF is unaffected.

We will use the scattering rate (per unit of momentum space),

S(k, k′) = U 2
0 nimp

e−2qz0

(q + qs )2
δ(ε(k) − ε(k′)), (B13)

where q = k − k′. Physically, this is the scattering rate obtained from Fermi’s golden rule for charged impurities placed a
distance z0 from a 2D electron gas [29], with nimp the impurity concentration, qs a screening wave vector, and U0 a prefactor
characterizing the strength of scattering with dimensions of energy times length. The precise form is unimportant—what matters
is that the scattering is elastic and that scattering wave vectors larger than 1/z0 are exponentially suppressed. Taking kF z0 � 1
corresponds to the extreme forward-scattering limit [18].

Substitution into Eq. (B1) yields

1

τ (ε)
= U 2

0 nimp

(2π )d

∫
ddq

e−2qz0

(q + qs )2
δ(ε(k) − ε(k + q))(1 − cos θ ), (B14)

where θ is the angle between k and k′. We have used k = k′ for elastic collisions on a circular Fermi surface to rewrite things in
terms of θ .

It is most convenient to use some geometry to find that 1 − cos θ = −(q/k) cos β where β is the angle between k and q.
Likewise,

ε(k) − ε(k + q) = −2kq cos β + q2

2m
. (B15)

In 2D, substituting and changing variables to u = cos β we obtain

1

τ (ε)
= −U 2

0 nimp

2π2

∫ ∞

0
dq

∫ 1

−1
du

u√
1 − u2

mq

k2

e−2qz0

(q + qs )2
δ

(
u + q

2k

)
(B16)

= −U 2
0 mnimp

4π2z0k3

∫ 2kz0

0
dx

x2√
1 − (x/2kz0)2

e−2x

(x + qsz0)2
, (B17)

where we have made the change of variables x = z0q.
Since we are interested in computing the conductivities at T � TF , we may take k ∼ kF .
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In the forward-scattering limit kF z0 � 1, a straightforward series expansion about x = 2kz0 shows that the contribution to
the integral of the region with x ∼ 2kz0 � 1 is exponentially suppressed in kF z0. Therefore, the integral is dominated by the
regime x � 2kz0. In said regime, the square root factor is, to leading order, 1, so, it is safe to neglect the square root and to
extend the upper limit of integration to +∞:

1

τ (ε)
≈ U 2

0 mnimp

4π2z0k3

∫ ∞

0
dxx2 e−2x

(x + qsz0)2
≡ 1

A(qsz0)ε3/2
. (B18)

The precise form of A is unimportant for the WF law since it is independent of ε and T .
Using Eq. (10), the transport coefficients can be computed explicitly in terms of polylogarithms:

σ = −15Ae2

16
√

π
T 5/2Li5/2(−eTF /T ), (B19)

κ = − 15A

64
√

πT
T 5/2

(
4T 2

F Li5/2(−eTF /T ) − 28TF T Li7/2(−eTF /T ) + 63T 2Li9/2(−eTF /T )
)
. (B20)

As we will show in the next subsection, T σS2 ∼ (T/TF )2LT T , so we have taken κ ≈ LT T .
Using the expansion Eq. (B5),

σ = Ae2

2π
T

5/2
F , (B21)

κ = π2

3

A

2π
T

5/2
F T , (B22)

where we used the k = 0 term for σ and the k = 1 term for κ (the k = 0 term for κ is zero, as expected). The WF law is obeyed.

3. Forward scattering: Corrections to WF

We now want to estimate the leading corrections to the WF law at T � TF in the elastic forward-scattering model used in
Appendix B 2. These will be of order (T/TF )2, arising from doing the next order of the Sommerfeld expansion. Said (T/TF )2

term will have an order-1 coefficient, but we would also like to obtain the corrections to that coefficient to leading order in
1/kF z0.

To do so, we need to start by calculating the leading-order corrections to τ as a function of 1/kF z0. As discussed previously,
power-law corrections appear only at small x/2kz0 and arise from the lowest-order correction when the square root is expanded.
The error is approximately

δ

(
1

τ

)
≈ −U 2

0 mnimp

4π2z0k3

∫ ε

0
dxx2 1

2

(
x

2kz0

)2
e−2x

(x + qsz0)2
, (B23)

where 1 � ε � 2kz0 is some cutoff where the expansion of the square root is valid. For the same reasons as before, we may
take the upper limit to infinity and we obtain

δ

(
1

τ

)
≈ −U 2

0 mnimp

8π2z0k3

1

(2kz0)2

∫ ∞

0
dxx4 e−2x

(x + qsz0)2
≡ 1

Bε5/2z2
0

, (B24)

where we have left implicit the fact that B is a complicated function of qsz0.
We can now expand

τ = 1

1/Aε3/2 + 1/Bε5/2z2
0

≈ Aε3/2 − A2ε1/2

Bz2
0

, (B25)

where the expansion is controlled by 1/εz2
0 ∼ 1/k2

F z2
0.

This expression can be plugged straightforwardly into Eqs. (10), and we wish to take the next highest order in the Sommerfeld
expansion Eq. (B5).

We define α3/2 = A and α1/2 = A2/Bz2
0. After expanding the polylogarithms to the appropriate order, we find

σ ≈ e2

2π

∑
n=1/2,3/2

αnT
n+1
F

(
1 + π2

6

(
T

TF

)2

n(n + 1)

)
, (B26)

LET ≈ e

2π

π2

3

(
T

TF

) ∑
n=1/2,3/2

αnT
n+1
F , (B27)

LT T ≈ T
1

2π

π2

3

∑
n=1/2,3/2

αnT
n+1
F

[
1 − 7π2

60

(
T

TF

)2

n2(n + 1)(n + 5)

]
. (B28)
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After a considerable amount of algebra and Taylor expansion, we find

L

L0
≈ 1 −

(
T

TF

)2
π2

24

(
1339

8
+ 743

5

A

Bz2
0TF

)
. (B29)

From the definitions,

A

Bz2
0TF

= 1

2(kF z0)2

I2(qsz0)

I4(qsz0)
(B30)

with

In(qsz0) =
∫ ∞

0
xn e−2x

(x + qsz0)2
. (B31)

We note that the correction to the WF law arising in Eq. (B29) from the forward-scattering physics is of O(T/TF )2, which is the
same order where electron-electron scattering also shows up as a correction [8] of the WF law, thus considerably complicating
interpretation of experiments.

APPENDIX C: ELECTRON-PHONON TRANSPORT CALCULATIONS

In this Appendix, we discuss our Boltzmann theory electron-phonon calculations in detail. Throughout, we assume a quadratic
band of effective mass m and the scattering rate

S(k, k′) = πD2q2

ρωq

[Nqδ(ε − ε′ + ωq ) + (Nq + 1)δ(ε − ε′ − ωq )]�(ωD − ωq ), (C1)

obtained by Fermi’s Golden Rule for electrons of momentum k scattering off acoustic phonons. Here q is the momentum transfer,
equal to k′ − k in the first term and equal to k − k′ in the second term. Also, Nq is the Bose distribution, D is the deformation
potential, ωq = csq, cs is the speed of sound in the material, ωD is the Debye frequency, and � is the Heaviside step function. We
assume throughout that the system is sufficiently clean so that electron-impurity scattering can be neglected at the temperatures
in question. We also neglect effects such as phonon drag. (Note also that for the results in our main text we assume TBG < TD

throughout so that the effective phonon frequency cutoff is TBG for our analysis.)

1. Relaxation time approximations

In principle, the integral equation Eq. (A3) can be solved. As we have seen from Appendix B, this is straightforward
when the scattering is purely elastic. However, electron-phonon scattering is inelastic, so the Boltzmann equation remains
a complicated integral equation for τ . To make progress, we need to perform an uncontrolled approximation on Eqs. (A3)
and (A4). In particular, we will replace τσ,κ (ε′) → τσ,κ (ε). Although the terminology is used in ambiguous or inconsistent ways
in the literature, this is our form of the RTA.

With this approximation the Boltzmann equation becomes

1

τσ (ε)
=

∫
ddk′

(2π )d
S(k, k′)

1 − f0(ε′)
1 − f0(ε)

[
1 − k′

k
cos θ

]
,

1

τκ (ε)
=

∫
ddk′

(2π )d
S(k, k′)

1 − f0(ε′)
1 − f0(ε)

[
1 − ε′ − μ

ε − μ

k′

k
cos θ

]
. (C2)

Plugging in the form of S(k, k′) and using the expressions

ε − ε′ = −q2 ± 2kq cos β

2m
, (C3)

1 − k′

k
cos θ = ∓q

k
cos β, (C4)

where the sign corresponds with k′ = k ± q (depending on whether a phonon is being absorbed or emitted), we find

1

τσ (ε)
= πD2m

ρcsk

∫
ddq

(2π )d

[
1 − f0(ε + csq )

1 − f0(ε)
Nq

(
− q

k
cos β

)
δ

(
cos β − −q + 2mcs

2k

)

+ 1 − f0(ε − csq )

1 − f0(ε)
(Nq + 1)

(
q

k
cos β

)
δ

(
cos β − q + 2mcs

2k

)]
�(qD − q ), (C5)

where qD is the Debye wave vector ωD/cs . Similar substitutions can be made for the thermal lifetime.
We discuss these approximations further in Appendix E.
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2. 3D calculations

We start with the electrical conductivity. The angular integrals in Eq. (C5) are done mostly straightforwardly, with one
important caveat. Since cos β is only integrated over the range (−1, 1), the delta functions only lead to nonzero contributions for
certain values of q; this restriction is where the Bloch-Gruneisen temperature plays a key role. We find

1

τ (ε)
= D2m

4πρcsk

[∫ q
(1)
max

q
(1)
min

dqq2 1 − f0(ε + csq )

1 − f0(ε)
Nq

(
−mcsq

k2
+ q2

2k2

)
+

∫ q
(2)
max

0
dqq2 1 − f0(ε − csq )

1 − f0(ε)
(Nq + 1)

(
mcsq

k2
+ q2

2k2

)]
.

(C6)

Under the assumption TD � TBG (and noting that in most systems TBG � TF ),

q
(1)
min = −2k + 2mcs, (C7)

q (1)
max = 2k + 2mcs, (C8)

q (2)
max = 2k − 2mcs. (C9)

Defining η = (ε − μ)/T and z = csq/T ,

1

τσ (ε)
= D2mT 3

4πρc4
s k

[∫ z
(1)
max

z
(1)
min

dz
1 + eη

1 + eη+z

z2

1 − e−z

(
−mT z

k2
+ T 2z2

2k2c2
s

)
+

∫ z
(2)
max

0
dz

1 + eη

1 + eη−z

z2

ez − 1

(
mT z

k2
+ T 2z2

2k2c2
s

)]
, (C10)

with the definitions of zmax,min following from those of qmax,min.
A very similar computation for the thermal transport lifetime yields

1

τκ (ε)
= D2mT 3

4πρc4
s k

[∫ z
(1)
max

z
(1)
min

dz
1 + eη

1 + eη+z

z2

1 − e−z

(
1 − η + z

η

(
1 + mT z

k2
− T 2z2

2k2c2
s

))

+
∫ z

(2)
max

0
dz

1 + eη

1 + eη−z

z2

ez − 1

(
1 − η − z

η

(
1 − mT z

k2
− T 2z2

2k2c2
s

))]
. (C11)

To make progress, we now need to look at asymptotic regimes.

a. Equipartition regime in 3D

This regime is the traditional T -linear resistivity regime: TBG � T � TF . When T � TF , only ε ∼ TF is important, so
we may estimate k ∼ kF . Then to leading order z(1)

max ≈ z(2)
max ≈ 2kcs/T ∼ TBG/T � 1, and z

(1)
min = 0. Since z ∈ (0, zmax) and

zmax � 1, we may expand Eq. (C10) to the lowest nontrivial order in z:

1

τσ (ε)
≈ D2mT 3

4πρc4
s k

∫ zmax

0
dz

z3T 2

k2c2
s

(
1 + mc2

s

T
tanh(η/2)

)
(C12)

≈ D2mT k

πρc2
s

, (C13)

where we neglected the term of order mc2
s /T ∼ T 2

BG/T TF � 1.
The conductivity is computed straightforwardly in the lowest-order Sommerfeld expansion to obey a Drude formula:

σ = ne2τ (εF )

m
= 8e2ρk2

F c2
s

6πD2m2T
. (C14)

This is the familiar result that the electron-phonon scattering induced resistivity goes as T at high temperatures where the
phonons are in the equipartition regime. Strictly speaking, this linear-in-T regime applies for T � TBG/5 (or TD/5), depending
on whether TBG < TD or not.

In calculating the thermal lifetime, we can similarly equate the limits of the two integrals in Eq. (C11) and expand. We find

1

τκ (ε)
≈ D2mT 3

4πρc4
s k

∫ zmax

0
dz

z3T 2

k2c2
s

(
1 + mc2

s

T
tanh(η/2) − 2c2

s m

T η
+ c2

s k
2

T 2η
tanh(η/2)

)
. (C15)

In calculating the thermal conductivity, τκ is integrated against (ε − μ)2∂f0/∂ε, which is peaked at ε − μ ∼ T and equal to zero
at ε = μ. Therefore, when calculating τκ , we can safely estimate ε − μ ∼ T , that is, η ∼ 1, when estimating which terms are
important (as long as τκ does not diverge at ε → μ).
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For η ∼ 1, we can neglect all of the η-dependent terms, which are of order T 2
BG/T TF � 1 or T 2

BG/T 2 � 1. We find τκ ≈ τσ ,
in agreement with our results in the main text. The Sommerfeld expansion immediately leads to the WF law. Thus, a linear-in-T
resistivity arising from phonon scattering is automatically associated with the validity of the WF law.

b. Bloch-Gruneisen regime in 3D

This regime is T � TBG � TF . As before, z(1)
max ≈ z(2)

max ≈ 2kcs/T , but in this regime both of these limits are large. Since the
integrand in Eq. (A3) is suppressed exponentially at large z, it is a good approximation to take zmax → ∞.

After taking z → −z in the second term of Eq. (A3), we obtain

1

τσ (ε)
= D2mT 3

4πρc4
s k

∫ ∞

−∞
dz

1 + eη

1 + eη+z

z2

|1 − e−z|
(

−mT z

k2
+ T 2z2

2k2c2
s

)
(C16)

= 3D2mT 5

4πρc6
s k

3

[
2mc2

s

T
(Li4(−e−η ) − Li4(−eη )) + 4(2ζ (5) − Li5(−e−η ) − Li5(−eη ))

]
. (C17)

Again, the electrical conductivity is found at leading order in the Sommerfeld expansion,

σ = ne2τ (εF )

m
= 2ρc6

s k
6
F

9πm2D2

1

T 5
= ρT 6

BG

288m2D2

1

T 5
, (C18)

which leads to the expected ρ ∼ T 5 behavior (often called the Bloch-Gruneisen behavior).
The same approximations can be used in calculating the thermal lifetime:

1

τκ (ε)
= D2mT 3

4πρc4
s k

∫ ∞

−∞
dz

1 + eη

1 + eη+z

z2

|1 − e−z|
[

1 −
(

1 + z

η

)(
1 + mT z

k2
− T 2z2

2k2c2
s

)]
. (C19)

In the z � 1 regime where the integrand is not exponentially suppressed, we can use mT/k2 ∼ T/TF � 1 and T 2/k2c2
s ∼

T 2/T 2
BG � 1 to simplify the integral dramatically for η ∼ 1:

1

τκ (ε)
≈ D2mT 3

4πρc4
s k

∫ ∞

−∞
dz

1 + eη

1 + eη+z

z2

|1 − e−z|
(

− z

η

)
, (C20)

= 6D2mT 3

4πρc4
s kη

(Li4(−e−η ) − Li4(−eη )). (C21)

In the Sommerfeld expansion, the leading-order contribution is zero as expected. The next-leading-order contribution yields

κ ≈ LT T ≈ 8π2ρc4
s T

2
F

54ζ (3)D2

1

T 2
. (C22)

The numerical prefactor should, of course, not be taken very seriously, but we obtain the 1/T 2 behavior as expected. The WF
law is violated as

L ∼ T 2. (C23)

The scalings σ ∼ 1/T 5, κ ∼ 1/T 2, and L ∼ T 2 are in agreement with the calculations in the main text. Thus, in the Bloch-
Gruneisen regime the WF law is violated strongly as long as impurity scattering contribution to resistivity is much smaller than
the phonon scattering contribution—in other words, any observation of a Bloch-Gruneisen transport behavior must automatically
be associated with a strong violation of the WF law.

3. 2D calculations

The angular integral in Eq. (C5) is slightly more tedious in 2D. Changing variables to u = cos β introduces a factor of 2 and
a Jacobian. In the same variables z = csq/T and η = (ε − μ)/T as for 3D, we obtain

1

τσ (ε)
= D2mT 2

πρc3
s k

⎡
⎣∫ z

(1)
max

z
(1)
min

dz
z

(1 − e−z)
√

1 − (
T

2kcs

)2(
z − 2mc2

s

T

)2

1 + eη

1 + eη+z

(
−mT z

k2
+ T 2z2

2k2c2
s

)

+
∫ z

(2)
max

0
dz

z

(ez − 1)
√

1 − (
T

2kcs

)2(−z − 2mc2
s

T

)2

1 + eη

1 + eη−z

(
mT z

k2
+ T 2z2

2k2c2
s

)⎤
⎦, (C24)

085104-16



WIEDEMANN-FRANZ LAW AND FERMI LIQUIDS PHYSICAL REVIEW B 99, 085104 (2019)

1

τκ (ε)
= D2mT 2

πρc3
s k

⎡
⎣∫ z

(1)
max

z
(1)
min

dz
z

(1 − e−z)
√

1 − (
T

2kcs

)2(
z − 2mc2

s

T

)2

1 + eη

1 + eη+z

(
1 − η + z

η

(
1 + mT z

k2
− T 2z2

2k2c2
s

))

+
∫ z

(2)
max

0
dz

z

(ez − 1)
√

1 − (
T

2kcs

)2(−z − 2mc2
s

T

)2

1 + eη

1 + eη−z

(
1 − η − z

η

(
1 − mT z

k2
− T 2z2

2k2c2
s

))⎤
⎦, (C25)

with the limits of the integrals defined in the same way as in 3D.
We must take limits carefully to proceed.

a. Equipartition regime in 2D

As in 3D, this regime is TBG � T � TF , which has z(1)
max ∼ z(2)

max ∼ TBG/T � 1 and z
(1)
min = 0. However, the square root makes

the integrals a bit more complicated. We expand only the exponentials in z to obtain

1

τσ (ε)
≈ D2mT 4

2πρc5
s k

3

⎡
⎣∫ z

(1)
max

0
dz

z√
1 − (

T
2kcs

)2(
z − 2mc2

s

T

)2

(
z − 2mc2

s

T

)
+

∫ z
(2)
max

0
dz

z√
1 − (

T
2kcs

)2(−z − 2mc2
s

T

)2

(
z + 2mc2

s

T

)⎤
⎦,

(C26)

= D2mT 4

2πρc5
s k

3

∑
±

∫ 2kcs/T

∓2mc2
s /T

dz
z
(
z ± 2mc2

s

T

)
√

1 − (
zT

2kcs

)2
, (C27)

≈ 2D2mT

c2
s ρ

, (C28)

where we changed variables z → z ± 2mc2
s /T . Again we can use the Sommerfeld expansion to lowest order to obtain a Drude-

type formula,

σ = ne2τ (εF )

m
= e2ρc2

s k
2
F

8πD2m2

1

T
, (C29)

with the electrical resistivity linear in temperature.
Doing a similar expansion for τκ we obtain

1

τκ (ε)
≈ D2mT 2

πρc3
s k

⎡
⎣∫ z

(1)
max

z
(1)
min

dz
1√

1 − (
T

2kcs

)2(
z − 2mc2

s

T

)2

(
1 − η + z

η

(
1 + mT z

k2
− T 2z2

2k2c2
s

))

+
∫ z

(2)
max

0
dz

1√
1 − (

T
2kcs

)2(−z − 2mc2
s

T

)2

(
1 − η − z

η

(
1 − mT z

k2
− T 2z2

2k2c2
s

))⎤
⎦ ≈ 2D2mT

c2
s ρ

= 1

τσ (ε)
, (C30)

where we have neglected terms of order T 2
BG/(T TF ) � 1 (and again taken η ∼ 1 when estimating the size of terms). Since the

thermal and electrical lifetimes are equal and energy-independent, in agreement with the results in the main text, the Sommerfeld
expansion immediately tells us that the WF law is obeyed.

b. Bloch-Gruneisen regime in 2D

As in 3D, this regime is T � TBG � TF . We again have z
(1)
min = 0 and z(1)

max ≈ z(2)
max ∼ TBG/T , but now zmax � 1. If, as in 3D,

we wish to take zmax → ∞, we must deal carefully with the square root factor.
When z ∼ zmax � 1, the whole integrand is exponentially suppressed, although there is a divergent prefactor scaling as

(z − zmax)−2. It can be checked in a straightforward Taylor expansion that contribution of the large-z regime is finite and
exponentially small in zmax. At z � zmax, the term under the square root is of order 1 − (z/(TBG/T ) ± TBG/TF )2. The correction
to 1 is small whenever z � zmax since zmax � TBG/T . Therefore, over the entire region of integration, the square root may simply
be set to 1. Note that this argument holds for both the electrical and thermal relaxation times.
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It is then safe to take zmax → ∞. With a substitution z → −z in the second integral, Eq. (C24) becomes

1

τσ (ε)
= D2mT 4

2πρc5
s k

3

∫ ∞

−∞
dz

z2

1 − e−z

1 + eη

1 + eη+z

(
z − 2mc2

s

T

)
(C31)

= D2mT 4

2πρc5
s k

3

[
2π4

15
− 6Li4(−eη ) − 6Li4(−e−η ) − 4mc2

s

T
(Li3(−eη ) − Li3(−e−η ))

]
. (C32)

The electrical conductivity is again found in the lowest-order term of the Sommerfeld expansion,

σ = ne2τ (εF )

m
= 2e2ρc5

s k
5
F

π4D2m2T 4
, (C33)

leading to ρ ∼ T 4 as expected.
The thermal lifetime, under the same approximations, is

1

τκ (ε)
≈ D2mT 2

πρc3
s k

∫ ∞

−∞

z

1 − e−z

1 + eη

1 + eη+z

(
1 − η + z

η

(
1 + mT z

k2
− T 2z2

2k2c2
s

))
. (C34)

In the regime |z| � 1 and with η ∼ 1, the leading-order term in the parentheses is −z/η. Since the integrand is exponentially
suppressed at z � 1,

1

τκ (ε)
≈ D2mT 2

πρc3
s k

∫ ∞

−∞

z

1 − e−z

1 + eη

1 + eη+z

(
− z

η

)
(C35)

= 2D2mT 2

πρc3
s kη

(Li3(−e−η ) − Li3(−eη )). (C36)

The Sommerfeld expansion yields

κ ≈ LT T ≈ c3
s T

3/2
F ρ√

2D2
√

m

1

T
, (C37)

which leads to a violation of the WF law:

L ∼ T 2. (C38)

Again, the scalings σ ∼ 1/T 4, κ ∼ 1/T , and L ∼ T 2 all agree with the results in the main text. Thus, both in 2D and 3D FL
systems, the WF law is obeyed (violated) in the linear-in-T high-temperature (Bloch-Gruneisen low temperature) regime as long
as impurity scattering remains weak.

APPENDIX D: WF LAW VIOLATION
WITH SINGLE RELAXATION TIME

It was shown in the main text that thermal relaxation
time can differ significantly from charge relaxation time due
to different mechanisms underlying each relaxation process
which results in WF law violation. In this Appendix, we will
show that even with a single relaxation time, WF law could
still be violated at very low temperatures.

Derivation of WF law at low temperatures in systems
which are described by a single relaxation time, relies on the
Sommerfeld expansion of the listed integrals in Eq. (10) [14].
Generally, the Sommerfeld expansion can be used to evaluate
low temperature limits of any integral which involves Fermi
distribution function:∫ +∞

−∞

H (ε)

e(ε−μ)/T + 1
dε

=
∫ μ

−∞
H (ε)dε + π2

6
T 2 H ′(μ) + O

(
T

μ

)4

. (D1)

For the expansion to be controlled by
(

T
μ

)
, one needs to

make sure that derivatives of H (ε) do not involve powers of 1
T

.

However, nontrivial energy dependences in H (ε) could result
in such factors. For example, terms like e(ε−μ)/T in H (ε) could
potentially makes keeping the first few terms in Sommerfeld
expansion incorrect. As we will show below, this could be
the case whenever relaxation time involves exponential factors
related to statistical distributions.

Consider the system studied in Sec. II D and Appendix C,
where only electron-phonon scattering is present. To arrive
at the integral expressions in Eq. (C2) using the RTA, we
replaced τσ,κ (ε′) in Eqs. (A3) and (A4) by τσ,κ (ε). However, if
we use a different type of RTA and replace (ε′ − μ)τκ (ε′) →
(ε − μ)τκ (ε) and τσ (ε′) → τσ (ε), we will find that the two
relaxation times become equal and both can be evaluated from
the expression for τ−1

σ (ε) in Eq. (C2).
Using this single relaxation time, transport coefficients

and hence the Lorenz ratio can be evaluated easily using
Eq. (10). Figure 4 shows the result for both 2D and 3D
systems.

The plot in Fig. 4(a) is exactly the same as the plots for τσ

in Fig. 2(a) as one would expect. However, this time we have
only a single relaxation time characterizing both transports.
Figure 4(b) is also identical to Fig. 2(b). The thermal conduc-
tivity for T � TBG remains the same, but for T � TBG we
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FIG. 4. Transport properties of a clean, coupled electron-phonon system using a single-relaxation-time version of the relaxation time
approximation. (a) Scattering rate τ−1 at the Fermi energy versus temperature. (b) Electrical conductivity σ versus temperature. (c) Thermal
conductivity κ versus temperature. (d) Lorenz ratio L/L0 versus temperature. In all graphs, solid and dashed lines correspond to 2D and 3D
systems, respectively. Relaxation rates and transport coefficients are plotted relative to their values at T = TBG to make them dimensionless.
The Fermi energy is chosen such that TF = 103TBG.

get a different temperature scaling such that the Lorenz ratio
L = κ/(σT ) becomes independent of temperature. However,
as one can see from Fig. 4(d), L/L0 no longer saturates to
unity but rather approaches a value which is almost half of
what WF law predicts. This number can be expressed in terms
of definite integrals over polylogarithm functions and turns
out to be

L

L0
≈

{
0.47 2D

0.43 3D,
(T � TBG). (D2)

Generally, the exact value depends on the specific form of
interactions but is independent of system parameters. Note
that the T � TBG regime is exactly where the exponential
factors in phonons’ distribution functions become important,
which in turn makes the Sommerfeld expansion inapplicable.
It is worth noting that modification of the Lorenz number
due to the energy dependence of relaxation times has already
been discussed in the context of electron-electron scattering
[30,31].

Regardless of the validity of the RTA which is used in
this section, the main point is that the WF law could still
be violated while both thermal and electrical transports are
described by a single relaxation time. The validity of the RTA
in general is discussed in Appendix E.

APPENDIX E: DISCUSSION OF THE APPROXIMATIONS

The RTA, as implemented in Eqs. (C2) is uncontrolled.
One could easily imagine repeating the calculations with a
slightly different ansatz [for example, absorbing the factor of
(ε − μ)/T into τκ in Eq. (8)]; doing so can, in fact, lead to
qualitatively different results. As such, we should give some
justification for our choices. Note that, in general, the Boltz-
mann equation, being an integral equation, can be numerically
solved iteratively, but such an iterative numerical solution
has no mathematical transparency or physical understanding,
forcing us to resort to the RTA which provides qualitatively
correct, but numerically inaccurate, results.

First, we note that, as discussed in Appendix B, the RTA in
the form we have used is exact when the scattering is elastic
and isotropic. Therefore, in the high-temperature equipartition
regime T � TBG where the scattering is quasielastic, the form
of the RTA we have used is physically justified. Further-
more, in the low-temperature regime T � Ti � TBG, a con-
trolled perturbative calculation is available [7]. In this regime,
Matthiessen’s rule is approximately valid, so the phonon con-
tribution to the transport coefficients can be disentangled from
the impurity contribution. The phonon contribution found in
the perturbative approach is in qualitative agreement with our
RTA results, both from the main text and Appendix C. Our
choice of RTA is a good one in the sense that choosing other
forms of the RTA will often lead to qualitative disagreement
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with the perturbative calculation in the regime where it is
valid; see Appendix D for a one-relaxation-time example.

Our choice of RTA therefore yields qualitative agreement
with controlled results in the high- and low-temperature
regimes. We therefore expect that our RTA results should
give qualitatively correct results when interpolating between
these two regimes, in particular in the regime of interest
Ti � T � TBG (except if there are regimes where other en-
ergy scales become important). As we are not concerned with
quantitative predictions, this is sufficient for our purposes: to
show that parametrically large violations of the WF law can
occur in ordinary metals in a regime set by an energy scale
TBG, which may differ dramatically from TD . For accurate
numerical results for the purpose of comparison with specific
experimental results, one must resort to a full numerical
solution of the Boltzmann integral equation, which is well
beyond the scope of the current paper.

Our approximation does have the drawback that the On-
sager relation LT E = −T LET is violated. This is a very
generic feature of any two-relaxation-time version of the RTA.
The physical reason is that the Boltzmann equation, in its
total derivative form df/dt = 0, is exactly the statement of
conservation of particle number. As such, an uncontrolled ap-
proximate solution to the Boltzmann equation will generically
lead to an uncontrolled non-conservation of particle number.
Particle number conservation is assumed when proving this

Onsager relation [32], so there is no reason to expect that the
Onsager relation will continue to hold for the approximate
solution which violates this assumption. It so happens that a
single RTA does preserve the Onsager relation, but it will not
typically lead to qualitatively correct results in the perturba-
tive regime (see Appendix D).

Although our approximation violates the Onsager rela-
tions, this does not lead to qualitative changes in our conclu-
sions as long as the qualitative behavior of σ and LT T are cor-
rect. In particular, since the thermopower at low temperatures
can only provide a negative correction to the approximation
κ ≈ −LT T , the parametric suppression of the Lorenz number
below L0 that we have found can only be made more severe
when the thermopower is accurately accounted for. Thus, the
technical violation of the Onsager relation is an unimportant
nuisance in our theory, which we understand completely. It
arises simply from the fact that RTA by itself cannot provide
an exact solution of the Boltzmann integral equation except in
certain special situations.

In the main text, the numerical results are obtained from a
schematic calculation for the thermal lifetime Eq. (24). This
was done both for simplicity and for numerical stability. All
the results in the main text are in qualitative agreement with
the RTA results in Appendix C in all asymptotic regimes,
so the schematic numerical calculations are sufficient for our
purposes.
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