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Non-Hermitian Hamiltonians, which describe a wide range of dissipative systems, and higher-order topolog-
ical phases, which exhibit novel boundary states on corners and hinges, comprise two areas of intense current
research. Here we investigate systems where these frontiers merge and formulate a generalized biorthogonal
bulk-boundary correspondence, which dictates the appearance of boundary modes at parameter values that are,
in general, radically different from those that mark phase transitions in periodic systems. By analyzing the
interplay between corner/hinge, edge/surface, and bulk degrees of freedom we establish that the non-Hermitian
extensions of higher-order topological phases exhibit an even richer phenomenology than their Hermitian
counterparts and that this can be understood in a unifying way within our biorthogonal framework. Saliently this
works in the presence of the non-Hermitian skin effect, and also naturally encompasses genuinely non-Hermitian
phenomena in the absence thereof.
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Introduction. Topological phases of matter are at the fore-
front of condensed-matter research with a recent focus on
higher-order topological phases [1–13], where a subtle in-
terplay between topology and crystalline symmetry results
in the appearance of boundary states on boundaries with a
codimension higher than one, i.e., corners or hinges. Another
increasingly popular direction of research revolves around
studying topology in the context of non-Hermitian physics,
which is a relevant approach for describing a wide range of
dissipative systems [14–39]. Saliently these models feature
a breakdown of the conventional bulk-boundary correspon-
dence [16–22], which is intimately linked to the piling up of
“bulk” states at the boundaries known as the non-Hermitian
skin effect [14,16,21]. These models can be understood with
open boundaries directly by defining a biorthogonal bulk-
boundary correspondence [16], which combines the right and
left wave functions of the boundary modes to each other
to form a “biorthogonal state.” By studying the behavior of
this state, it is then possible to reconcile the physics of open
non-Hermitian systems.

Here we show that the concept of a biorthogonal bulk-
boundary correspondence can be generalized to capture non-
Hermitian extensions of higher-order topological phases. In-
deed, such phases have very recently been studied in a number
of works resulting in the observation of variations to the skin
effect and the suggestion of topological invariants [40–43].
Here, unlike Refs. [40–43], we focus on the biorthogonal
properties of the open boundary systems, and show that this
provides a comprehensive and transparent interpretation of the
physical features of non-Hermitian extensions of higher-order
topological phases. In particular, it unravels a subtle interplay
between crystalline lattice symmetries, sample geometry, and
boundary/bulk states that goes qualitatively beyond that of the
Hermitian realm.

*Corresponding author: elisabet.edvardsson@fysik.su.se

To elucidate these results we introduce several pertinent
examples that admit an exact analytical treatment. First we
investigate a non-Hermitian chiral hinge insulator where the
conventional bulk-boundary correspondence is broken: the
presence of open boundaries drastically rearranges the entire
energy spectrum concomitant with a macroscopic piling up
of states at the hinges. Second, we find corner modes on
two geometries of the breathing kagome lattice, the rhombus
and the triangle. Interestingly, in the case of the rhombus the
open boundary conditions lead to the appearance of additional
biorthogonal bulk states in a regime that is traditionally
associated with edge bands. For the triangle geometry, how-
ever, no such effect is observed, but instead the corner states
disappear to the bulk first via an edge transition, which has no
counterpart in the Hermitian limit. In each case we show that
these features can be naturally understood at a microscopic
level by analyzing the biorthogonal set of exact analytical
expressions for the higher-order boundary states.

Non-Hermitian chiral hinge insulator. We start by studying
the lattice in Fig. 1(a) with open boundaries in two directions
while being periodic in the third dimension parametrized by
t . Each red-blue and green-black chain represents a one-
dimensional charge pump, and the Hamiltonian of each of
these chains, explicitly shown in Fig. 1(a), corresponds to the
Rice-Mele model in the Hermitian limit [44], such that these
chains individually realize a Chern insulator with opposite
Chern number on the differently colored chains. The Her-
mitian limit of this model is known to have exactly solvable
temporal chiral hinge states, which are protected by a mirror
Chern number [13,45].

We implement non-Hermiticity by introducing a preferred
hopping direction between unit cells on the individual red-
blue and green-black chains. Explicitly, we change the mag-
nitude of hopping to the right with respect to hopping to the
left yielding a nonreciprocal tight-binding model [46]. The
chains are then coupled to each other in a Hermitian fashion
[cf. Fig. 1(a)], such that the non-Hermiticity only presides in
one direction.
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FIG. 1. (a) Schematic depiction of the lattice with A, B, B′, and B′′ sublattices in red, blue, green, and black, respectively, and the unit cells
labeled by m1 and m2. The red-blue and green-black chains are coupled to each other via nearest-neighbor hopping, s, and the Hamiltonian on
each of these two types of chains has the on-site term (−)sin(t ), and hopping terms a±(t ) = −t1 + δ cos(t ) ± γ /2 and b(t ) = −t1 − δ cos(t ),
where t1, γ , and δ are nearest-neighbor hopping parameters. (b) The absolute value of the energy with γ = 2.5, t1 = 1.5, δ = 1, s = 0.25,
and M1 = M2 = 11 as a function of t is shown in blue (gray) for the open (periodic) system. The orange (green) dashed lines correspond to
|rR,1| = 1 (|rL,1| = 1), while the black solid lines correspond to |rL,1rR,1| = 1. (c) The localization of the hinge state [in red in (b)] on a lattice
with M1 = M2 = 11 computed using the biorthogonal (top row), right (middle), and left (bottom) expectation values of the projection operator.

The absolute value of the band spectrum for this model
with open boundary conditions is shown in Fig. 1(b) [47],
where the chiral hinge state is shown in red, the bulk bands
in blue, and the bunched blue bands appearing in the gap
are traditionally identified as surface bands. While the open
spectrum is that of a chiral hinge insulator, the periodic
Bloch spectrum indicated in gray is semimetallic, thus man-
ifesting a striking breakdown of conventional bulk-boundary
correspondence.

To rationalize this behavior we study the distribution of
bulk bands En in the lattice at a specific cut of t in Fig. 1(b)
by computing 〈�m1,m2〉n

αα′ ≡ 〈�α,n|�m1,m2 |�α′,n〉 for α, α′ ∈
{R, L}, where �m1,m2 = ∑

β∈{A,B,B′,B′′} |eβ,m1,m2〉 〈eβ,m1,m2 | is a
projection operator onto each site in unit cell {m1, m2} and
|�R,n〉 (|�L,n〉) the associated right (left) wave function. The
quantities 〈�m1,m2〉n

RR and 〈�m1,m2〉n
LL are similar to what is

known in ordinary quantum mechanics as the expectation
value, and we show them in the left and middle panel of
Fig. 2(a), respectively. We see that the bulk state is localized to
the right and left hinge, respectively, such that the breaking of

FIG. 2. Distribution of the (a) bulk and (b) surface band with
energies (a) |E | = 2.0264 and (b) |E | = 0.5345 for the same parame-
ters as in Fig. 1(b) for the cut t = −0.5. The left and middle columns
show the localization of the right and left wave function individually,
and the right column shows the biorthogonal localization.

bulk-boundary correspondence indeed goes hand in hand with
the piling up of states, as was also observed in Refs. [40–42].
Interestingly, if we now consider the biorthogonal expecta-
tion value 〈�m1,m2〉n

LR, we find the distribution displayed in
the right panel of Fig. 2(a), which is in accordance with
expected bulk-band behavior. Therefore, we label the blue
bands biorthogonal bulk bands. Similarly, when studying the
localization of a surface band, i.e., a band that belongs to the
bunched blue bands in the band gap, we find that the right
wave function is localized to the top and bottom hinge [cf. left
panel of Fig. 2(b)] while the left wave function lives on the
left hinge [cf. middle panel of Fig. 2(b)]. The biorthogonal
expectation value, however, reveals that the weight of the
state is indeed distributed on the surfaces [cf. right panel
of Fig. 2(b)], and we call this a biorthogonal surface state.
While we thus observe anomalous “skin” behavior when
investigating the spectrum with reference to its right (or left)
wave functions only, we observe an “ordinary” distribution
of the bulk and surface states when approaching the prob-
lem from a biorthogonal perspective. These observations are
natural considering that the relation between the eigenstates,
the Hamiltonian, and the energies involves the left and right
eigenstates as En = 〈H〉n

LR.
Next we turn to the hinge state [red in Fig. 1(b)], and

generalize Refs. [13,45] to write down the exact solutions

|ψα〉 = Nα

∑

m1,m2

(rα,1)m1 (rα,2)m2 c†
A,m1,m2

|0〉 , (1)

which have the remarkable property that they may localize on
opposite hinges depending on α ∈ {R, L} which labels the right
and left eigenvectors. Here m1 and m2 label the unit cells in the
lattice with a total of M1M2 unit cells, Nα is the normalization
constant, c†

A,m1,m2
creates a particle on the A sublattice [in red

in Fig. 1(a)] in unit cell {m1, m2}, and rα,1 and rα,2 can be
computed analytically and read rR,1 = −−t1+cos(t )−γ /2

−t1−cos(t ) , rL,1 =
−−t1+cos(t )+γ /2

−t1−cos(t ) , rR,2 = rL,2 = −1. These wave functions
have zero amplitude on all blue, green, and black sites, and
the associated eigenenergy corresponds to the eigenenergy on
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FIG. 3. (a) Schematic depiction of the lattice with A, B, and B′ sublattices in red, blue, and green, respectively, and the unit cells labeled by
m1 and m2. In the Hamiltonian the sites in the “up” triangles are connected via a nearest-neighbor hopping t1, while in the “down” triangles, the
nearest-neighbor hopping in a clockwise fashion is t+ = t2 + γ /2, and t− = t2 − γ /2 in the counterclockwise motion. (b) The absolute value
of the energy with t2 = 1, γ = 1.5, and M1 = M2 = 20 as a function of t1 is shown in blue (gray) for the open (periodic) system. The orange
(green) dashed lines correspond to |rR,1| = |rL,2| = 1 (|rR,2| = |rL,1| = 1), while the black solid lines correspond to |rL,1rR,1| = |rL,2rR,2| = 1.
(c) The localization of the corner state [in red in (b)] on a lattice with M1 = M2 = 6 computed using the biorthogonal (top row), right (middle),
and left (bottom) expectation values of the projection operator.

the A sublattice, which is E0 = − sin(t ) in accordance with the
red band in Fig. 1(b). Depending on the values of |rR,1| and
|rL,1|, the state |ψα〉 behaves as a hinge or a bulk state [48].
In particular, the right (left) wave function is equally localized
on each A sublattice, in which case it behaves as a bulk state,
when |rα,1| = 1 corresponding to the orange and green dashed
lines in Fig. 1(b). This, however, is in disagreement with the
attachment of the red band to the bulk bands, where there is
indeed a small gap between the red band and the blue surface
bands at the orange lines.

Instead, we consider |rL,1rR,1| = |rL,2rR,2| = 1, and find
an accurate prediction for hinge-state attachment to the bulk
[cf. the black solid lines in Fig. 1(b)]. This quantity follows
from considering the biorthogonal expectation value of the
projection operator 〈�m1,m2〉0

LR using the solutions in Eq. (1)
[16], which is plotted in the top row of Fig. 1(c) for three
cuts in t . Indeed, we see that while the biorthogonal product
indicates bulk-band behavior in the middle column, the right
and left wave functions shown in the middle and bottom rows
of Fig. 1(c), respectively, suggest the band is localized to the
hinge. We thus find that to accurately describe the physics of
a non-Hermitian system with open boundary conditions, one
has to invoke a biorthogonal bulk-boundary correspondence
[16]. Moreover, we find that the hinge state only changes lo-
calization upon attachment to the bulk bands in full agreement
with the Hermitian version of this model [13].

Breathing kagome lattice. Next we study the two-
dimensional, breathing kagome lattice in the geometry of a
rhombus [cf. Fig. 3(a)] and a triangle [cf. Fig. 4(a)]. We
implement non-Hermiticity in these lattices by changing the
magnitude of the hopping terms in the down triangles such
that the hopping amplitude in the clockwise direction, t+ =
t2 + γ /2, is unequal to the hopping in the anticlockwise
direction, t− = t2 − γ /2 while keeping the hopping on up
triangles, t1, nonchiral. The real-space Hamiltonian for both
models is explicitly shown in Figs. 3(a) and 4(a), respectively.
The Hermitian versions of these systems were previously
studied in Refs. [12,13,49,50].

We start by focusing on the rhombus, and plot the absolute
value of the energy spectrum in Fig. 3(b) as a function of t1 for
fixed t2 and γ with the bulk bands in blue, and the red band
corresponding to a zero-energy corner mode [47]. In addition,

we plot the spectrum with periodic boundary conditions in
gray, and find that it is qualitatively in accordance with the
spectrum in blue. This can be understood from the fact the
bulk states can move around in loops in the lattice, such that
they do not get trapped, and thus do not pile up. Nevertheless,
when considering the behavior of the blue bands that do not
overlap with the gray bands, which are thus expected to be
associated with surface states, we find that some of these states
are in fact additional biorthogonal bulk states [46].

To study the behavior of the zero-energy corner mode in
more detail, we consider its associated exact wave-function
solution given in Eq. (1) with

rR,1 = rL,2 = − t1
t2+γ /2

, rR,2 = rL,1 = − t1
t2−γ /2

. (2)

Depending on the values of |rα,1| and |rα,2| with α ∈ {R, L},
the state |�α〉 thus behaves as a corner, edge, or bulk state.
Considering |rR,1| = |rR,2| = 1 and |rL,1| = |rL,2| = 1, which
would predict a bulk state in the framework of ordinary
quantum mechanics, we find solutions corresponding to the
orange and green dashed lines, respectively, in Fig. 3(b), and
clearly see that this does not predict any particular behavior in
the spectrum. Instead, considering the biorthogonal delocal-
ization criteria for 〈�m1,m2〉0

LR, corresponding to |rL,1rR,1| =
|rL,2rR,2| = 1, we obtain the black solid lines in Fig. 3(b), in
complete agreement with attachment to the bulk bands.

To corroborate this picture we plot 〈�m1,m2〉0
αα′ with α, α′ ∈

{R, L} in Fig. 3(c) for four different choices of t1. This reveals
several aspects. First of all, the right and left wave functions
(middle and bottom row, respectively) individually suggest a
transition of the corner state from one corner to the other via
the edges, while the biorthogonal state (top row) reveals a
transition via the bulk. Indeed, only the latter interpretation
is in accordance with the Hermitian version of this model
[12,13,49]. Secondly, we study the blue bands to which the
corner state attaches at |rL,1rR,1| = |rL,2rR,2| = 1, and find that
they are edge bands in the context of their right and left wave
functions, while admitting a bulk channel when considering
their biorthogonal properties [46], i.e., they correspond to the
aforementioned biorthogonal bulk states. This thus explains
the migration of the biorthogonal corner state into the bulk, as
opposed to it being transmitted via the edges in the case of the
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FIG. 4. (a) Schematic depiction of the lattice with A, B, and B′ sublattices in red, blue, and green, respectively, and the unit cells labeled by
m1 and m2. The Hamiltonian is explicitly depicted, and the same as in Fig. 3(a). (b) The absolute value of the energy with t2 = 1, γ = 1.5, and
M1 = M2 = 20 as a function of t1 is shown in blue (gray) for the open (periodic) system. The black dashed lines correspond to |rR,2| = |rL,1| =
1. (c) The localization of the lowest energy band on a lattice with M1 = M2 = 6 for different cuts in t1 using the biorthogonal (top row), right
(middle), and left (bottom) expectation values of the projection operator.

right and left wave functions. Third, we observe that the right
(left) wave function of the corner state localizes to the top left
(bottom right) corner for t = 0.55 [cf. third column from the
left in Fig. 3(c)], while the corner mode is well separated from
the other bands in the spectrum. This is noteworthy because
in the Hermitian limit, localization of the corner state to these
specific corners is not possible [13,49].

Next, we turn to the triangular geometry in Fig. 4(a). We
plot the absolute value of the band spectrum in Fig. 4(b)
with the bands for open (periodic) boundary conditions in
blue (gray) [47], and again find that the bulk spectrum is
not qualitatively rearranged signaling the absence of the skin
effect. As in the Hermitian case [12], there is a threefold
degenerate zero-energy mode for a certain parameter regime.
To understand the behavior of this mode in more detail, we
note that the solutions in Eq. (1) with rα,1 and rα,2 given in
Eq. (2) in the large system limit can be mapped onto each
corner of the triangle for |rα,1|, |rα,2| < 1. Once |rα,1| and/or
|rα,2| become(s) equal to or larger than 1, the states |ψα〉 leak
into the edge or the bulk such that the three corner states start
to interfere with each other. This renders the predictive power
of Eq. (1) invalid, while also resulting in the lifting of the zero-
energy mode away from zero, which, assuming t1, t2, γ ∈ R,
indeed happens once |t1| = |t2 − γ /2|, i.e., |rR,2| = |rL,1| = 1
[cf. the black dashed lines in Fig. 4(b)]. Studying the local-
ization of the lowest-lying energy mode for different choices
of t1 in Fig. 4(c), we see that the right, left, and biorthogo-
nal distributions predict the same qualitative behavior [46].
Indeed, in the left column we consider t1 = 0.15 for which
the lowest-energy mode is the zero-energy corner state, and
see that they are equally distributed over the three corners.
When investigating the distribution of the states when they
attach to the edge bands [cf. black dashed lines in Fig. 4(b)],
we indeed see edge band behavior, while attachment to the

bulk bands results in bulk-band behavior [cf. right column
in Fig. 4(c)]. In sharp contrast to the Hermitian version of
this model [12], we find that there is a corner to edge to
bulk transition, which confirms the prediction following from
Eqs. (1) and (2) that the corner mode first attaches to the
edge states before merging with the bulk bands. This behavior
can be understood from symmetry arguments—the threefold
rotation dictates the same behavior for all three corner states,
which due to the presence of non-Hermitian terms necessarily
leak into the edge before they enter the bulk.

Conclusion. We have considered three explicit examples
of non-Hermitian extensions of second-order topological sys-
tems, and shown that while conventional bulk-boundary cor-
respondence may be strongly broken, we can exploit the
biorthogonal properties of these models to fully reconcile
their behavior also in the presence of a skin effect. By
making use of exact solutions for the second-order boundary
states [cf. Eq. (1)], we explicitly studied the localization of
these states both in the context of their right and left wave
functions as well as their biorthogonal product, and related
that to the spectrum with open boundary conditions. More-
over, by studying the distribution of edge/surface and bulk
bands of these models we showed that additional biorthog-
onal bulk bands may appear when taking open boundary
conditions, and that the interplay between edge, corner, and
bulk can be qualitatively distinct from that of their Hermitian
counterparts even in the absence of the non-Hermitian skin
effect.
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