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We theoretically study the proximity spin-orbit coupling (SOC) in graphene on a transition-metal dichalco-
genides (TMDC) monolayer stacked with arbitrary twist angles. We find that the relative rotation greatly
enhances the spin splitting of graphene, typically by a few to ten times compared to the nonrotated geometry, and
the maximum splitting is achieved around 20◦. The induced SOC can be changed from the Zeeman type to the
Rashba type by rotation. The spin splitting is also quite sensitive to the gate-induced potential, and it sharply rises
when the graphene’s Dirac point is shifted toward the TMDC band. The theoretical method does not need the
exact lattice matching and it is applicable to any incommensurate bilayer systems. It is useful for the twist-angle
engineering of a variety of van der Waals proximity effects.
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I. INTRODUCTION

The physical properties of two-dimensional (2D) mate-
rial are generally sensitive to the interference with other
materials placed in contact. In recent years, a great deal
of experimental and theoretical efforts have been made to
explore the proximity-induced phenomena in van der Waals
heterostructures consisting of different 2D crystals [1]. In
particular, it was shown that the negligibly small spin-orbit
coupling (SOC) of intrinsic graphene can be significantly
enhanced by superimposing on the surface of transition-metal
dichalcogenides (TMDC) [2–11], and it is expected to be
useful to realize spintronic manipulation in graphene.

In the studies on the proximity effect on 2D materials,
however, the importance of the relative lattice orientation has
often been overlooked. The previous theoretical calculations
of proximity spin-orbit effects of the graphene/TMDC system
are limited to the nonrotated geometry [3–6,12]. On the other
hand, the sensitive dependence on the relative twist-angle θ

was noticed in various 2D heterostructures, and controlling
θ is expected to be powerful means of manipulating their
electronic properties [13,14]. In graphene on a hexagonal
BN system, for instance, the moiré interference pattern gives
rise to the formation of the secondary Dirac points and the
miniband structure [15–23]. The twisted bilayer graphene also
exhibits the dramatic angle-dependent phenomena, such as the
flat band formation [24–31] and the emergent superconductiv-
ity [32,33]. For a graphene/TMDC heterostructure, the twist-
angle dependent band structure was theoretically simulated
for several commensurate angles by the density functional
theory (DFT) [34–36], and it is also experimentally probed
[37–40]. However, the θ dependence of spin-orbit coupling
induced on graphene remains still unclear. The twist-angle
dependence of SOC was studied for the graphene/topological
insulator heterostructures, where the commensurate structures

of θ = 0◦ and 30◦ are compared [41]. It is generally hard to
consider arbitrary twist angles in the DFT calculation, because
it requires exact lattice matching to have a finite unit cell.

In this paper we theoretically study the proximity SOC ef-
fect in graphene-TMDC heterostructures with arbitrary twist-
angles θ , and reveal the angle dependence of SOC for various
different TMDCs. Using the tight-binding model and the
perturbational approach, which do not need the commensu-
rate lattice matching, we obtain the effective Hamiltonian of
graphene as a continuous function of θ . We find that the
relative rotation greatly enhances the spin splitting, typically
by a few to ten times compared to the nonrotated geometry
(θ = 0). The maximum splitting is achieved around θ ∼ 20◦,
where the graphene’s Dirac cone is strongly hybridized with
Q valley of TMDC. We also show that the induced SOC is
composed of the Zeeman-like term and the rotated Rashba-
like term, and the relative magnitude can be controlled by
rotation. Finally, we demonstrate that the spin splitting is quite
sensitive to the relative band energy between graphene and
TMDC, and it sharply rises when the graphene’s Dirac point is
shifted toward the TMDC band by applying the gate voltage.
The theoretical method proposed here is applicable to any
incommensurate bilayer systems where the DFT calculation
cannot be used, and therefore it considerably extends the
applicability of the theoretical framework to a wide variety
of van der Waals heterostructures.

II. THEORETICAL METHODS

A. Lattice structure and the Bloch basis

We consider monolayer graphene placed on the top
of a TMDC monolayer. Graphene and TMDC are two-
dimensional honeycomb lattices with different lattice periods,
aG = 2.46 Å for graphene and aT for TMDC given in Table I.
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TABLE I. List of parameters for TMDCs and graphene-TMDC
bilayers used in this work (see the text).

MoS2 MoSe2 WS2 WSe2

aT (Å) 3.18 [42] 3.32 [42] 3.18 [42] 3.32 [42]
w (Å) 3.13 [42] 3.34 [42] 3.14 [42] 3.35 [42]
d (Å) 3.37 [42] 3.41 [43] 3.41 [3] 3.42 [3]
ET − EG (eV) 0.02 [4] 0.6 [43] 0.12 [3] 1.06 [3,44]

We define the stacking geometry starting from a nonrotated
arrangement with parallel bond directions, and then rotating
TMDC by the twist-angle θ around the common center of
hexagon as in Fig. 1(a). The lattice structure has the C3 (120◦)
rotational symmetry with respect to the rotation center. We ne-
glect the degree of freedom of the in-plane parallel translation
between TMDC and graphene, since in an incommensurate
system it can always be incorporated with the shift of the
origin [45].

The lattice vectors of graphene are then given by a1 =
aG(1, 0) and a2 = aG(1/2,

√
3/2), and those of TMDC are by

ã1 = RaT(1, 0) and ã2 = RaT(1/2,
√

3/2), where R = R(θ )
is the rotation matrix. The unit cell area is S = |a1 × a2|
and S̃ = |ã1 × ã2| for graphene and TMDC, respectively.
The reciprocal lattice vectors a∗

1, a∗
2, ã∗

1, ã∗
2 are defined by

ai · a∗
j = ãi · ã∗

j = 2πδi j . We define d as the distance be-
tween the graphene layer and the top chalcogen layer, and
w as the distance between top and bottom chalcogen layers.
The values of d and w depend on TMDCs as shown in
Table I.

We model graphene by the tight-binding model of carbon
pz orbitals, where the sublattice is labeled as X = pA

z , pB
z

for A and B sites, respectively. For TMDC, we adopt the
tight-binding model including three p orbitals for a chalco-
gen atom and five d orbitals for a transition-metal atom
[42]. The orbitals in a TMDC unit cell is labeled by X̃ =
dz2 , dxy, dx2−y2 , dxz, dyz, pt

x, pt
y, pt

z, pb
x, pb

y, pb
z , where t and b

represent top and bottom chalcogen layers. The positions of

FIG. 1. (a) Top view and (b) the side view of graphene on TMDC
monolayer with twist-angle θ .

the orbitals are given by

RX = n1a1 + n2a2 + τX (graphene),

RX̃ = ñ1ã1 + ñ2ã2 + τX̃ (TMDC), (1)

where ni and ñi are integers, and τX and τX̃ are the sublattice
position inside the unit cell. Specifically, they are expressed
as τ pA

z
= −τ1, τ pB

z
= τ1 for graphene, and τX̃ = −τ̃1 − (d +

w/2)ez for the transition-metal d orbitals and τX̃ = τ̃1 −
dez, τ̃1 − (d + w)ez for the top and bottom charcogen p
orbitals, respectively, where τ1 = (−a1 + 2a2)/3 and τ̃1 =
(−ã1 + 2ã2)/3.

The Hamiltonian is spanned by the Bloch bases,

|k, X, s〉 = 1√
N

∑
RX

eik·RX |RX , s〉 (graphene),

|k̃, X̃ , s̃〉 = 1√
Ñ

∑
RX̃

eik̃·RX̃ |RX̃ , s̃〉 (TMDC), (2)

where s, s̃ are the spin indexes, k and k̃ are the two-
dimensional Bloch wave vectors parallel to the layer, and
N = Stot/S and Ñ = Stot/S̃ are the number of unit cells of
TMDC and graphene, respectively, in the total system area
Stot .

B. Tight-binding Hamiltonian

The total tight-binding Hamiltonian is expressed as H =
HG + HT + Hint, where HG and HT are the Hamiltonian for
the intrinsic graphene monolayer and TMDC monolayer, re-
spectively, and Hint is for the coupling between graphene and
TMDC. For HG, we use the standard tight-binding model of
carbon pz orbitals [46,47]. For HT, we adopt the hopping
parameters based on the first-principles calculation [42] where
the spin-orbit coupling is included by the on-site L · S term for
each atom. The on-site energy of the TMDC atoms relative
to the carbon atoms is extracted from the relative energy
ET − EG from the graphene Dirac point to TMDC conduction
band edges in the first-principles calculations [3,4,40,43,44],
which are listed in Table I.

For the interlayer interaction Hint , we assume that the trans-
fer integral from RX to RX̃ is expressed as −TX̃ X (RX̃ − RX ),
with the standard Slater-Koster parametrization [48] and the
exponential decay in the distance. Specifically, the transfer
integrals from a graphene’s pz orbital to TMDC’s p and d
orbitals are given by

−Tpx,pz (R) = exezVppσ − exezVppπ ,

−Tpy,pz (R) = eyezVppσ − eyezVppπ ,

−Tpz,pz (R) = e2
zVppσ + (

1 − e2
z

)
Vppπ ,

−Tdxz pz (R) =
√

3e2
z exVpdσ + ex

(
1 − 2e2

z

)
Vpdπ ,

−Tdyz pz (R) =
√

3e2
z eyVpdσ + ey

(
1 − 2e2

z

)
Vpdπ ,

−Tdxy pz (R) =
√

3exeyezVpdσ − 2exeyezVpdπ ,

−Tdx2−y2 pz (R) =
√

3

2
ez

(
e2

x − e2
y

)
Vpdσ − ez

(
e2

x − e2
y

)
Vpdπ ,
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−Td3z2−r2 pz (R) = ez
[
e2

z − (
e2

x + e2
y

)
/2

]
Vpdσ

+
√

3ez
(
e2

x + e2
y

)
Vpdπ , (3)

where −Tab(R) stands for the transfer integral from the orbital
b at the origin to the orbital a at the position R, and ei =
Ri/R (i = x, y, z). Vpaβ (R) is the transfer integral between
carbon p orbital and a (= p, d ) orbital of TMDC, arranged
in β (= σ, π ) configuration. Here we assume exponentially
decaying functions [26,49,50]

Vppβ (R) = V 0
ppβ e−(R−dC-Ch )/r0

C-Ch ,

Vpdβ (R) = V 0
pdβ e−(R−dC-M )/r0

C-M . (4)

Here dC-Ch (dC-M) is the reference bond length of a carbon
and chalcogen (transition-metal) atom, and the r0

C-Ch (r0
C-M)

is the characteristic decay length in the hopping amplitude.
The prefactors V 0

ppσ and V 0
ppπ are the hopping integrals at the

reference bond lengths, which are given by the Harrison’s
model [51]

V 0
ppσ = 2.22ηC-Ch

h̄2

md2
C-Ch

,

V 0
ppπ = −0.63ηC-Ch

h̄2

md2
C-Ch

,

V 0
pdσ = −3

√
15

2π
ηC-M

h̄2
√

rpr3
d

md2
C-M

,

V 0
pdπ = −3

√
5

2π
ηC-M

h̄2
√

rpr3
d

md2
C-M

. (5)

Here m is the bare electron mass, rp and rd are the radii of
p orbital and d orbitals, respectively, and ηC-Ch and ηC-M are
the fitting parameters (ηC-Ch = ηC-M = 1 in the original model
[51]). We adopt the parameters dC-S = 1.82 Å [52], dC-Se =
1.94 Å [53], dC-Mo = 2.059 Å [54], and dC-W = 2.2 Å [55].
rp = 6.59 Å for C, and rd = 1.231 and 1.268 Å for Mo and W,
respectively [51]. The decaying length r0

C-X and the amplitude
parameter ηC-X are tuned to reproduce the first-principles band
structures for MoS2 and WS2 at 0◦ rotation. Obtained values
are r0

C-S = 1.131 Å, r0
C-Se = 1.205 Å, r0

C-Mo = 1.280 Å, r0
C-W =

1.367 Å, and ηC-S = 1.26, ηC-Mo = 0.92, ηC-W = 0.30, which
are used throughout the paper.

C. Effective low-energy Hamiltonian with proximity SOC effect

Below we derive the low-energy effective Hamiltonian of
graphene with TMDC proximity effect using the second order
perturbation. The following approach is applicable to any 2D
heterostructures in which the interlayer coupling is written in
a distant-dependent tight-binding form of −TX̃ X (RX̃ − RX ).
The coupling between the Bloch states of graphene and that
of TMDC is given by [29,45]

〈k̃, X̃ , s̃|Hint|k, X, s〉
= −

∑
G,G̃

tX̃X (k + G)e−iG·τX +iG̃·τX̃ δk+G,k̃+G̃δs̃s. (6)

Here G = m1a∗
1 + m2a∗

2 and G̃ = m̃1ã∗
1 + m̃2ã∗

2 are reciprocal
lattice vectors of graphene and TMDC, respectively, tX̃X (q) is
the in-plane Fourier transform of the transfer integral defined
by

tX̃X (q) = 1√
SS̃

∫
TX̃X (r + zX̃X ez )e−iq·rd2r, (7)

where zX̃X = (τX̃ − τX ) · ez.
The Hamiltonian of graphene including the TMDC prox-

imity effect can be obtained by the second order perturbation
as Heff (k) = HG(k) + Veff (k), where

[Veff (k)]X ′s′,Xs =
∑
ñ,k̃

〈k, X ′, s′|Hint|ñ, k̃〉 〈ñ, k̃|Hint|k, X, s〉
EG − Eñ,k̃

.

(8)

Here EG is the energy of the graphene’s Dirac point,
and Eñ,k̃ and |ñ, k̃〉 are the eigenenergy and eigenstate of
HT, respectively, with the band index ñ (including the spin
degree of freedom) and the Bloch vector k̃. Note that |ñ, k̃〉
is written as a linear combination of |k̃, X̃ , s̃〉 of the same k̃.
The summation over k̃ in Eq. (8) is taken according to the
condition Eq. (6).

The low-energy Hamiltonian is obtained by expand-
ing Heff (k) around the valley center Kξ ≡ −ξ (2a∗

1 + a∗
2 )/3,

where ξ = ±1 is the valley index. Within the linear term,
HG is approximated by H (ξ )

G (k) = −h̄v(k − Kξ ) · (ξσx, σy),
where v is the band velocity of graphene, and σx and σy are
Pauli matrices for the sublattice space X = pA

z , pB
z [46,47].

For the proximity SOC term, we only take the zeroth order
Veff (Kξ ) ≡ V (ξ )

eff . Now that the transfer integral TX̃ X (R) atten-
uates exponentially and so does its Fourier transform tX̃X (q),
it suffices to keep only a few k̃’s in the summation of Eq. (8).
For k = Kξ , the dominant contribution comes from three
points, k̃ = Kξ + ξ ã∗

1, Kξ + ξ (a∗
1 + ã∗

2 ), Kξ + ξ (a∗
1 + a∗

2 −
ã∗

1 − ã∗
2 ), while the effect of other k̃’s are negligibly small.

In this way, the effective proximity potential can be obtained
by considering TMDC Bloch states at only three wave points,
and the corresponding computing cost is considerably low.

We can show that V (ξ )
eff can be written as

V (ξ )
eff = λ

2
ξsz + λR

2
e−iφsz/2(ξσxsy − σysx )eiφsz/2, (9)

where si (i = x, y, z) is the Pauli matrix for spin. It is explicitly
written in a matrix form,

V (+)
eff =

⎛
⎜⎜⎝

λ/2
λ/2 −iλRe−iφ

iλReiφ −λ/2
−λ/2

⎞
⎟⎟⎠,

V (−)
eff =

⎛
⎜⎝

−λ/2 iλRe−iφ

−λ/2
λ/2

−iλReiφ λ/2

⎞
⎟⎠, (10)

where the bases are arranged by order of (X, s) = (A,↑),
(B,↑), (A,↓), and (B,↓). The difference in the diagonal
elements λ leads to the spin splitting between spin up and spin
down, and the off-diagonal term λR mixes the different spins.
The term with λR is similar to the Rashba spin-orbit coupling
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FIG. 2. Spin-orbit parameters λ, λR, the central energy gap Egap, and the spin splitting Esplit , as a function of the twist-angle θ in graphenes
on (a) MoS2, (b) WS2, (c) MoSe2, and (d) WSe2 monolayer.

[5,56] but here the spin axis can be rotated by an angle φ on
the xy plane. The energy gap at the charge neutral point is
given by Egap = |λλR|/(λ2 + λ2

R)1/2. The spin splitting width
in large k is given by Esplit = (λ2 + λ2

R)1/2. The effective
Hamiltonian H (ξ )

eff = H (ξ )
G (k) + V (ξ )

eff is formally equivalent
with that of the asymmetric bilayer graphene [57,58], where
the spin up and down correspond to layer 1 and 2, respectively,
and λR and λ to the interlayer coupling and the interlayer
asymmetric potential, respectively.

The form of Eq. (9) is forced by the symmetry of the
system. The terms in Eq. (9) are generally allowed in the
time reversal symmetry T and the C3 symmetry. Actually,
the terms proportional to σz (different on-site energies at A
and B sites) [5] and ξσzsz (the Kane-Mele term) [56] are
also possible under T and C3, but in V (ξ )

eff it is prohibited
by the incommensurability between graphene and TMDC, as
explained in the Appendix. An additional space symmetry im-
poses a constraint on V (ξ )

eff . At θ = 0, the reflection symmetry
Rx : (x, y, z) → (−x, y, z) requires eiφ is real. At θ = 30◦, the
reflection symmetry Ry : (x, y, z) → (x,−y, z) requires real
eiφ and also λ = 0, i.e., the SOC is dominated by the Rashba

term. The detailed argument of the symmetry consideration is
presented in the Appendix.

III. NUMERICAL RESULTS

We numerically calculate V (ξ )
eff for MoS2, WS2, MoSe2,

and WSe2. Figure 2 summarizes the results, where λ, λR,
the central energy gap Egap, and the spin splitting Esplit are
plotted against the twist-angle θ . In Fig. 3 we present the band
structures for each system at the rotation angles θ = 0◦, 15◦,
and 30◦. In the band plots of MoS2 and WS2 at θ = 0◦, the
dotted green line indicates the first DFT calculations, from
which we extract the interlayer hopping parameters. For the
DFT calculation, we assume the approximate commensurate
lattice structure of which unit cell is comprised of a 3 × 3
supercell of MoS2 and a 4 × 4 of graphene, and use Quantum
Espresso [59,60] with the generalized gradient approximation
[61]. We can see that the effective model well reproduces the
DFT band structure.

For the angle dependence we find that λ and λR are greatly
enhanced by rotation, and they take the maximum around
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FIG. 3. Band structures for graphenes on (a) MoS2, (b) WS2, (c) MoSe2, and (d) WSe2 monolayer at the twist angles θ = 0◦, 15◦, and
30◦, where color indicates the expectation value of sz. In the band plots of MoS2 and WS2 at θ = 0◦, the dotted green line indicates the DFT
calculations.

θ ∼ 20◦. For WS2, in particular, the maximum splitting is
about 5 times as large as that of 0◦. At 30◦, the parameter λ

vanishes and the Veff is dominated by λR as expected. There
the band structure is formally equivalent to the symmetric
AB-stacked bilayer graphene, and the expectation value of
spin lies on the xy plane.

The enhancement of the spin splitting near 20◦ can be
understood by considering the second order process, Eq. (8).
The amplitude of Veff is related to the spin splitting of the

TMDC bands at k̃ points which are hybridized with the
graphene’s Dirac point. Figure 4(a) illustrates the positions
of the three dominant k̃’s for ξ = +, in WS2 with θ = 0◦,
17.9◦, and 30◦. Figure 4(b) presents the band structure of
WS2 with the vertical dashed lines indicating the k̃’s for the
three rotation angles. Now the lowest valence band of TMDC
makes the greatest contribution to Veff , as it is the closest to the
graphene’s Dirac point energy (black horizontal line), leading
to a small denominator in Eq. (8). We can see that the k̃ point
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FIG. 4. (Top) Position of three dominant k̃ points for ξ = +, in
WS2 with θ = 0◦, 17.9◦, and 30◦. Blue (green) hexagon represents
the first Brillouin zone of graphene (WS2). (Bottom left) Band
structure of WS2, where the vertical dashed lines indicate the k̃ for
the three rotation angles, and the black horizontal line is the energy
of graphene’s Dirac cone without gate voltage. (Bottom right) Plot
similar to Fig. 2, calculated for WS2 with ET − EG = −0.08 eV,
indicated by the blue dashed horizontal line in (b).

for 17.9◦ happens to be very close to the Q valley, where the
magnitude of the spin splitting is much greater than in other
angles. This qualitatively explains the sharp rise of λ and λR

around 20◦. Actually, the spin splitting can be even enhanced
by shifting the relative energy between graphene and TMDC.
Figure 4(c) plots the angle dependence of the spin splitting
of WS2 with ET − EG = −0.08 eV, where the graphene’s
Fermi energy (blue horizontal line) hits the bottom of the Q
valley. Although the Fermi energy is just a little higher than
in Fig. 2(b), the maximum spin splitting sharply increases
to 20 meV, about 10 times as big as in θ = 0, because the
denominator in Eq. (8) becomes very small. This suggests that
tuning of the spin-orbit coupling would be possible using the
external gate voltage.

Finally, the graphene under the proximity potential has
the nonzero valley Hall conductivity when the Fermi en-
ergy lies in the central gap. The Hall conductivity of
each valley sector can be calculated using the Berry

curvature as

σ (ξ )
xy = e2

h

∑
n∈occ.

∫
d2k
2π

∇k × an(k) = −e2

h
ξ sgn(λ), (11)

where an(k) = −i〈unk|∇k|unk〉 is the Berry connection, unk is
the Bloch function (eigenvector of H (ξ )

eff ) of the band n, and
occ. stands for the occupied valence bands (n = 1, 2). As a
result, the valley Hall conductivity becomes σ (+)

xy − σ (−)
xy =

−(2e2/h)sgn(λ).

IV. CONCLUSION

To conclude, we have studied the proximity spin-orbit
interaction in graphene-TMDC bilayers stacked with arbitrary
twist angles. By using the perturbational approach based on
the tight-binding model, we derived the effective Hamiltonian
of graphene as a continuous function of the twist-angle θ ,
and found that the magnitude of SOC is greatly enhanced
by the rotation. We also show that the SOC sharply rises
when the graphene’s Dirac point is shifted toward the TMDC
band, by applying the gate voltage. The theoretical method
proposed here does not need the exact lattice matching, so
that it is applicable to any incommensurate bilayer systems
which cannot be treated by the DFT calculation. It would be
useful for the twist-angle engineering of a wide variety of van
der Waals proximity effects, including ferromagnetism and
superconductivity.
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APPENDIX: SYMMETRY CONSIDERATION OF THE
INDUCED EFFECTIVE POTENTIAL ON GRAPHENE

Here we argue about the restriction on the effective spin-
orbit Hamiltonian V ±

eff in Eq. (9). Apart from the spin part, the
low-energy state of graphene is expressed by [46]

|ψ〉=
∑
ξ=±

⎡
⎣∑

RA

F ξ
A (RA)eiKξ ·RA |RA〉 +

∑
RB

F ξ
B (RB)eiKξ ·RB |RB〉

⎤
⎦,

(A1)

where RX (X = A, B) runs over the atomic positions of sub-
lattice X , |RX 〉 is the pz orbital at RX , and F ξ

X (r) is the
smooth envelop function of sublattice X and the valley ξ .
The state is represented by the four-component wave func-
tion F(r) = (F+

A (r), F+
B (r), F−

A (r), F−
B (r))T , where T is the

matrix transposition.
The time reversal operation T is written as

T |ψ〉 =
∑
ξ=±

⎡
⎣∑

RA

[
F ξ

A (RA)
]∗

e−iKξ ·RA |RA〉

+
∑
RB

[
F ξ

B (RB)
]∗

e−iKξ ·RB |RB〉
⎤
⎦
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=
∑
ξ=±

⎡
⎣∑

RA

[
F−ξ

A (RA)
]∗

eiKξ ·RA |RA〉

+
∑
RB

[
F−ξ

B (RB)
]∗

eiKξ ·RB |RB〉
⎤
⎦, (A2)

where we used −Kξ = K−ξ . In the four-component represen-
tation, this is written as

T

⎛
⎜⎜⎝

F+
A (r)

F+
B (r)

F−
A (r)

F−
B (r)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

F−
A (r)

F−
B (r)

F+
A (r)

F+
B (r)

⎞
⎟⎟⎠

∗

, (A3)

or simply expressed as T F = τxKF, where τi (i = x, y, z) is
the Pauli matrices for the valley pseudospin, and K is a
complex conjugate operation. As the time reversal operation
for electron spin is given by isyK with the spin Pauli matrix
si (i = x, y, z), the total time reversal operation including or-
bital and spin is given by

T = isyτxK. (A4)

The in-plane 120◦ rotation operation C3 is written as

C3|ψ〉 =
∑
ξ=±

⎡
⎣∑

RA

F ξ
A (RA)eiKξ ·RA |C3RA〉

+
∑
RB

F ξ
B (RB)eiKξ ·RB |C3RB〉

⎤
⎦. (A5)

When the rotation origin is chosen on the center of a hexagon
in the honeycomb lattice, C3 maps a A site to some other A
site, and a B site to other B site. By writing C3RA = R′

A and
C3RB = R′

B, we have

C3|ψ〉 =
∑
ξ=±

⎡
⎣∑

R′
A

F ξ
A

(
C−1

3 R′
A

)
eiKξ ·C−1

3 R′
A |R′

A〉

+
∑
R′

B

F ξ
B

(
C−1

3 R′
B

)
eiKξ ·C−1

3 R′
B |R′

B〉
⎤
⎦

=
∑
ξ=±

⎡
⎣∑

R′
A

ωξ F ξ
A

(
C−1

3 R′
A

)
eiKξ ·R′

A |R′
A〉

+
∑
R′

B

ω−ξ F ξ
B

(
C−1

3 R′
B

)
eiKξ ·R′

B |R′
B〉

⎤
⎦, (A6)

where we used eiKξ ·C−1
3 R′

A = ωξ eiKξ ·R′
A and eiKξ ·C−1

3 R′
B =

ω−ξ eiKξ ·R′
B . In the four-component representation it is written

as

C3

⎛
⎜⎜⎜⎝

F+
A (r)

F+
B (r)

F−
A (r)

F−
B (r)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ωF+
A

(
C−1

3 r
)

ω−1F+
B

(
C−1

3 r
)

ω−1F−
A

(
C−1

3 r
)

ωF−
B

(
C−1

3 r
)

⎞
⎟⎟⎟⎟⎠. (A7)

It is shortened as C3F = [−(1/2) + i(
√

3/2)τzσz]C̃3F, where
C̃3 represents the 120◦ rotation for the envelop function, i.e.,
C̃3F(r) = F(C−1

3 r), and σi (i = x, y, z) is the Pauli matrices
for A, B sublattice. Since the time reversal operation for
electron spin is given by e−i(2π/3)sz/2 = (1/2) − i(

√
3/2)sz,

the total time reversal operation including orbital and spin
becomes [62]

C3 =
(

1

2
− i

√
3

2
sz

)(
−1

2
+ i

√
3

2
τzσz

)
C̃3. (A8)

The spin-orbit interaction Veff [Eq. (9)] is written as

Veff =λ

2
τzsz + λR

2
e−iφsz/2(τzσxsy − σysx )eiφsz/2

=λ

2
τzsz + λR

2
[cos φ(τzσxsy − σysx )

− sin φ(τzσxsx + σysy)], (A9)

where the valley index ξ is replaced with the Pauli matrix
τz. Then it is straightforward to check that Veff commutes
with T and C3. An additional space symmetry imposes a
constraint on Veff . At θ = 0, the reflection symmetry Rx :
(x, y, z) → (−x, y, z) requires eiφ is real. At θ = 30◦, the
reflection symmetry Ry : (x, y, z) → (x,−y, z) requires real
eiφ and also λ = 0, i.e., the SOC is dominated by the Rashba
term. This can be proved by noting that Rx and Ry are
written as

Rx = −isxτxR̃x,

Ry = −isyσxR̃y, (A10)

where R̃i (i = x, y) represents the reflection operator for the
for the envelop function with respect to axis i.

Actually, the terms proportional to σz (different on-site
energies at A and B sites) [5] and τzσzsz (the Kane-Mele
term) [56] also commute with T and C3, but Veff lacks
these terms due to the incommensurability between graphene
and TMDC, as explained below. According to Eq. (6), the
interlayer matrix element 〈k̃, X̃ , s̃|Hint|k, X, s〉 occurs only
when k + G = k̃ + G̃. If the lattice structures of graphene
and TMDC are incommensurate, there is at most only a
single choice of (G, G̃) to connect specific pairs of k and k̃,
because the primitive reciprocal vectors of graphene a∗

i cannot
be written in any linear combinations of those of TMDC ã∗

j ’s.
Then the difference in graphene’s sublattice X = A, B only
matters in the global phase factor e−iG·τX in Eq. (6), and it does
not affect the diagonal terms of Veff which are real numbers.
Therefore we have the equal on-site energy at A and B for each
spin-valley sector, so that the terms including σz are absent.
When the system is commensurate, on the other hand, the
interlayer hopping from k to k̃ is contributed by several paths
with different G’s, where the different phase factors e−iG·τX

interfere, leading to the sublattice dependence.
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