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Effect of photonic spin-orbit coupling on the topological edge modes of a Su-Schrieffer-Heeger chain
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We study the effect of photonic spin-orbit coupling (SOC) in micropillar lattices on the topological edge states
of a one-dimensional chain with a zigzag geometry, corresponding to the Su-Schrieffer-Heeger model equipped
with an additional internal degree of freedom. The system combines the strong hopping anisotropy of the
p-type pillar modes with the large TE-TM splitting in Bragg microcavities. By resolving the photoluminescence
emission in energy and polarization we probe the effects of the resulting SOC on the spatial and spectral
properties of the edge modes. We find that the edge modes feature a fine structure of states that penetrate by
different amounts into the bulk of the chain, depending on the strength of the SOC terms present, thereby opening
a route to manipulation of the topological states in the system.
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Concepts of band-structure topology from solid-state
physics now play a prominent role in photonics research.
Inspired by discoveries in condensed-matter systems, topo-
logically insulating and quantum Hall type phases have been
realized in analogous photonic contexts using gyromagnetic
photonic crystals [1,2], coupled ring resonator arrays [3–5],
and metamaterials [6,7] to engineer topological lattice Hamil-
tonians. In photonic platforms, additional functionalities may
be provided by the presence of gain and loss [8,9], optical non-
linearities [10,11], and coupling with quantum emitters [12].
Furthermore, the TE and TM modes of photonic structures,
which are typically split in energy, introduce a pseudospin
into the system [13]. The splitting arises due to a k-dependent
effective magnetic field acting on the polarization of photons
[14]. In analogy with electrons in Dresselhaus or Rashba
fields, this phenomenon can be described as a photonic spin-
orbit coupling (SOC), which may be enhanced in layered or
laterally modulated wavelength-scale structures and used to
engineer artificial gauge fields [15,16].

In Bragg-mirror micropillar arrays, splitting between TE
and TM linearly polarized modes is generally sizable mean-
ing photonic SOC is pronounced. It arises due to the fact
that for different polarizations of the cavity field there are
inequivalent boundary conditions at the layer interfaces in
the vertical direction and at the pillar sidewalls in the lateral
direction. It plays a key role in several recent proposals to
engineer topological protection in polariton systems [17–20]
in addition to emulating spin-dependent phenomena from
solid-state systems [21]. Experimentally it has been explored
in a hexagonal ring of coupled micropillars whose eigen-
modes are spin (polarization) vortices [22] and a Lieb lattice
where polarization textures of flatband modes were observed
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[23,24]. However, in the case of topological edge modes these
photonic SOC effects revealed by the polarization degree of
freedom (DOF) remain unexplored in experimental works.

The Su-Schrieffer-Heeger (SSH) model represents one of
the simplest possible systems exhibiting topological edge
modes [25], offering a convenient starting point to explore
the polarization DOF in the context of topological band struc-
tures. It comprises a one-dimensional (1D) dimerized chain
with a two-site unit cell, with alternating hopping energies
between sites (within and between dimers), analogous to poly-
mer chains where the Peierls instability makes dimerization
energetically favorable. In photonic systems, SSH models
have been realized in diverse platforms such as coupled
waveguides [26,27], plasmonic nanodisks [28,29], and both
passive [30] and active [31,32] SSH-like arrays with addi-
tional gain and loss distributions. In GaAs-based micropillar
arrays, a variant of the SSH chain which directly uses the na-
tive photonic SOC to engineer a staggered hopping of s-type
pillar modes has been proposed [33]. In practice, however,
the stringent requirements on both the mode linewidth and
magnitude of polarization splitting render the realization of
such a model challenging.

A recent experimental work [34] implemented an orbital
version of the SSH model using the strong staggered hopping
potential experienced by the doubly degenerate first excited
pillar modes, px and py . The spatial mode symmetries and
geometrical configuration of the chain combine to induce
alternating strong and weak bonds between sites. The mag-
nitude of this tunneling anisotropy is sufficient to open a
large gap (many times larger than the linewidth) containing
exponentially localized edge states. The fact that there are
two p-type modes means that the system actually constitutes
two copies of the SSH model, which are in topologically
inequivalent phases, such that edge states can be observed
in both subspaces depending on the geometry at the ends of
the chain. Compared to the case of s modes, the influence
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FIG. 1. (a) Scanning electron microscope image of the photonic
zigzag chain structures. The inset shows an angled image of an
eight-site chain. (b) Schematic of the px and py modes of a single
micropillar. (c)–(e) Real-space images of the topological edge modes
for chains with 8, 10, and 11 sites.

of photonic SOC is expected to be even richer when dealing
with p modes, due to the possibility of strong polarization
splittings in both the on-site and tunneling energies of modes
[22,35] which have different effects on the topological prop-
erties of the SSH Hamiltonian [36]. The strength of the
polarization terms can be varied by the layer structure of
the Bragg mirrors, making the SOC a flexible tool which,
until now, has not been studied in relation to topology. In
this Rapid Communication, we consider a photonic zigzag
chain where both the confinement and tunneling energies of
p modes depend strongly on the polarization. We show how
in this case the twofold SSH Hamiltonian splits into a novel
fourfold variant with significant differences between the two
pseudospins (polarizations) as a result of large SOC, which
as we demonstrate, can be probed in photoluminescence (PL)
experiments by the spectral and spatial properties of the
edge modes. We also discuss the general interplay between
different polarization effects and how the strength of different
perturbations which contribute to the SOC determines the
symmetries of the system.

Our sample is a GaAs cavity embedded between
GaAs/Al0.85Ga0.15As distributed Bragg reflectors with 23
(26) top (bottom) pairs, featuring six In0.04Ga0.96As quantum
wells. The exciton energy is detuned roughly 20 meV from the
cavity mode, and we estimate that the TE-TM splitting has a
magnitude on the order of β = −0.19 meV μm2. The result-
ing large SOC was deliberately designed by using the offset
between the Bragg-mirror stop band and the cavity mode [37],
allowing us to enter a qualitatively different regime to that of
Ref. [34] and other scalar photonic SSH models. We process
our cavity using electron beam lithography and plasma dry
etching to create patterned regions with arrays of overlapping
micropillars. The pillars have diameters of 3 μm and center-
to-center distances of 2.55 μm. In order to study topological
edge modes we consider 1D arrays in a zigzag geometry, with
8, 10, and 11 sites [see Fig. 1(a)]. The number of pillars was
chosen in order to minimize variation along the chain length,
without being too short to make the ends significant, such

that edge states hybridize. The energy-resolved emission from
the chains under weak nonresonant excitation shows bands
formed from evanescent coupling of both s and p modes of the
individual pillars (see Ref. [38] for Supplemental Material).
A twofold degeneracy comprising px and py orbitals exists in
the latter case, where the subscript refers to the direction in
which the bright lobes are oriented [see Fig. 1(b)]. Critically,
in arrays of coupled pillars, tunneling between the p modes is
strong (weak) when their orientation is aligned (transverse)
to the tunneling direction [23], meaning for zigzag chains,
where the tunneling direction changes by 90◦ from site to site
(alternating between x and y), the hopping energies alternate
between strong and weak.

If we neglect the polarization DOF for the moment, our
zigzag chains implement a twofold SSH model like the one
described in Ref. [34]. The manifestation of the topologically
nontrivial nature of the chain is spectrally isolated midgap
states whose wave functions are strongly confined to the edge
pillars and, depending on the number of sites in the chain,
can be in one or both of the p orbital subspaces. As can
be seen from the real-space emission of the edge states in
Figs. 1(c) and 1(d), only the py subspace features edge states
in our even chains. This is expected since the links connecting
the end pillars to the next pillar point along x, to which py

modes are orthogonally oriented, meaning the bond is weak.
Conversely, the px modes point along x so the bond is strong.
Regardless of the choice of unit cell, these two subspaces
are topologically inequivalent as determined by the unique
difference in the Zak phase [36]. In odd chains, edge states are
found in both px and py subspaces, at opposite edges, since
the half-integer number of unit cells means there is always a
weakly bonded site at one of the edges [see Fig. 1(e)]. Hence,
for any number of pillars in a finite chain there are always
midgap states at both edges, which are found in the same
(different) subspaces for even (odd) chains.

Now we will turn our attention to the internal polarization
DOF. In this case there are four modes: px and py in two
orthogonal polarizations. When the cavity TE-TM splitting
and hence photonic SOC is strong (as quantified by the β

factor), the p-like modes combine into spin vortices whose
energies depend on the sign and size of β [35]. In our sample,
resolving the emission from single pillars in polarization re-
veals that the p modes have well-defined pseudospin textures
and are significantly split in energy. When single pillars are
coupled into a dimer, the spectrum of hybridized p modes
then shows a marked asymmetry due to the interplay between
this on-site polarization splitting and polarization-dependent
tunneling. We use the experimental estimates of polarization
terms from the single and coupled pillar measurements shown
in Ref. [38] for our phenomenological tight-binding model
later in the text. In the SSH model, the spectral positions of
the edge modes are sensitive to on-site perturbations whereas
the size of the gap and localization length of the edge modes
are affected by perturbations to the tunneling energy. We thus
resolve the emission from our zigzag chains in two orthogonal
polarizations to see whether we can detect the influence of the
polarization DOF on the topological edge modes.

Figure 2(a) presents the spectrally resolved real-space
emission from the p bands of our ten-site chain, showing
the differential polarization intensity corresponding to the
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FIG. 2. (a)–(d) Results for the ten-site chain. (a) Real-space spectrum showing the differential polarization intensity IH − IV . The
directions of H and V polarizations are depicted by the arrows. (b) Polarization-resolved intensities IH (red) and IV (blue) of the left edge
states, with corresponding real-space images on the left. (c) Polarization-resolved spectrum of the right edge states with corresponding real-
space images on the right. (d) Intensity against site number for the two polarizations across the topological gap. (e), (f) Polarization-resolved
spectra for the 11-site chain.

difference in emission between in-plane polarizations point-
ing along x and y, respectively, which we define as horizontal
(H ) and vertical (V ). The significant degree of polarization
of the emission (on the order of 15%–20%) is immediately
evident, demonstrating the large degeneracy lifting created
by the combination of polarization effects. Note that there is
an energy difference between the left and right edge modes,
which probably arises due to a combination of the cavity
wedge, etching-induced strain and disorder. For clarity, we
henceforth treat the left and right edges of the chain sep-
arately, and note that the energy gradient does not affect
our subsequent analysis. In Figs. 2(b) and 2(c) we show the
polarization-resolved spectra of the left and right edge states,
respectively, where two peaks with a splitting on the order of
0.1 meV can be seen in both cases. Alongside these spectra
we plot the differential polarization intensity of the real-space
emission at the energies of the peaks. Since both edge states
are found in the py subspace, we expect the same sign of
polarization splitting at both ends of the chain, which we
indeed observe in experiment. In contrast, in odd chains
the left and right edge states are orthogonally oriented with
respect to each other, so the sign of polarization splitting is
opposite at the two ends [see Figs. 2(e) and 2(f)].

In order to determine a polarization splitting in the hopping
energy of modes one may consider the spatial profile of the
edge states. In standard SSH theory, they are exponentially
localized with a wave function given by |�n|2 ∝ (t/t ′)n if n

is odd and by � = 0 if n is even, where n denotes the pillar
number counting from 1 and starting at the edge, and t and
t ′ give the tunneling energies within and between unit cells,
respectively. Since photonic SOC lifts the degeneracy of both
t and t ′ between orthogonal polarizations, a disparity should
exist between the spatial wave functions of the orthogonally
polarized topological edge modes in our zigzag chains. In
order to see if this is the case in experiment, we estimate the
mode intensity (which is proportional to |�|2) against site
number from our energy-resolved real-space data and then
compare between the two polarizations. We show the result
for our ten-site chain in Fig. 2(d), which presents the peak
intensity on each site for the two polarizations within the gap

between lower and upper p bands. As expected theoretically,
the edge-state wave function is almost entirely localized on
the first and third pillars (counting from either edge) such that
sites 1 and 3 (left edge) and 8 and 10 (right edge) have the
highest intensities. Since the population on these sites is most
significant, we use the values from these sites to quantify the
effect of the polarization-dependent tunneling by defining a
quantity

ξ = |�‖
1 |2/|�‖

3 |2
|�⊥

1 |2/|�⊥
3 |2 , (1)

where the subscript denotes the pillar number counted from
the edge (left or right) and the superscript denotes parallel (‖)
and perpendicular (⊥) polarizations. The value of ξ then gives
a quantitative measure of the ratio of the wave-function decay
between the two polarizations, i.e., SOC in the hoppings.
Incorporating the tunneling values and polarization-dependent
corrections extracted from our single dimer measurements
[38] into a conventional SSH model for fixed polarization (see
above expression for �n) we can estimate a theoretical figure
yielding ξ theory ≈ 0.8. Physically this tells us that the inverse
localization length should be shorter for parallel polarization,
i.e., the edge state penetrates more into the rest of the chain
when its polarization is parallel to the tunneling link. By
considering all three of our zigzag chains, we have six experi-
mental values of ξ since each chain has midgap states at both
edges. In the case of the 11-site chain, ‖ and ⊥ polarizations
are different at the two edges. In all cases ξ is found to lie
between 0.7 and 0.9 with an average of ξ expt. = 0.78 ± 0.07,
which is in good agreement with the ratio of tunneling rates
obtained from the spectrum of the dimer.

To obtain a more detailed understanding of the experimen-
tal findings, we develop a tight-binding model

HSSH = H0 + Hτx
+ Hτy

+ Hτm
(2)

that systematically accounts for all polarization effects across
the full structure. Denoting by p̂H

x,n, p̂H
y,n, p̂V

x,n, p̂V
y,n the

annihilation operators of the p orbitals on pillar n with linear
polarization H (along x) and V (along y), the Hamiltonian for
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the chain of isolated pillars is given by

H0 =�E

N∑

n=1

[
p̂H†

x,np̂
H
x,n − p̂H†

y,np̂
H
y,n − p̂V †

x,np̂
V
x,n + p̂V †

y,np̂
V
y,n

]

+ �E

N∑

n=1

[
p̂H†

x,np̂
V
y,n + p̂H†

y,np̂
V
x,n + H.c.

]
, (3)

where �E is the SOC matrix element of a single pillar and n

indicates the pillar number. The coupling between neighbor-
ing pillars along the x direction is given by

Hτx
=

N/2∑

i=1

[
τ ‖
a p̂

H†
x,2i−1p̂

H
x,2i + τ

‖
t p̂

H†
y,2i−1p̂

H
y,2i

+ τ⊥
a p̂

V †
x,2i−1p̂

V
x,2i + τ⊥

t p̂
V †
y,2i−1p̂

V
y,2i

]
, (4)

where τ
‖
a(t ) and τ⊥

a(t ) describe the coupling of p orbitals whose
lobes are aligned (a) or transverse (t) to the coupling direction,
while their polarization is either parallel (‖) or perpendicular
(⊥) to this direction. The coupling term Hτy

along the y

direction is obtained by interchanging τ
‖
a with τ⊥

t and τ⊥
a with

τ
‖
t . Finally, the term

Hτm
= τm

N/2∑

i=1

[
p̂

H†
x,2i−1p̂

V
y,2i + p̂

H†
y,2i−1p̂

V
x,2i + H.c.

]
(5)

describes the mixing of H -polarized px (py) orbitals with V -
polarized py (px) orbitals.

The structure of these terms follows from symmetry
considerations, while the values of the matrix elements can
be estimated in perturbation theory. For this, we represent
the p orbitals as the first excited states px (x, y) = (2/π )1/2

mωxe−mω(x2+y2 )/2, py (x, y) = (2/π )1/2mωye−mω(x2+y2 )/2 of
a two-dimensional harmonic oscillator with potential
U (x, y) = 1

2mω2(x2 + y2) and harmonic confinement
strength ω for polaritons of mass m, with h̄ = 1. Centering
these parabolic potentials at each pillar determines the barrier
shape, for which the perturbative matrix elements can be
evaluated analytically [38]. The theoretical values can then
be matched to the experimental polarization-resolved PL data
for a single pillar and dimer, which provides an estimate of
�E and τ

‖
a , τ⊥

a , τ
‖
t , τ⊥

t , τm, respectively.
Figure 3 shows the results obtained from this approach for

a zigzag chain with ten sites. Panels (a) and (b) show the
energies and edge-state mode profile for the case without po-
larization, which corresponds to the case realized in Ref. [34].
Panel (c) shows the energies when all polarization effects are
taken into account. As in the experiments, the edge states
are split, with the lower eigenvalue being H -polarized while
the higher one is V -polarized. The differential polarization
real-space images in panel (d) agree well with the experi-
mental results shown in Figs. 2(a)–2(c). From the different
localization lengths of the edge states we find ξTB ≈ 0.76,
which is consistent with our earlier estimate ξ theory and the
experimental value ξ expt..

FIG. 3. Energy spectra and real-space images of midgap states
from the tight-binding model of a ten-site chain without TE-TM
splitting (a), (b), and with TE-TM splittings both on-site and in the
coupling term (c), (d). In (d), the intensity distribution is resolved in
polarization (V : top; H : bottom).

Based on this TB model, we can assess how the SOC
determines the topology of the polarization-resolved modes
of the system. For �E �= 0 but τm = 0, τ

‖
a = τ⊥

a , and τ
‖
t =

τ⊥
t (i.e., the SOC affects the on-site energies but not the

couplings), the system realizes a fourfold SSH model with
energy splittings replicating the spin-vortex states of a single
pillar. For �E = 0 but τm �= 0, τ

‖
a �= τ⊥

a , and τ
‖
t �= τ⊥

t , we
again realize four copies, but with polarization-dependent
couplings as quantified by ξ �= 1. In our experiments, �E is
of the same order of magnitude as the linewidth, and much
smaller than the band gap, meaning the topology of the system
is only weakly violated. When one further departs from these
conditions, the system crosses over to a topologically trivial
insulator of the AI symmetry class [38–40].

In conclusion, our work suggests that the polarization
degree of freedom could be used as a powerful tool to control
the topology in a wide range of 1D and 2D lattice systems.
Moreover, by probing both the spectral and spatial polariza-
tion properties of topological edge states, information about
the energy splittings in the pillars and effect on bulk transport
can be retrieved. This is also particularly interesting due to the
fact that it is possible to control the polarization splitting of p

orbitals through the layer structure of the Bragg mirrors [38].
Finally, using samples with a less negative cavity-exciton de-
tuning (leading to polaritons with a much larger exciton frac-
tion) will also allow further manipulation of the energy bands
through nonlinear renormalization in high-density regimes,
the Zeeman effect under application of a magnetic field and
via ultrafast Stark control [41], making our system a unique
test bed to investigate topological phase transitions in exotic
lattice Hamiltonians with spin-orbit coupling, interparticle
interactions, and broken time-reversal symmetry.

Data supporting this study are openly available from the
University of Sheffield repository [43].
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