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Measuring hole g-factor anisotropies using transverse magnetic focusing
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Recent theoretical and experimental results from quasi-one-dimensional heavy-hole systems have suggested
that heavy-hole gases have a strongly anisotropic g factor. In this theoretical work, we propose a method for
measuring this anisotropy using transverse magnetic focusing (TMF). We demonstrate that for experimentally
accessible fields, the g-factor anisotropy leads to a relative variation in the characteristic of spin splitting of the
TMF spectrum which allows for the measurement of the anisotropy of the g factor. We show that this variation
is insensitive to additional spin-orbit interactions, and is resolvable with current devices.
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The strength of the coupling of an electron to a magnetic
field in free space is defined by the Bohr magneton μB and
the electron g factor. Like free electrons, quasiparticles in
condensed matter systems couple to an applied magnetic field,
however, the form and magnitude of the g factor is strongly in-
fluenced by the surrounding material. The “renormalization”
of the g factor can lead to effective g factors for charge carriers
in semiconductors that are orders of magnitude larger than the
free-space value. With such large values, an applied magnetic
field can result in a significant change to transport properties,
even in relatively weak magnetic fields. This effect persists
in reduced dimensional systems, and can be enhanced or sup-
pressed, and develop asymmetries depending on the confine-
ment. In low-dimensional hole systems additional kinematic
structures are possible, due to the holes’ angular momentum
being J = 3/2, with the Zeeman interaction in heavy-hole
systems depending on both momentum and in-plane magnetic
field [1,2]. Recent experimental and theoretical results suggest
a strongly anisotropic in-plane g factor for two- and quasi-one-
dimensional heavy-hole systems [3,4].

Measuring the g-factor anisotropy is difficult with typical
transport techniques. For instance, magnetic (Shubnikov–de
Haas) oscillations measure the total size of the Fermi
surface and therefore have no first-order dependence on the
anisotropy. Instead, Shubnikov–de Haas oscillations measure
the total Fermi surface area. In this Rapid Communication,
we propose a method to measure the relative g factors in
hole systems, based around transverse magnetic focusing
(TMF), which has a long history of use in the measurement
of the shape of the Fermi surface in both metals and
semiconductors (see Fig. 1) [5–9]. When employed in systems
with strong spin-orbit coupling, the first magnetic focusing
peak is spin split, resulting in a “double” focusing spectrum
[10–15]. This spin splitting can be directly translated to the
strength of the spin-orbit interaction. We make use of this
feature, combined with a unique dependence on magnetic
field rotations in TMF resulting from the anisotropy in the
hole g factor, to determine the magnitude of the anisotropy.
We then demonstrate that the effect is robust in the presence
of surface or bulk inversion asymmetry that is weaker that the
Zeeman interaction due to the in-plane field, and provides a
straightforward method of determining g1 and g2.

We begin with a kinematic structure leading to this g-factor
anisotropy in two-dimensional hole systems. Holes have a
total angular momentum of J = 3/2. At k = 0, there are four
degenerate states, typically denoted as “light,” ±1/2, and
“heavy,” ±3/2, holes due to the difference in effective mass.
When confined to two dimensions only the heavy holes lie be-
low the chemical potential. Coupling Jz = 3/2 to Jz = −3/2
requires J3

±, which is obtained with the combined action of the
Luttinger term (P · J)2 [1,16] and Zeeman interaction B · J.
Two kinematic structures are possible, P2

+B+J3
−, or P4

+B−J3
−.

Since only the heavy holes lie below the chemical potential, it
is convenient to work in the subspace ±3/2, spanned by the
Pauli matrices, with J3

± → σ±. The kinematic structure is then

H1 = g1μB

2
(B+ p2

+σ− + B− p2
−σ+) (1)

for the g1 interaction and

H2 = g2μB

2
(B− p4

+σ− + B+ p4
−σ+) (2)

for the g2 interaction. Here, p± = px ± ipy and σ± = σx +
iσy. Due to the momentum dependence of the interactions,
the coefficients g1 and g2 are not dimensionless. For the
following analytical calculations it is useful to consider the
dimensionless coefficients,

g̃1 = g1k2
F , g̃2 = g2k4

F , (3)

where kF = √
2mεF is the Fermi momentum, and εF is the

Fermi energy. Importantly, recent theoretical and experimen-
tal work has shown that at experimental accessible densities,
g̃2 can be comparable to g̃1 [3,4].

The Hamiltonian for a hole system subject to these two
respective Zeeman interactions due to an in-plane magnetic
field, and some significantly weaker transverse focusing
field is

H = π̂2

2m
+ H1 + H2 + gzμB

2
Bzσz

= π̂2

2m
+ B(π̂) · σ, (4)

π̂ = p̂ − eA,
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FIG. 1. Magnetic focusing setup, with focusing length l . The
source and detector in hole systems are typically quantum point
contacts (QPCs).

where A is the vector potential. The equations of motion are

˙̂π = i[H, π̂] = mωcv̂ × n,
(5)

σ̇ = i[H, σ] = −B(π̂) × σ,

where ωc = eBz/m. Solving these equations of motion
requires some approximation of spin dynamics. In the case
of TMF, the appropriate approximation for the resolution of
a double focusing peak is adiabatic spin dynamics, where
the spin follows the instantaneous effective magnetic field
〈σ〉 = sB/|B|, where s = ±1 is a pseudoscalar defining the
spin projection [11]. The resulting semiclassical equation is
obtained using the method of Refs. [17,18],

r(θ (t )) = π(θ (t )) × n
eBz

− π(θ (0)) × n
eBz

, (6)

where the momentum π depends on the spin state of the hole,
and θ (t ) is the polar (running) angle and is a function of time.
Physically, this corresponds to the classical cyclotron motion
of quasiparticles with different cyclotron radii depending on
the spin projection. We present both cyclotron orbits and spin
orientations in Fig. 2.

To explore the dynamics analytically, we consider the
following approximation for the spin-split momentum π,

π = h̄kF,s[cos θ (t ), sin θ (t ), 0],

kF,s = kF

(
1 + s|B|

2εF

)
, (7)

FIG. 2. Cyclotron orbits for spin down (red) and up (blue) with
the spin (〈σ〉) orientation in the adiabatic limit. The left panel has
g̃2/g̃1 = 0.5, while the right panel has g̃1/g̃2 = 0.5. We note that
while the Fermi surfaces have a nearly identical shape, due to the
different momentum dependence of the two interactions, the spin
dynamics are qualitatively different.
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FIG. 3. Cartoon of the variation in the focusing splitting. The red
dashed curve is the TMF spectrum without any g-factor asymmetry,
with splitting magnitude �0, with �0 = g̃1μBB||/εF . The blue curve
is the TMF spectrum, including the g-factor anisotropy, with ϕ = 0
for the left panel, and ϕ = π/2 for the right panel. The focusing field
without spin splitting, Bz = 2kF /el , is marked with a dashed black
line.

where the total effective magnetic field is

|B| = μBB||
√

g̃2
1 + g̃2

2 + 2g̃1g̃2 cos(2θ − 2ϕ) (8)

with an in-plane field angle ϕ, and

B = (B|| cos ϕ, B|| sin ϕ, Bz ) (9)

being the magnetic field applied to the sample. To satisfy the
requirement for adiabatic spin dynamics, we need to ensure
that the magnetic field remains sufficiently large. If g̃1 > g̃2,
the approximate condition of adiabatic spin dynamics is

|B| � 1

|B|
∂B
∂t

∼ 2ωc, (10)

where the factor of 2 comes for the two rotations of the spin-
orbit field for each rotation in momentum space (see Fig. 2).
In this adiabatic regime, the classical focusing peak where
interference effects are neglected corresponds to an injection
angle of θ = 0 [19]. The focusing length l from Eqs. (6) and
(8) is

l = y(θ = π ) ≈ h̄kF,s(θ = 0) + h̄kF,s(θ = π )

eBz
, (11)

which is analogous to the case of classical TMF in metals [6].
We have cast the above result in terms of spatial variation of
the peaks; in TMF the detector and collector are fixed, and the
focusing field Bz is varied instead,

Bz ≈ h̄kF,s(θ = 0) + h̄kF,s(θ = π )

el
. (12)

For 2ωc 	 |B| 	 εF , using Eqs. (12) and (8),
δBz

Bz
≈ k+(ϕ) − k−(ϕ)

kF
, (13)

where δBz denotes the splitting between the spin-split focus-
ing peaks. Figure 1 corresponds to a fixed Bz and a varied
focusing length l; in a real experiment, l is fixed and Bz is
varied (see Fig. 3).

We are now in a position to explore the angular dependence
of the in-plane field response in the TMF spectrum. We
consider the case of a relatively short focusing length, of
l = 1000 nm, with a hole density n = 1.65 × 1011 cm−2. Let
us start with the case where all other spin-orbit interactions
have been tuned to be small. For quantum wells grown along
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FIG. 4. The field angle dependence of the first focusing peak
splitting, with increasing in-plane magnetic field, from 1 to 3.5 T,
with g̃2 = 1 and g̃1 = −2.5. The deviation from Eq. (14) is the result
of the nonparabolic terms in the dispersion.

high-symmetry axes, this is a reasonable approximation. For
the case where g̃1 � g̃2, by expanding in terms of g̃2/g̃1, we
obtain the following approximate analytical expression for the
angular dependence,

δBz

Bz�0
≈

(
1 + g̃2

g̃1
cos(2ϕ)

)
, (14)

where we have introduced the dimensionless splitting �0 =
g̃1μBB||/εF . In Fig. 4 we plot the fractional focusing field
splitting δBz/Bz�0 as a function of the in-plane field angle ϕ.
Here, g̃1 = −2.5 and g̃2 = 1. For GaAs quantum wells, |g̃1|,
|g̃2| < 3, dependent on the manner of the confinement [4].

In practice, other spin-orbit interactions due to bulk and
surface inversion symmetry may not be small. To examine
the influence of additional spin-orbit interactions we consider
a Rashba spin-orbit interaction, HR = iγR p3

+σ−/2 + H.c., re-
sulting from an asymmetric confining potential. The Rashba
induces a spin splitting in the hole gas of �R = γ3h̄3k3

F /εF .
We include the Rashba term in the Hamiltonian, Eq. (5), and
use the aforementioned method to determine the variation
in the focusing field. In Fig. 4 we present the response to
in-plane magnetic field rotations, with varying strength of the
Rashba spin-orbit interaction. Provided �R < g̃1μBB||/εF and
�R < g̃2μBB||/εF , there is minimal variation in the magnetic
focusing field splitting δBz. In general, spin-orbit interactions
which are odd in momentum such as the Dresselhaus and
Rashba interactions will only weakly perturb the variation in
the TMF peak spacing.

FIG. 5. Relative focusing field splitting as a function of the
in-plane magnetic field angle ϕ with B|| = 2.5 T, g̃1 = −2.5, g̃2 = 1.
Here, we vary the strength of the Rashba interaction �R in the range
0 < �R < 0.1εF . The maximum value is �R ∼ 0.2 meV.

The measurement of g̃2/g̃1 depends only on the classical
focusing field, and is therefore independent of the source and
detector. However, the effect must be larger that the spread
of the focusing peaks to be observed, δBz/Bz � BFWHM/Bz,
where BFWHM is the full width at half maximum of the
focusing peak. Recent hole experiments with spin splitting
induced via a large Rashba-type interaction have BFWHM ∼
0.02 T [10], giving a ratio of BFWHM/Bz ∼ 0.1. To make a
direct comparison between this and our results, we consider an
in-plane field of B|| = 3.5 T and g̃1 = −2.5, with �0 ≈ 0.2.
Comparing to Fig. 4, the minimum value at θ = π corre-
sponds to an effective splitting δBz/Bz > 0.1. Hence the two
peaks are resolvable over the full range of ϕ at B|| = 3.5 T.

Finally, we turn our attention to the assumption of
adiabatic spin dynamics that we have employed in preceding
calculations. As has been noted, 2ωc 	 |Bmin|. The minimum
value of B,

|Bmin| = (|g̃1| − |g̃2|)μBB||, (15)

which results in the following condition,

4
m

m∗
Bz

B||
< |g̃1| − |g̃2| ≈ 1. (16)

The fraction Bz/B|| is the ratio between the in-plane field,
and the focusing field, while m∗ is the effective mass. For
a typical device, Bz ∼ 0.1 T, while B|| can be several tesla,
and in quantum wells, m∗ ∼ 0.2m. We can compare this to
some recent results in GaAs heavy-hole quantum wells. The
commensurate criterion to (16) is

3ωc < �R, (17)

where �R is the strength of the Rashba splitting, �R ∼ 0.2εF ,
which can be converted to an expression in terms of the Fermi
momentum kF and focusing length l ,

12

kF l
< �R. (18)

For this Rashba hole system, kF l ∼ 100, so �RkF l/12 ∼ 1/2,
while the two spin-split peaks are still clearly observable.
Comparing this to Eq. (16), B|| ∼ 4 T is sufficient to satisfy
this condition. Taken together with considerations of the
spread of the focusing peak, we can conclude that it is
possible to measure anisotropies in the in-plane g factor in
hole systems using TMF.

In summary, we have shown TMF can be used to determine
the relative magnitude of g̃1 and g̃2, via the unique dependence
on the in-plane magnetic field angle ϕ. Furthermore, this
dependence is robust with the addition of residual spin-orbit
interactions. Based on results from TMF in heavy-hole gases,
variation of the focusing field is significantly larger than
the broadening due to both scattering and the finite size of
injectors and detectors at experimentally accessible in-plane
fields.
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