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Asymmetric coupling amplitudes effectively create an imaginary gauge field, which induces a non-Hermitian
Aharonov-Bohm (AB) effect. Nonzero imaginary magnetic flux invalidates the bulk-boundary correspondence
and leads to a topological phase transition. However, the way of non-Hermiticity appearance may alter the
system topology. By alternatively introducing the non-Hermiticity under symmetry to prevent nonzero imaginary
magnetic flux, the bulk-boundary correspondence recovers and every bulk state becomes extended; the bulk
topology of the Bloch Hamiltonian predicts the (non)existence of edge states and topological phase transition.
These are elucidated in a non-Hermitian Su-Schrieffer-Heeger model, where chiral inversion symmetry ensures
the vanishing of imaginary magnetic flux. The average value of Pauli matrices under the eigenstate of chiral-
inversion-symmetric Bloch Hamiltonian defines a vector field; the vorticity of topological defects in the vector
field is a topological invariant. Our findings are applicable in other non-Hermitian systems. We first uncover the
roles played by the non-Hermitian AB effect and chiral inversion symmetry for the breakdown and recovery
of bulk-boundary correspondence, and develop new insights for understanding the non-Hermitian topological
phases of matter.
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Introduction. Topological theory has been well established
in condensed-matter physics [1–32] and recent experimental
progress in optics boosts the development of topological
photonics [33–41]. The existence of gapless edge states of
a system under the open boundary condition (OBC) is pre-
dictable from the change of topological invariants associated
with the bulk topology of the system under the periodical
boundary condition (PBC), known as the (conventional) bulk-
boundary correspondence, which is ubiquitously applicable in
Hermitian systems.

In parallel, non-Hermitian physics exhibits considerable
intriguing features [42–75]; the unexpected novel interface
states appear between non-Hermitian periodic media with
distinct topologies [76–89]. These stimulate the studies of
topological phases and edge states in non-Hermitian systems
[90–117]. Non-Hermitian band theory and the topological
characterization are developed employing the left and right
eigenstates [48,52]; the Chern number, generalized Berry
phase, and winding numbers are quantized as topological
invariants [107–109].

Remarkably, the bulk-boundary correspondence [118]
is invalid in certain non-Hermitian topological systems
[119–121]: Systems under PBC and OBC have dramati-
cally different energy spectra, and all the eigenstates local-
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ize near system boundaries (the non-Hermitian skin effect)
[122–124]. These have received great research interests in
non-Hermitian systems of the asymmetric Su-Schrieffer-
Heeger (SSH) model, topological insulators, and nodal-line
semimetals [122–131]. Biorthogonal [122] and non-Bloch
bulk-boundary correspondences [123] are suggested. In con-
trast, non-Hermiticity does not inevitably destroy the bulk-
boundary correspondence [77,78,93–97], which is verified
in a parity-time-symmetric non-Hermitian SSH model with
staggered couplings and losses [85–92]. Questions arise:
Why does bulk-boundary correspondence fail in certain non-
Hermitian systems? What roles do non-Hermiticity and sym-
metry play in the breakdown of bulk-boundary correspon-
dence? How to characterize the topological properties and
understand the topological invariant without (conventional)
bulk-boundary correspondence?

In this Rapid Communication, we first report that chiral-
inversion symmetry plays an important role for the bulk-
boundary correspondence in the non-Hermitian system of a
non-Hermitian SSH model with asymmetric coupling, which
leads to a non-Hermitian Aharonov-Bohm (AB) effect with
an imaginary magnetic flux under PBC and a non-Hermitian
skin effect under OBC without chiral inversion symmetry.
The imaginary magnetic flux results in a complex spectrum
and a topological phase transition, but it disappears under
OBC; the OBC spectrum significantly differs from the PBC
spectrum, and the bulk-boundary correspondence fails. The
non-Hermitian AB effect vanishes if the asymmetry is alterna-
tively introduced without breaking chiral inversion symmetry.
The bulk-boundary correspondence is valid; a topological in-
variant is constructed from the system bulk with the imaginary
gauge field removed, being the vorticity of band touching
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FIG. 1. Breakdown (recovery) of bulk-boundary correspondence
for the system without (with) chiral inversion symmetry from the
viewpoint of the non-Hermitian AB effect. Imaginary gauge field in-
duces nonzero (zero) imaginary magnetic flux in Ha (Hb) under PBC.
Topological invariant obtained from the bulk Bloch Hamiltonian of
system b is a Bloch (non-Bloch) topological invariant for system b
(a). Lattice size is N = 4n.

points as topological defects in the vector field defined from
the average values of Pauli matrices. Our findings are valid for
other non-Hermitian topological systems.

Topological phase transition induced by symmetry break-
ing. The Bloch Hamiltonian of a non-Hermitian system a
(Fig. 1) under PBC is

Ha(k) = (t1 + t2 cos k)σx + (t2 sin k − iγ )σy, (1)

where σx,y are the Pauli matrices. t2 is the intercell cou-
pling. Set μ = t1 − γ and ν = t1 + γ ; the asymmetric intra-
cell coupling amplitude (μ �= ν∗) raises the non-Hermiticity.
Non-Hermitian asymmetric coupling can be realized between
primary resonators evanescently coupled through an auxiliary
resonator [132–134], which has half perimeter gain and half
perimeter loss, leading to the amplification and attenuation
for the coupling amplitudes in opposite tunneling directions.
Implementation of asymmetric coupling with ultracold atoms
in an optical lattice is possible [124].

In the Hermitian case (γ = 0), system a holds chiral-
inversion symmetry

(SP )Ha(k)(SP )−1 = −Ha(−k), USPHaU
−1
SP = −Ha.

(2)

The constraints are for a combined chiral inversion symme-
try. SP and USP are unitary operators. Ha [Ha(k)] is the
Hamiltonian in the real space (k space). Two band touching
degeneracy points exist [Fig. 2(d)].

In the non-Hermitian case (γ �= 0), unlike the alternative
gain and loss [86–92], the asymmetric coupling breaks the
chiral inversion symmetry (Ha in Fig. 1). Taking μν > 0 as an

(b)

PBC PBC PBCOBC

(c) (d)(a)

FIG. 2. (a) [(b)] Energy spectrum for Ha (Hb) under PBC.
(c) Identical spectra of Ha and Hb under OBC with one intercell cou-
pling t2 missing, and (d) Ha and Hb under PBC in the Hermitian case
(γ = 0). The band touching exceptional points (degeneracy points)
are indicated by the cyan (green) hollow circles. The system param-
eters are N = 40, t2 = 1, and γ = 1/2 in (a)–(c).

illustration (see Supplemental Material A [135]) and rewritten

μ = √
μνe−φ, ν = √

μνeφ, (3)

where e−φ ≡ √
μ/ν [133,134,136], the asymmetric coupling

is expressed as a symmetric coupling
√

μν with Peierls
“phase” factor [37–41,137–143] of amplification/attenuation
e±φ [144], which indicates the presence of an imaginary
gauge field [132–134]. A non-Hermitian AB phase factor
of amplification/attenuation e±i(2niφ) is accumulated when a
particle is circling a loop in Ha under PBC, where 2niφ is the
imaginary magnetic flux [140–144]. The eigenvalues are

Ea,± = ±
√

t2
2 + μν + 2t2

√
μν cos(k + iφ), (4)

with k = πm/n, integer m ∈ [1, 2n] [Fig. 2(a)].
In contrast to a real magnetic flux that shifts k in the

momentum space without varying the dispersion relation
[140], the momentum changes to k + iφ [125,126,129] and
the spectrum becomes fully complex affected by imaginary
magnetic flux, which induces a topological phase transition
with band touching degeneracy points split into pairs of band
touching exceptional points (EPs) [Figs. 2(a) and 2(d)] [71]
that exhibit different topology [145–161]. Imaginary magnetic
flux is absent under OBC, thus the spectra and band touch-
ing points under PBC [Fig. 2(a)] and OBC [Fig. 2(c)] are
dramatically different [119–128]. The eigenstate amplitude
is one-way enlarged under OBC because of an imaginary
gauge field [133,134,162]; and all the eigenstates localize at
the system boundary (non-Hermitian skin effect [123–127]).
The localization length is ξ = φ−1 [163]. The inverse partici-
pation ratio (IPR)

∑
j |ψ j |4/(

∑
j |ψ j |2)2 of bulk states scales

as N−1 for small N , particularly for weak non-Hermiticity;
and becomes system size insensitive when the localization
dominates at large N (see Supplemental Material B [135]).

Bulk-boundary correspondence. Chiral inversion symme-
try holds when non-Hermiticity is alternatively introduced in
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system b (Hb in Fig. 1) [164]. Under symmetry protection,
two degeneracy points move without splitting into EP pairs
[Figs. 2(b) and 2(d)]. The eigenstates under OBC are sym-
metric/antisymmetric. All bulk states are extended and the
non-Hermitian skin effect disappears even though most bulk
states have complex eigenvalues (the IPR of the bulk states of
system b is inversely proportional to the system size [135]).
Although the significant difference between eigenstates, sys-
tems a and b, under OBC possess identical energy spectra (see
Supplemental Material C [135]), the imaginary gauge fields
do not affect OBC spectra [Fig. 2(c)]. These indicate that the
way of non-Hermiticity appearance affects system topology.
In particular, the non-Hermiticity solely induces nontrivial
topology at t1 = t2 [165].

The amplification and attenuation cancel in Hb. The com-
bined chiral inversion (SP) symmetry prevents the appear-
ance of nonzero imaginary magnetic flux and the bulk-
boundary correspondence is valid [Figs. 2(b) and 2(c)] (also
in Refs. [77,78,86–94], but is invalid in Refs. [119–130]
without chiral inversion symmetry), while individual chiral
and inversion symmetries do not necessarily hold separately
(see Supplemental Material D [135]). The (non)existence of
topologically protected edge states is predictable from the
bulk of system b,

Hb(k) =

⎛
⎜⎜⎜⎝

0
√

μνe−φ 0 t2e−ik

√
μνeφ 0 t2 0

0 t2 0
√

μνeφ

t2eik 0
√

μνe−φ 0

⎞
⎟⎟⎟⎠.

(5)

Through a similar transformation with only nonzero diago-
nal elements Uμν = diag(

√
ν,

√
μ,

√
μ,

√
ν), the imaginary

gauge fields (factors e±φ) are removed from Hb (see Supple-
mental Material E [135]); and we obtain UμνHb(k)U −1

μν , which
is equivalent to a two-site unit cell bulk hb(k) = (

√
μν +

t2 cos k)σx + (t2 sin k)σy. The eigenvalues are

Eb,± = ±
√

t2
2 + μν + 2t2

√
μν cos(k), (6)

where k = πm/n, m ∈ [1, 2n]. The bulk topology of hb(k)
correctly predicts the (non)existence of edge states in both
systems a and b under OBC (Fig. 1) [135]. Removing the
imaginary gauge field in system bulk gives hb(k), which is
identical with that found by solving the open system [123].

For γ = |r|eiθ (−π � θ � π ), the band gap closes at
(
t2
1 − |r|2)2 + 4t2

1 |r|2 sin2 θ = t4
2 , (7)

and cos2(k) = [t2
2 + t2

1 − |r|2 cos(2θ )]/(2t2
2 ). The finite size

effects appear in discrete systems (see Supplemental Material
F [135]). For real μ and ν at θ = 0, the band touching
points are degeneracy (exceptional) points at t2

1 = +(−)t2
2 +

γ 2 [122,123], being topological defects carrying integer (half-
integer) vorticity. The band touching EPs only appear for
γ 2 > t2

2 .
Topological invariant. Topology invariants are recently

constructed in non-Hermitian systems [94,107–109,112,123].
The Chern number defined via Berry curvature [94,108],
the vorticity defined via the complex energy [109], and the
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FIG. 3. Vector field F(k) = (〈σx〉, 〈σy〉) associated with Eb,+ of
hb(k) for (a) μν = t2

1 − γ 2 > 0 and (b) μν = t2
1 − γ 2 < 0. Red

(blue) circles indicate the topological defects with vortices (antivor-
tices), which appear at (k, t2) = (0, −√

t2
1 − γ 2) or (±π,

√
t2
1 − γ 2)

in (a) and at (k, t2) = (±π/2,±√
γ 2 − t2

1 ) in (b). (c) Phase diagram
for real γ . Two topological zero edge states exist in the blue region
−t2

2 < μν < t2
2 for one intercell coupling t2 missing. (d) Zero edge

states for systems a and b under OBC. The system parameters are
N = 40, t1 = 1/4, γ = 1/2, and t2 = 1.

generalized Berry phase defined via the argument of effective
magnetic field [107,108,112] are quantized. The vorticity of
topological defects in a vector field B(k) associated with the
Bloch Hamiltonian is a topological invariant [166,167]; we
generalize this vorticity to non-Hermitian systems through
defining a two-component vector field F(k) = (〈σx〉, 〈σy〉)
[Figs. 3(a) and 3(b)] that is composed of the average val-
ues of Pauli matrices under the eigenstates of hb(k). w =∮

L(2π )−1(F̂x∇F̂y − F̂y∇F̂x )dk characterizes the vorticity of
topological defects inside the loop L in the parameter plane
k =(k, t2), where F̂x(y) = Fx(y)/

√
F 2

x + F 2
y and ∇ = ∂/∂k,

which is in accord with that defined in the Brillouin zone of
a two-dimensional (2D) brick wall lattice (see Supplemental
Material E [135]). The varying direction of F(k) accumulated
is 2πw = ±2π (±π ) in Fig. 3(a) [Fig. 3(b)] if L encircles
a topological defect, the plus (minus) sign corresponds to
the vortex (antivortex); otherwise, if L does not encircle a
topological defect, the varying direction is 2πw = 0.

The phase diagram is plotted in Fig. 3(c) for real γ . For
μν > 0, the degeneracy points are at t2

2 − μν = 0. As non-
Hermiticity increases, the band gap inside two EPs [48,74,75]
with complex spectrum diminishes and closes at t1 = 0 when
γ 2 = t2

2 . μν = 0 (t1 = ±γ ) are EPs, where the eigenstates
are highly defective and fully constituted by two-state co-
alescences at energy ±t2. For μν < 0, t2

2 + μν = 0 yields
another boundary for the zero edge states determined from
band touching EPs. Two topological zero edge states exist in
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FIG. 4. Chiral inversion symmetric (a) non-Hermitian SSH
model of system b in Fig. 1 (Hb) with staggered gain and loss �

and (b) non-Hermitian Creutz ladder that is equivalent to (a).

the regions γ 2 − t2
2 < t2

1 < γ 2 + t2
2 for one intercell coupling

t2 vanishing under OBC [168].
Topological edge states. The bulk topology relates to

the (dis)appearance of edge states at the interfaces where
the topological invariant (w) changes. We consider systems
with complete unit cells (N = 4n) in which one t2 vanishes
(see Supplemental Material G for the case with a defective
unit cell [135]). In system b, two edge states localize on the
left and right boundaries, respectively, in all blue regions of
Fig. 3(c). In system a, this occurs only in region V; and both
edge states localize on the right (left) boundary in regions I
and III (II and IV).

For system b, the left edge state is ψ2 j = 0 and

ψ2 j+1 = −[(μ + ν) + (−1) j (μ − ν)]/(2t2)ψ2 j−1, (8)

at N 	 1. The right edge state is a left-right spatial reflection
of the left edge state [Fig. 3(d)]. Anomalous edge states
localize in one unit cell at system boundary at the EPs (t2

1 =
γ 2) [107,119,120]. At t1 = −γ , the left (right) edge state
is ψ1 = 1 (ψN = 1); at t1 = γ , the left edge state is ψ1 =
−(+)ψ3 = 1 and the right edge state is ψN = −(+)ψN−2 = 1
when t1/t2 > 0 (t1/t2 < 0).

In contrast, for system a, the left edge state is ψ2 j = 0 and
ψ2 j+1 = (−ν/t2)ψ2 j−1; the right edge state is ψ2 j−1 = 0 and
ψN−2 j = (−μ/t2)ψN+2−2 j with a different decay rate −μ/t2
[Fig. 3(d)]. The imaginary gauge field induces imbalanced
probability distributions between edge states. The green (red)
ribbon in Fig. 3(c) indicates |μ/t2| < 1 (|ν/t2| < 1 ); both
edge states localize on the right (left) boundary. The edge
states are ψ1 = 1 (ψN = 1) for t1/t2 < 0 (t1/t2 > 0) at the
EPs.

Discussion and conclusion. Figure 4(a) depicts the chiral-
inversion-symmetric non-Hermitian SSH model of system b
with staggered gain and loss �, where chiral symmetry and in-
version symmetry are not separately held. The system shown
in Fig. 4(a) is equivalent to the chiral inversion symmetric
non-Hermitian Creutz ladder [Fig. 4(b)]. The Creutz ladder

has a π magnetic flux in each plaquette [169]. The Creutz
ladder in Refs. [119–121] is equivalent to system a through a
similar transformation U = I2n ⊗ (iσx + I2) (see Supplemen-
tal Material H [135]), where bulk-boundary correspondence
fails because the gain and loss associated with real magnetic
flux breaks chiral inversion symmetry and effectively creates
imaginary magnetic flux under PBC.

Time-reversal (inversion) symmetry prevents nonzero real
(imaginary) magnetic flux. An attenuation (amplification)
factor e−φ accompanied with the corresponding amplification
(attenuation) factor eφ in the direction concerned can
prevent nonzero imaginary magnetic flux. This is
enabled under inversion symmetry (P) or combined
inversion symmetries such as chiral inversion (SP)
symmetry, charge-conjugation inversion (CP) symmetry,
and parity-time (PT ) symmetry. For a 2D non-Hermitian
Chern insulator (m + t cos kx + t cos ky)σx + (t sin kx +
iγ )σy + t sin kyσz [130], we write its energy bands as

±
√

μν + t2 + t2 sin2 ky + 2t
√

μν cos(kx + iφ), where we set
μ = m + t cos ky + γ , ν = m + t cos ky − γ , and

√
μ/ν =

e−φ (for μν > 0). An imaginary magnetic flux exists in
the x direction, but not in the y direction; a considerable
difference between PBC and OBC spectra is observed
in the x direction [130]. Introducing the non-Hermiticity
under inversion symmetry prevents nonzero imaginary
magnetic flux under PBC because of the cancellation
between amplification and attenuation factors e±φ in the
x direction and enables the bulk-boundary correspondence.
By applying the same procedure done for the non-Hermitian
SSH model of system b, we can obtain an equivalent bulk
Bloch Hamiltonian hb,CI (kx, ky) = (

√
μν + t cos kx )σx +

(t sin kx )σy + (t sin ky)σz after removing the imaginary gauge
field (see Supplemental Material I [135]). The energy
bands are ±

√
μν + t2 + t2 sin2 ky + 2t

√
μν cos kx. The bulk

topology of hb,CI (kx, ky) correctly predicts the topological
phase transition and the (non)existence of edge states for the
Chern insulator under OBC.

Bulk-boundary correspondence fails for nonzero imagi-
nary magnetic flux under PBC if the flux vanishes under OBC;
the bulk-boundary correspondence recovers by alternatively
introducing non-Hermiticity under symmetry, which prevents
nonzero imaginary magnetic flux; and a topological invariant
can be constructed from the bulk Bloch Hamiltonian. The
non-Bloch topological invariant and exotic bulk-boundary
correspondence [123,124] are elaborated from the viewpoint
of (conventional) bulk-boundary correspondence. Our find-
ings provide new insights from non-Hermitian AB effect and
shed light on non-Hermitian topological phases of matter.
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Spawning rings of exceptional points out of Dirac cones,
Nature (London) 525, 354 (2015).

[154] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik,
F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter,
Dynamically encircling an exceptional point for asymmetric
mode switching, Nature (London) 537, 76 (2016).

[155] H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Topological
energy transfer in an optomechanical system with exceptional
points, Nature (London) 537, 80 (2016).

[156] D. Heiss, Circling exceptional points, Nat. Phys. 12, 823
(2016).

[157] A. U. Hassan, B. Zhen, M. Soljačić, M. Khajavikhan, and
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