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Two-dimensional materials in the presence of nonplanar interfaces
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We consider a planar two-dimensional system between two media with different dielectric constants and in
the presence of a third dielectric medium separated by a nonplanar interface. Extending a perturbative method
for solving Poisson’s equation, developed by Clinton, Esrick, and Sacks [Phys. Rev. B 31, 7540 (1985)], in the
presence of nonplanar conducting boundaries to the situation proposed here, we obtain, up to the first order in
terms of the function which defines the nonplanar interface, the effective potential, the effective electrostatic
field, and the effective dielectric constant for the planar 2D system. We also point to the existence of an effective
external field acting in-plane in the 2D system. Implications of the results to properties of 2D systems are
discussed. In the limit of planar surfaces, vacuum-dielectric or vacuum-conducting media, our results are in
agreement with those found in the literature.
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I. INTRODUCTION

Two-dimensional (2D) systems, for example, a 2D elecron-
gas in a heterostructure or in doped graphene, have properties
influenced by the electron-electron interaction [1–6], as well
as by the presence of external electric and magnetic fields [7].
In the case of graphene, the electron-electron interactions
implies in the renormalization of the Fermi velocity, thus
reshaping the Dirac cones [3,8], an effect that was experimen-
tally observed [5].

In the context of quantum field theories applied to the con-
densed matter, the pseudoquantum electrodynamics (PQED)
(sometimes called reduced quantum electrodynamics), an
effective and complete description in 2+1 dimensions for
electronic systems moving on a plane, was built considering
that the static potential of interaction between electrons in the
2D system should be Coulombic, instead of the logarithmic
one (∝ ln r) characteristic of quantum electrodynamics in 2+1
dimension [8,9]. On the other hand, the effective interac-
tion between electrons in a two-dimensional system can be
changed by the presence of material media. For example,
it was recently shown that the logarithmic renormalization
of the Fermi velocity in a plane graphene sheet (which, in
turn, is related to the Coulombic static potential associated to
electrons in the sheet) is inhibited by the presence of a single
parallel plate or a cavity formed by conducting plates [10,11],
with this inhibition leading to an increase of the optical
conductivity.

In addition, the effective interaction between electric
charges in a two-dimensional planar system, when it is
put in the presence of a planar interface between dielectric
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media [7,12,13], has been investigated. This change of the
electron-electron interaction due to the presence of bound-
aries affects the Coulombic drag between graphene single
layers [13,14].

The problem of finding the effective interaction between
static charges in a two-dimensional system can be viewed as
part of a class of problems focusing on a static point charge in
the presence of an interface between two media. Essentially,
the field of the charge induces an electric polarization on the
interface (or a surface charge distribution), which generates an
additional electric field, usually named image field.

In the 1970s, the image potential was discussed in the con-
text of several phenomena. For instance, the image-potential
states, which are quantum states of electrons localized at sur-
faces of materials which exhibit negative electron affinity [15].
These electrons cannot escape from the surface due to the im-
age electric potential field and cannot penetrate into the mate-
rial due to the negative electron affinity [16], as it occurs with
electrons in the vicinity of a liquid-helium interface [15–17].
On the other hand, up to 1980, the majority of cases that had
been investigated of image-potential effects assumed that the
interfaces between the media were planar [18,19]. Motivated
by the fact that it is almost impossible to create a perfectly
planar surface and interested in determining effects of corru-
gation on the image potential, Rahman and Maradudin [18]
calculated perturbatively the electrostatic image potential for a
point charge located near a rough vacuum-isotropic dielectric
interface, with the surface of separation described by a random
function with mean value equal to zero. The problem of
finding the image potential for a point charge in vacuum in the
presence of a nonplanar metal surface has been investigated by
Clinton et al. [15], who, based on a work-energy argument,
obtained a general formulation for the image potential for
first-order deformations of an arbitrary shape, showed that
ions and electrons are always attracted to the elevated part of
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the surface [15]. Clinton et al. [20] also presented a formal so-
lution for the electrostatic potential by solving perturbatively
Poisson’s equation in the presence of a generally modified
planar conducting surface, with the solution extendable to any
perturbation order in the corrugation function [20].

Nonplanar interfaces occur naturally in graphene-based
plasmonic systems [21]. In this class of systems, patterned
metallic gratings are positioned at a distance of a single
atom from a single graphene sheet, thus leading naturally
to the class of problems discussed in this paper. Also, the
problem of nanoparticles deposited on graphene [22], and how
they change the electron-electron interactions in graphene, is
another class of problems that can be solved using the ap-
proach we develop ahead. Naturally, the presence of metallic
substrates near a 2D material changes the optical conductivity
of the material. How this change occurs is also controlled by
the nature of the interface near the material and, therefore,
incorporating the effect of corrugation in the formalism is a
natural application of the problems tackled in this work.

Doped transition-metal dichalcogenides are known to have
strong electron-hole interactions (excitonic effects), which
can be tuned by the presence of interfaces, being they of
dielectric or metallic nature [23]. Again, how the presence of
corrugation changes the electron-electron interaction in this
class of systems is a highly relevant problem in the field of
2D materials. Finally, if the corrugation [24] occurs in the
scale of tens of nanometers, a length scale well in reach of
microfabrication techniques, the corrugation plays the role of
a scattering potential for the electronic propagation, thus af-
fecting the dc conductivity of the electrons in the 2D material.
Since hexagonal boron nitride has allowed an unprecedent
control on the distance a 2D system can be positioned near
a corrugated interface, the problem discussed in this paper
acquires relevance for applications in the field of polaritonics
using 2D materials.

In the present paper, we investigate how the presence
of nonplanar interfaces changes the effective electrostatic
interaction between electrons in a two-dimensional system,
producing an effective potential dependent not only on the
distance to the source charge (as it occurs for the effective
potentials in the case of planar surfaces found in the literature)
but also on the position of the charge itself. We also show that
nonplanar interfaces generate an effective in-plane external
field acting on charges along the two-dimensional system.
This effective external field is null for the cases of planar inter-
faces found in the literature. Specifically, considering a typical
configuration [7,13], we investigate a planar two-dimensional
system between two media with different dielectric constants,
in the presence third dielectric medium separated by a nonpla-
nar interface. Extending the perturbative method for solving
Poisson’s equation in the presence of nonplanar conducting
boundaries, proposed by Clinton, Esrick, and Sacks [20], to
the situations discussed here, we obtain the first correction to
the effective potential and dielectric constants for the planar
two-dimensional system, as well as calculate the coordinate
dependent external electric field induced by the nonplanar
surface. As an application of our results, we use our re-
sults to the case of sinusoidal surfaces. Finally, implications
of the results to properties of two-dimensional systems are
discussed.

FIG. 1. Illustration of the configuration formed by three dif-
ferent dielectric media (x axis perpendicular to the paper). One
can see a planar interface between the regions ε3 and ε2, where a
two-dimensional system is located. All charges of this system, for
instance, the charge Q illustrated in the figure, are confined to this
plane. The figure also shows a nonplanar interface [described by
z = λh(r‖)] separating the regions ε2 and ε1.

The paper is organized as follows. In Sec. II, we obtain
the total electric potential function for the problem of a point
charge between two media with different dielectric constants,
and in the presence third dielectric medium separated by a
nonplanar surface. We obtain, from our formulas, the particu-
lar results for two dielectrics, vacuum-dielectric and vacuum-
conducting media, extending and recovering results found in
the literature. We obtain the effective potential and dielectric
constants for charges living in a 2D planar system put between
two dielectric media, also showing the appearance of an
effective external field, induced by the nonplanar interface,
acting on the charges in this 2D system. In Sec. III, we apply
our formulas to the case of sinusoidal surfaces and, using
realistic values, obtain estimates for the intensities of effective
interaction and external field. In Sec. IV, we present our final
comments as well as discuss some implications of our results
for two-dimensional systems.

II. POINT-CHARGES CONFINED BETWEEN TWO
DIELECTRICS IN THE PRESENCE OF A THIRD

DIELECTRIC REGION WITH A NONPLANAR INTERFACE

A. Statement of the problem

We consider a stratified medium containing three different
insulators, arranged as as in Fig. 1 (for the purposes of this
paper, the first dielectric can also be replaced by a metallic
medium). Mathematically, the position of the dielectrics are
given by

ε(r) =
⎧⎨
⎩

ε3, z > d
ε2, λh(r‖) < z < d
ε1, z < λh(r‖)

, (1)
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where r‖ = xx̂ + yŷ, d > 0, z = λh(r‖) [h(r‖) < d] defines a
general (nonplanar) surface, and λ (|λ| < 1) is a dimension-
less parameter such that for λ = 0 one recovers the planar
surface case at z = 0. We consider x̂, ŷ, and ẑ unit vectors
pointing to the x, y, and z directions, respectively. For practi-
cal purposes, we write

ε(r) = ε3θ (z − d ) + ε2θ [z − λh(r‖)]θ (d − z)

+ ε1θ{−[z − λh(r‖)]}, (2)

whose expansion in λ leads to

ε(r) = ε3θ (z − d ) + ε2θ (z)θ (d − z) + ε1θ (−z)

+ δ(z)[−ε2θ (d − z) + ε1]λh(r‖) + O(λ2) + . . . (3)

We consider the problem of a two-dimensional system of
point charges confined in the planar interface between the
media ε3 and ε2, as illustrated in Fig. 1. This is achieved,
positioning a 2D system between these two dielectrics. From
Gauss’s law, we have, for a charge Q located at the position
r = r′, with r′ = r′

‖ + d ẑ,

∇ · [ε(r)∇φ(r, r′)] = −4πQδ(r − r′), (4)

where the potential φ can be written as φ(r, r′) = QG(r, r′).
Following Clinton, Esrick, and Sacks [20], we look for a

solution of G as an expansion in powers of λ:

G(r, r′) = G(0)(r, r′) +
∞∑

n=1

λnG(n)(r, r′), (5)

where G(0)(r, r′) is related to the solution of Gauss’s equation
for planar interfaces. To solve Eq. (4) with ε(r) given by
Eq. (2), it is convenient to introduce the Fourier transform in
the x, y coordinates,

f (r‖, z) =
∫

1

(2π )2 d2q f (q, z)eiq·r‖ , (6)

where f can represent any function of r‖ considered in the
present paper, and q = qxx̂ + qyŷ. We also have

f (q, z) =
∫

d2r f (r‖, z)e−iq·r‖ , (7)

and we are adopting the same nomenclature for a given
function of (r‖, z) and for its 2D Fourier transform. Using the
representation given in Eq. (6), it can be shown that Eq. (4)
can be written as

∫
1

(2π )2 d2q′
{

(q′ · q)G(q′, z, r′)ε(q − q′, z) − ∂

∂z

[
∂G(q′, z, r′)

∂z
ε(q − q′, z)

]}
= 4πδ(z − d )e−iq·r′

‖ . (8)

The continuity condition for G(q, z, r′) is required for all values of z. Specifically focusing on the interfaces, we have (η > 0)

lim
η→0

G(q, d + η, r′) = lim
η→0

G(q, d − η, r′), (9)

lim
η→0

G(q, λh(r‖) + η, r′) = lim
η→0

G(q, λh(r‖) − η, r′). (10)

Note that these boundary conditions apply to the full Green’s function.

B. Method of solution

The central point of the present calculation is to substitute (3) and (5) into (8), and requiring that the coefficients of λn vanish.
This yields (up to first order in λ) the equation for G(0),

∇ · {[ε3θ (z − d ) + ε2θ (z)θ (d − z) + ε1θ (−z)]∇[G(0)(r, r′)]} = −4πδ(r − r′), (11)

and the equation for G(1),

∇ · {ε3θ (z − d ) + ε2θ [z]θ (d − z) + ε1θ (−z)∇[G(1)(r, r′)]} = ε−
21∇ · {δ(z)h(r‖)∇[G(0)(r, r′)]}, (12)

where hereafter we consider

ε±
i j = εi ± ε j . (13)

These equations in Fourier space are given, respectively, by

q2ε(z)G(0)(q, z, r′
‖, d ) − ∂

∂z

[
ε(z)

∂G(0)(q, z, r′
‖, d )

∂z

]
= 4πδ(z − d )e−iq·r′

‖ (14)

and

q2G(1)(q, z, r′)[ε3θ (z − d ) + ε2θ (z)θ (d − z) + ε1θ (−z)] − ∂

∂z

{
∂G(1)(q, z, r′)

∂z
[ε3θ (z − d ) + ε2θ (z)θ (d − z) + ε1θ (−z)]

}

= ε−
21

∫
1

(2π )2
d2q′

{
(q′ · q)G(0)(q′, z, r′)δ(z)h(q − q′) − ∂

∂z

[
∂G(0)(q′, z, r′)

∂z
δ(z)h(q − q′)

]}
. (15)
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The solution for (14), taking into account that G(0) is continuous through the interfaces, is known and given by [7,12,13]

G(0)(q, z, r′) =

⎧⎪⎪⎨
⎪⎪⎩

G(0)
III (q, z, r′

‖, d ), z � d

G(0)
II (q, z, r′

‖, d ), 0 � z � d.

G(0)
I (q, z, r′

‖, d ), z � 0

(16)

The functions G(0)
I , G(0)

II , and G(0)
III are explicitly exhibited in Appendix A.

To solve Eq. (15), we take into account a set of four equations describing the boundary conditions for G(1). A first pair of
equations is given by (see Appendix B)

G(1)(q, d+, r′
‖, d ) = G(1)(q, d−, r′

‖, d ), (17)

G(1)(q, 0+, r′) − G(1)(q, 0−, r′) =
∫

1

(2π )2 d2q′h(q − q′)
[
−

(
∂G(0)

∂z

)
(q′, 0+, r′) +

(
∂G(0)

∂z

)
(q′, 0−, r′)

]
. (18)

Then, the initial problem of finding G via Eq. (8) with the boundary conditions (9) and (10) (both requiring the continuity of G,
with the former taken on a planar and the latter taken on a nonplanar surface), is now effectively replaced (up to first order in λ)
by the problem of finding G(1) via Eq. (15) with the boundary conditions (17) and (18), which are both taken on planar surfaces,
but with the latter showing a discontinuity of G(1) when it passes through z = 0.

Looking for a boundary condition for the z derivative of G(1) across z = 0, we integrate Eq. (15) in z in the regions (−η,+η),
sending η → 0, obtaining

−ε2

[
∂

∂z
G(1)(q, z, r′)

]
z=0+

+ ε1

[
∂

∂z
G(1)(q, z, r′)

]
z=0−

= ε−
21

∫
1

(2π )2 d2q′h(q − q′)(q′ · q)G(0)(q′, 0, r′). (19)

Repeating the procedure for the region (d − η, d + η), we get

ε3
∂

∂z
G(1)(q, z, r′)d+η − ε2

∂

∂z
G(1)(q, z, r′)d−η = 0. (20)

Requiring that limz→±∞ G(1) = 0, we write the solution for (15), (17), (18), (19) and (20) as

G(1)(q, z, r′) =

⎧⎪⎪⎨
⎪⎪⎩

G(1)
III (q, z, r′

‖, d ), z � d

G(1)
II (q, z, r′

‖, d ), 0 < z � d,

G(1)
I (q, z, r′

‖, d ), z < 0

(21)

with G(1)
I , G(1)

II , and G(1)
III shown in Appendix A. The solution for G(1) in terms of x and y is given by (see Appendix C)

G(1)
III (r‖, z, r′

‖, d ) = 1

4π
ε−

21

∫
d2r̃h(r̃‖)[G1(r‖, d − z, r′

‖, d, r̃‖) + ε1

ε2
G2(r‖, d − z, r′

‖, d, r̃‖)], (22)

G(1)
II (r‖, z, r′

‖, d ) = 1

8π

ε−
21

ε2

∫
d2r̃h(r̃‖)

{
ε−

23

[
G1(r‖, z − d, r′

‖, d, r̃‖) + ε1

ε2
G2(r‖, z − d, r′

‖, d, r̃‖)

]

+ ε+
23

[
G1(r‖, d − z, r′

‖, d, r̃‖) + ε1

ε2
G2(r‖, d − z, r′

‖, d, r̃‖)

]}
, (23)

G(1)
I (r‖, z, r′

‖, d ) = 1

8π

ε−
21

ε2

∫
d2r̃h(r̃‖){ε−

23[G1(r‖, z − d, r′
‖, d, r̃‖) + G2(r‖, z − d, r′

‖, d, r̃‖)]

+ ε+
23[G1(r‖, z − d, r′

‖, d, r̃‖) − G2(r‖, z − d, r′
‖, d, r̃‖)]}, (24)

where

G1(r‖, ζ , r′
‖, d, r̃‖) = ∇‖G(0)

I (r̃‖, ζ , r‖, d ) · ∇′
‖G(0)

I (r̃‖, 0, r′
‖, d ), (25)

G2(r‖, ζ , r′
‖, d, r̃‖) =

[
∂

∂ z̃
G(0)

I (r̃‖, z̃, r‖, d )

]
z̃=ζ

[
∂

∂ z̃
G(0)

I (r̃‖, z̃, r′
‖, d )

]
z̃=0

. (26)

We have, therefore, concluded the solution of the problem in its most general form.
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C. Particular results

If we consider the vacuum-dielectric case (ε3 = ε2 = 1), we get G(1)
III (r‖, z, r′

‖, d ) = G(1)
II (r‖, z, r′

‖, d ), so that

G(1)
II (r‖, z, r′

‖, d ) = 1

4π
(1 − ε1)

∫
d2r̃h(r̃‖)

{
∇‖G(0)

I (r̃‖, d − z, r‖, d ) · ∇′
‖G(0)

I (r̃‖, 0, r′
‖, d )

+ ε1

[
∂

∂ z̃
G(0)

I (r̃‖, z̃, r‖, d )

]
z̃=d−z

[
∂

∂ z̃
G(0)

I (r̃‖, z̃, r′
‖, d )

]
z̃=0

}
, (27)

G(1)
I (r‖, z, r′

‖, d ) = 1

4π
(1 − ε1)

∫
d2r̃h(r̃‖)

{
∇‖G(0)

I (r̃‖, z + d, r‖, d ) · ∇′
‖G(0)

I (r̃‖, 0, r′
‖, z′)

−
[

∂

∂ z̃
G(0)

I (r̃‖, z̃, r‖, z′)
]

z̃=z+d

[
∂

∂ z̃
G(0)

I (r̃‖, z̃, r′
‖, d )

]
z̃=0

}
, (28)

where for this case,

G(0)
I (r‖, z, r′

‖, z′) = 2

(ε1 + 1)

1

[|r‖ − r′
‖|2 + (z − d )2]1/2

.

(29)

The particular result given by Eqs. (27) and (28) also general-
ize that found in the literature [20]. Finally, if we consider the
vacuum-conducting case (ε3 = ε2 = 1 and ε1 → ∞), we get

G(1)
II (r‖, z, r′

‖, d )

= − 1

4π

∫
d2r̃h(r̃‖)

[
∂

∂ z̃
G(0)

I (r̃‖, z̃, r‖, d )

]
z̃=d−z

×
[

∂

∂ z̃
G(0)

I (r̃‖, z̃, r′
‖, d )

]
z̃=0

, (30)

G(1)
I (r‖, z, r′

‖, d ) = 0, (31)

where for this case,

G(0)
I (r‖, z, r′

‖, d ) = 2

[|r‖ − r′
‖|2 + (z − d )2]1/2

. (32)

This result recovers the result found in the literature [20]
and is formally identical to Hadamard’s theorem for Green’s
functions [20,25], which gives the solution (up to first order in
λ) of

∇2G(r, r′) = −4πδ(r − r′), (33)

with the boundary condition

G(r − r′)|z=λh(r‖ ) = 0. (34)

D. Interaction between a charge and the surrounding
polarized matter induced by it

When we bring a charge Q to the position r′, we produce a
state of polarization in the dielectric media. The energy of in-
teraction W between the charge Q and the polarized dielectrics
(we are considering a linear behavior for the dielectrics) is
given by (see Appendix D)

W = 1
2 Qφind(r′), (35)

where φind is the induced (or image) potential function, which,
taken at r′, is given by

φind(r′) ≈ Q
[
G(0)

ind(r, r′)r=r′ + λG(1)(r, r′)r=r′
]
. (36)

Then, we have

W ≈ W (0) + λW (1), (37)

where

W (0) = 1
2 Q2G(0)

ind(r, r′)r=r′ ,

W (1) = 1
2 Q2G(1)(r, r′)r=r′ , (38)

with

G(0)
ind(r‖, z, r′

‖, d ) = −
∫

1

(2π )2 d2qe−qz 1

q
eiq·r‖e−iq·r′

‖

× 1

ε+
23

8πε2ε
−
12

[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

. (39)

Considering the solution for G(1) for z = d , we have

W = −Q2 1

π

ε2ε
−
12

ε+
23

∫
d2q

1

q

e−qd

[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

+ λQ2ε−
21

1

8π

∫
d2r̃h(r̃‖)

{
|∇′

‖G(0)
I (r̃‖, 0, r′

‖, d )|2

+ ε1

ε2

([
∂

∂ z̃
G(0)

I (r̃‖, z̃, r′
‖, d )

]
z̃=0

)2}
. (40)

If we consider the case vacuum-dielectric (ε3 = ε2 = 1) in
Eq. (40), we obtain

W = −Q2 1

4d

(ε1 − 1)

(ε1 + 1)
+ λQ2 (1 − ε1)

8π

×
∫

d2r̃h(r̃‖)

{∣∣∇′
‖G(0)

I (r̃‖, 0, r′
‖, d )

∣∣2

+ ε1

([
∂

∂ z̃
G(0)

I (r̃‖, z̃, r′
‖, d )

]
z̃=0

)2}
, (41)

where G(0)
I for this case is obtained considering ε3 = ε2 = 1

in Eqs. (A8) and (A9), and using (6). The result shown in
Eq. (41) is agreement with that found in the literature [20]. For
the vacuum-conducting case (ε3 = ε2 = 1 and ε1 → −∞),
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we obtain from Eq. (40) the result

W = −Q2 1

4d
− λQ2 1

8π

∫
d2r̃h(r̃‖)

{([
∂

∂ z̃
G(0)

I (r̃‖, z̃, r′
‖, d )

]
z̃=0

)2}
, (42)

We can also rewrite Eq. (40) in the following manner:

W = −Q2 ε2ε
−
12

ε+
23

1

d
F1(ε−

23ε
−
12, ε

+
23ε

+
12) + λQ2ε−

21

1

π2

∫
d2q̃h(q̃)eiq̃·r′

‖

∫ ∞

0
dR RJ0(q̃R)

∫ ∞

0
dq

×
∫ ∞

0
dq′F2(q, ε−

23ε
−
12, ε

+
23ε

+
12, d )F2(q′, ε−

23ε
−
12, ε

+
23ε

+
12, d )

[
ε2

2 J1(qR)J1(q′R) + ε1ε2J0(qR)J0(q′R)
]
, (43)

where

F1(a, b) =
{

[ln (a + b) − ln (b)]/a, a 	= 0

1/b, a = 0
, (44)

F2(q, a, b, d ) = q/(ae−qd + beqd ), (45)

and J0 and J1 are Bessel functions of the first kind of zeroth
and first order, respectively. The form for W given in Eq. (43)
is very convenient for numerical calculations. Next, we take
some limits of the presented formulas and recover some
results found in the literature.

For the case with ε3 = ε2, we have the problem involving
two dielectrics ε2 and ε1, for which we get

W = Q2 ε−
21

ε+
12

1

4d

1

ε2
+ λQ2 ε−

21

ε2(ε+
12)2

1

4π2

∫
d2q̃h(q̃)eiq̃·r′

‖

×
∫ ∞

0
dRRJ0(q̃R)

[
ε2R2 + ε1d2

(R2 + d2)3

]
. (46)

The vacuum-dielectric case can be recovered by doing ε2 = 1
in Eq. (46). The vacuum-conducting case is recovered taking
ε1 → −∞. Both results for these limit cases coincide with
those found in the literature [15,20].

The presence of a nonplanar interface between ε2 and ε1

media also induces an external field, so that on each charge Q
in the two-dimensional system acts an effective force parallel
to the plane z = d given by

F(ext)
‖ ≈ − 1

2λQ2∇′
‖G(1)(r′

‖, d, r′
‖, d ). (47)

This force depends on the magnitude of the charge (specifi-
cally, on Q2) and it can point to the next valley or peak of the
nonplanar interface, depending on the sign of ε2 − ε1. This
generalizes the result found in the literature for the vacuum-
conductor case [15], where the correspondent force always
points to the next peak of the nonplanar interface.

We also have a perpendicular force acting on Q, given by

F(ext)
⊥ ≈ −1

2
Q2 ∂

∂d

[
G(0)

ind(r′
‖, d, r′

‖, d ) + λG(1)(r′
‖, d, r′

‖, d )
]
.

(48)

Part of this force (proportional to λ) can be quite relevant for
suspended graphene, since the force induces a deformation of
the material, which, in turn, affects its optical and dc transport
properties.

E. Effective charge-charge interaction in the 2D material

Let us now consider the effective electron-electron inter-
action, which alters its usual form due to the presence of
corrugation. The effective electric potential φ(eff) associated
to a point charge Q in the position r′

‖ is

φ(eff)(r‖, r′
‖, d ) = φ(r‖, d, r′

‖, d ) = QG(r‖, d, r′
‖, d ). (49)

Up to the first order, we have

φ(eff)(r‖, r′
‖, d ) ≈ φ(0)(r‖, d, r′

‖, d ) + λφ(1)(r‖, d, r′
‖, d ).

(50)

Using Eqs. (16) and (21), we get

φ(eff)(q, r′
‖, d ) ≈ 2πQ

q
e−iq·r′

‖

{
2[ε−

21e−2qd + ε+
12]

[ε−
23ε

−
12e−2qd + ε+

23ε
+
12]

+ λ
ε2(T̃2ε

−
21 + T̃1ε1q)eqd

q[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

}
, (51)

where

T̃1 =
∫

1

(2π )2 d2q′ 4qh(q − q′)ε−
21eir′

‖·(q−q′)

[ε−
23ε

−
12e−q′d + ε+

23ε
+
12eq′d ]

, (52)

T̃2 =
∫

1

(2π )2 d2q′ 4qh(q − q′)(q′ · q)ε2eir′
‖·(q−q′ )

q′[ε−
23ε

−
12e−q′d + ε+

23ε
+
12eq′d ]

. (53)

From Eq. (51), we get the effective dielectric constant εeff :

1

εeff
= 2[ε−

21e−2qd + ε+
12]

[ε−
23ε

−
12e−2qd + ε+

23ε
+
12]

+ λ
ε2(T̃2ε

−
21 + T̃1ε1q)eqd

q[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

.

(54)

Notice that εeff depends on r′
‖. When λ = 0, the result given

in Eq. (54) recovers that found in the literature [7,12,13].
The functions φ(0) and φ(1) in Eq. (50) are given explicitly
in Appendix E and exhibit the symmetry properties

φ(0)(r‖, d, r′
‖, d ) = φ(0)(r′

‖, d, r‖, d ), (55)

φ(1)(r‖, d, r′
‖, d ) = φ(1)(r′

‖, d, r‖, d ), (56)

from which the energy interaction W12 between two charges
Q1 and Q2 located at r1|| and r2||, respectively, is

W12 ≈ Q2φ
(eff)
1 (r2||, r1||, d ) = W21

≈ Q1φ
(eff)
2 (r1||, r2||, d ), (57)
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as expected, with φ
(eff)
1 and φ

(eff)
2 the potential functions asso-

ciated to the charges 1 and 2.
The effective electric field E(eff)

‖ produced by a charge Q is

E(eff)
‖ (r‖, r′

‖, d ) = −∇‖φ(eff)(r‖, r′
‖, d ), (58)

which can be written as

E(eff)
‖ (r‖, r′

‖, d ) ≈ E(0)
‖ (r‖, d, r′

‖, d ) + λE(1)
‖ (r‖, d, r′

‖, d ),
(59)

with

E(0)
‖ (r‖, r′

‖, d ) = −∇‖φ(0)(r‖, d, r′
‖, d ), (60)

E(1)
‖ (r‖, r′

‖, d ) = −∇‖φ(1)(r‖, d, r′
‖, d ), (61)

and E(0)
‖ and E(1)

‖ given explicitly in Appendix E.

For E(0)
‖ , we have the usual symmetry

E(0)
‖ (r‖, d, r′

‖, d ) = −E(0)
‖ (r′

‖, d, r‖, d ), (62)

but for E(1)
‖ , in general, we find

E(1)
‖ (r‖, d, r′

‖, d ) 	= −E(1)
‖ (r′

‖, d, r‖, d ). (63)

Then, the effective 2D electrical field is such that

E(eff)
‖ (r‖, r′

‖, d ) 	= −E(eff)
‖ (r′

‖, r‖, d ), (64)

so that the effective forces between two charges do not point
along the line from one charge to the other.

The above result can be understood as follows. Under
the external field associated to a charge Q, the atoms of the
dielectric media become polarized, or with permanent dipoles
aligned with the field [26]. Let us consider that these dipole
moments contribute to the averaged charge density of the
dielectric media [26],

〈ρ ′(r)〉 = 1

�V

∫
�V

ρ ′(r + ξ)d3ξ, (65)

where ρ ′ is the exact position (in a certain instant of time) of
the charges in motion (thermal or zero point effects) in the
dielectric media, �V is a macroscopically small volume, ξ

ranges over the this small volume, and 〈 〉 means the average
value [26]. For the situation where all interfaces are flat,
〈ρ ′(r)〉, now relabeled as 〈ρ ′(0)(r)〉, is (by symmetry argu-
ments) a function of z and of the distance |r‖ − r′

‖|. Then,
the effective potential φ(eff), for this case, is φ(eff) = φ(0),
which is associated to the distribution of charges Qδ(r − r′) +
〈ρ ′(0)(r)〉. From Eq. (E1), we can see that φ(0)(r‖, d, r′

‖, d )
depends on d and on the distance |r‖ − r′

‖|. This means that
the equipotential lines are circular lines with the charge Q at
the center of the circle. For this case, the effective electric field
E(eff)

‖ is E(eff)
‖ = E(0)

‖ , with E(0)
‖ [Eq. (E5)] proportional to the

vector r‖ − r′
‖, depending on d , on the distance |r‖ − r′

‖|, and
exhibiting the symmetry shown in Eq. (62). On the other hand,
if we consider a nonplanar surface, for example, the surface
defined by the 2D gaussian function,

z = λh(r‖) = λde−k2(x2+y2 ), (66)

FIG. 2. Illustration of the planar two-dimensional system in the
presence of a nonplanar surface described by Eq. (66), with d =
300 nm, k = 2π/d , and λ = 1/10. The vertical axis exhibits z/d ,
whereas the other axes represent χ = x/d and υ = y/d .

as illustrated in Fig. 2, the mean charge density 〈ρ ′(r)〉 can be
written as

〈ρ ′(r)〉 ≈ 〈ρ ′(0)(r)〉 + λ〈ρ ′(1)(r)〉, (67)

where the term λ〈ρ ′(1)(r)〉 is related to the presence of the
surface z = λh(r‖). If a charge Q, in the 2D system (z = d),
is put exactly over the center (peak) of the gaussian, the term
λ〈ρ ′(1)(r)〉 in Eq. (67) is, by the symmetry of this situation,
a function of z and of the distance |r‖ − r′

‖|. For this specific

position of Q, the effective electric field E(eff)
‖ ≈ E(0)

‖ + λE(1)
‖

is along the line from the charge Q to any other point of the
plane z = d , since both parts, E(0)

‖ and λE(1)
‖ , are proportional

to r‖ − r′
‖. However, this is a particular situation. If Q is

not over the peak, but displaced along the x axis, as shown
in Fig. 3, its expected that external field associated to the
charge Q contributes to different average charge densities
in the dielectric media for the left and right sides of Q,
in the sense that, in general, 〈ρ ′(1)(r′

‖ − δxx̂ + δyŷ + zẑ)〉 	=
〈ρ ′(1)(r′

‖ + δxx̂ + δyŷ + zẑ)〉. This means that for the potential
φ(eff) ≈ φ(0) + λφ(1), although for the term φ(0) the equipo-
tential lines are circular lines with Q at the center, those
associated with φ(1) are not circular lines, so that λE(1)

‖ (and,

as a consequence, E(eff)
‖ ) is not proportional to the vector

r‖ − r′
‖, and consequently is not along the line from the charge

Q (point A) to the point B in Fig. 3. Inversely, putting the
charge Q at the point B, by analogous arguments we expect
the behavior of E(eff)

‖ is as shown in Fig. 4. Comparing E(eff)
‖

in Figs. 3 and 4, one can visualize the inequality given in
Eq. (64). Comparing the behavior of E(0)

‖ and E(1)
‖ , one can

also visualize Eqs. (62) and (63).
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FIG. 3. Front view of the 2D system located on the plane z = d (z
axis is perpendicular to the paper). The circular lines are projections
on the plane z = d of some contour lines indicating points of equal
altitude of the gaussian surface shown in Fig. 2. A charge Q > 0
is located at the point A, whereas the electric field is shown at the
point B.

III. SOME APPLICATIONS

For simplicity, let us consider the situation with ε3 = ε2,
for which can use Eq. (46), which we write as W = W (0) +
λW (1), where W (0) is obtained making λ = 0 in Eq. (46). For
this case, and when λ = 0 (the interface between ε2 and ε1 is
plane), a perpendicular force F(0)

⊥ = − ∂
∂d W (0)ẑ acts on a point

charge Q in the two-dimensional system, which will be used
as reference in comparison to the external parallel force given
in Eq. (47).

FIG. 4. Front view of the 2D system located on the plane z =
d (z axis is perpendicular to the paper). The circular lines are
projections on the plane z = d of some contour lines indicating
points of equal altitude of the gaussian surface shown in Fig. 2. A
charge Q > 0 is located at the point B, whereas the electric field is
shown at the point A.

FIG. 5. Illustration of the planar two-dimensional system in the
presence of a nonplanar surface described by Eq. (68), with Lx =
Ly = d = 300 nm and λ = 1/10. The vertical axis exhibits z/d ,
whereas the other axes represent χ = x/d and υ = y/d .

A. 2D sine grating

For the case of a two-dimensional sine grating (see Fig. 5),

z = λh(r‖) = λd sin(kxx) sin(kyy), (68)

FIG. 6. Ratio λW (1)/|W (0)|, for the interface described by
Eq. (68), with Lx = Ly = d = 300 nm, ε1 = 4, ε2 = 1, and λ =
1/10. The vertical axis exhibits λW (1)/|W (0)|, whereas the other axes
represent χ = x/d and υ = y/d .
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FIG. 7. Effective external force acting on an electron in the two-
dimensional system, for the interface described by Eq. (68), with
Lx = Ly = d = 300 nm, ε1 = 4, ε2 = 1, and λ = 1/10. The vectors
represent exhibits F(ext)

‖ /|F(0)
⊥ |, whereas the axes represent χ = x/d

and υ = y/d .

where and hereafter kx = 2π/Lx and ky = 2π/Ly, we have

W (1) = Q2d
ε−

21

ε2(ε+
12)2 sin(kyy′) sin(kxx′)

[
k2

x + k2
y

]

×
∫ ∞

0
dR̃R̃

{
ε2R̃2 + ε1

[
k2

x + k2
y

]
d2(

R̃2 + [
k2

x + k2
y

]
d2

)3

}
J0(R̃) (69)

(whose behavior can be visualized in Fig. 6), which is
related to the charge-polarized matter interaction and with an
effective external force parallel to the 2D material, as shown
in Fig. 7.

Note that, since ε2 < ε1, the force points to the next peak
of the nonplanar surface.

B. 1D sine grating

For the case of a one-dimensional sine grating (see
Fig. 8)

z = λh(r‖) = λd sin(kyy), (70)

with ε3 = ε2, we have

W (1) = Q2d
ε−

21

ε2(ε+
12)2 sin(kyy′)k2

y (71)

×
∫ ∞

0
dR̃R̃

[
ε2R̃2 + ε1k2

y d2(
R̃2 + k2

y d2
)3

]
J0(R̃) (72)

(whose behavior can be visualized in Fig. 9), which is
related to the interaction charge-polarized matter and the

FIG. 8. Illustration of the planar two-dimensional system in the
presence of a nonplanar surface described by Eq. (70), with Ly =
d = 300 nm and λ = 1/10. The vertical axis exhibits z/d , whereas
the other axis represent χ = x/d and υ = y/d .

effective external force shown in Fig. 10. Note that since
ε2 > ε1, the force points to the next valley of the nonplanar
surface.

FIG. 9. Ratio λW (1)/|W (0)|, for the interface described by
Eq. (70), with Ly = d = 300 nm, ε1 = 1, ε2 = 4, and λ = 1/10.
The vertical axis exhibits λW (1)/|W (0)|, whereas the other axes
represent χ = x/d and υ = y/d .
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FIG. 10. Effective external force acting on an electron in the
two-dimensional system, for the interface described by Eq. (70),
with Ly = d = 300 nm, ε1 = 1, ε2 = 4, and λ = 1/10. The vectors
represent exhibits F(ext)

‖ /|F(0)
⊥ |, whereas the axes represent χ = x/d

and υ = y/d .

The effective potential related to a charge Q is given by
Eq. (50), with

φ(0)(r‖, d, r′
‖, d ) = Q

1

π

∫ ∞

0
dq

[ε−
21e−q2d + ε+

12]

2ε2ε
+
12

× J0(q|r′
‖ − r‖|), (73)

φ(1)(r‖, d, r′
‖, d )

= ε−
21

Q

π

d

(ε+
12)2

∫
dx̃

∫
dỹ sin(kyỹ)

×
{

[(x̃ − x)(x̃ − x′) + (ỹ − y)(ỹ − y′)] + ε1
ε2

d2

(|r̃‖ − r‖|2 + d2)3/2(|r̃‖ − r′
‖|2 + d2)3/2

}
.

(74)

The term φ(0) depends on the distance |r′
‖ − r‖|, as expected,

whereas the first correction φ(1) depends on r′
‖ and r‖, sepa-

rately.

IV. FINAL COMMENTS AND IMPLICATIONS
OF THE RESULTS

Two-dimensional materials, for instance graphene and
transition metal dichalcogenide monolayers (TMD), are very
important systems in condensed matter physics. The behavior
of 2D systems between substrates, or in the presence of other
material media (for example, conducting materials), is a rele-
vant problem, since these external media affect, for instance,
the Coulomb interaction between electrons in the 2D systems

which, in turn, influences various electronic properties of
these systems. In this context, there is a class of papers
devoted to the problem of the effective electrical interaction
between charges in a 2D system in the presence of planar
interfaces, also discussing the consequences of this interaction
for the properties of 2D systems [7,10–13]. However, these
papers do not include the presence of nonplanar interfaces.
This is, however, a relevant problem since there are many
situations involving gratings or nonplanar substrates whose
physical dimensions often vary on demand or due to intrinsic
limitations in the manufacturing process.

In the literature, another class of papers is devoted to
the problem of the interaction between an electrical point
charge and a nonplanar interface [15,18,20]. These papers do
not discuss the charge as part of a 2D system of charges,
neither the effect of the nonplanar interface on the effective
interaction between these charges and its consequences for the
properties of the 2D system.

In the present paper, we combined both classes of problems
mentioned above, investigating the problem of the interaction
between charges living in a planar 2D system, put between
two media with different dielectric constants, and in the
presence of a third dielectric medium separated from those
by a nonplanar interface.

We found that a physical implication of the nonplanar
interface is an effective potential of the electron-electron in-
teraction in the 2D system dependent not only on the distance
to the source charge (as it occurs for the effective potentials for
the case of planar interfaces found in the literature) but also on
the position of the charge itself. Thus the presence of a nonpla-
nar interface implies, for instance, a local renormalization of
the Fermi velocity, which, in turn, can lead to a local increase
of the optical conductivity. Since the Fermi velocity becomes
dependent on the coordinates, this can also lead to a scattering
of electrons in the flat 2D conductor.

We showed that another physical implication of the pres-
ence of a nonplanar interface is that on each charge in the
2D planar system acts along the plane an effective external
force, which depends on the magnitude of the charge but not
on its sign, so that positive an negative charges are affected
in a same manner. This can contribute, for instance, to a
redistribution of electrons in a graphene sheet. As far as
we know, no other work highlighted the existence of such
effective external field induced by a nonplanar interface near
a planar 2D system. Moreover, this effective external field
depends on the position and can point to the next peak of
the nonplanar interface or to the next valley, depending on
the relations between the dielectric constants separated by the
nonplanar interface. For example, the electrons in a graphene
sheet can be more concentrated near the peaks or near the
valleys of the nonplanar interface.

More specifically, in the present paper, we have extended
the perturbative method for solving Poisson’s equation for
a point charge in the presence of a nonplanar conducting
interface, proposed by Clinton, Esrick, and Sacks [20], to the
problem of a point charge between two media with different
dielectric constants and in the presence of a third dielectric
medium separated from those by a nonplanar interface. Up
to the first order λG(1), we obtained the effective potential,
effective electrostatic field, dielectric constant, and showed
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the existence of an effective external field acting along the 2D
system.

The results for G(1), from Eq. (22) to (24), generalize those
found in the literature for the case of a vacuum-conductor
situation [20]. The results for a vacuum-dielectric interface,
given by Eqs. (27) and (28), also generalize those found
in the literature [20]. Moreover, Eqs. (30) and (31) recover
the vacuum-conducting result found in the literature [20]
which, in turn, is formally identical to Hadamard’s theorem
for Green’s functions [20,25].

In the case where all interfaces are flat, G = G(0) and it
coincides with the results found in the literature [7,13]. The
effective potential, dielectric constant, and electric field are
given, respectively, in Eqs. (51), (54), and (59). The first terms
in the right-hand sides of these equations correspond to results
found in the literature [7,12,13], whereas the second terms
(proportional to λ) correspond to the first order correction
from the nonplanar behavior, obtained here.

From Eq. (51), we obtained that the effective potential
is affected locally (term λφ(1)) by the presence of the non-
planar interface. This means that, as mentioned above, if a
graphene sheet is put on the plane z/d = 1 (see Figs. 2, 5,
and 8), a local change in the electron-electron interaction
caused by the presence of a nonplanar interface implies in a
local renormalization of the Fermi velocity, which leads to a
local increasing of the optical conductivity in graphene. From
Eq. (59), we obtained another physical implication of the
presence of a nonplanar interface, namely the effective electric
field is affected locally by the presence of the nonplanar
interface and does not point along the line from the source
charge to the point where the field is considered.

We have shown that on each charge Q in the 2D planar
system acts along the plane an effective external force, given
by Eq. (47), which depends on the magnitude of the charge
(specifically, on Q2) and whose direction depends on ε2 − ε1.
This force can point to the next peak of the nonplanar interface
(if ε2 < ε1, as illustrated in Fig. 7), or to a valley (if ε2 > ε1, as
illustrated in Fig. 10). The possibility of the effective external
force moving the charge in the 2D system to a valley or to a
peak, depending on ε2 − ε1, generalizes the result found in the
literature for the case vacuum-conductor, where the charge is
always attracted to a position of the plane which is over the
next elevated part of the interface [15]. This effective external
field, induced by a nonplanar interface, can contribute to the
redistribution of the charges in the 2D system, for instance, of
electrons in a graphene sheet.

Then, as mentioned above, our results generalize several
found in the literature [7,12,13,15,20,25] and can be applied
in a wide range of other problems. For instance, in the context
of the pseudoquantum electrodynamics (PQED) [8,9], an
effective quantum field theory describing 2D systems in the
presence of nonpanar interfaces (as illustrated in Fig. 1) needs
to be built taking into account an effective static potential
which is not a Coulombic potential, but in the one given
by Eq. (51). In addition, the effective 2D quantum field
theory should take into account the presence of an effective
external field [see Eq. (47)] induced by the nonplanar inter-
face. The formulas obtained in the present paper can also
be useful, for example, for problems of finding the quantum
states of electrons localized at surfaces of materials which

exhibit negative electron affinity, in realistic contexts, since
the effects of corrugations on the image potential can be
relevant because it is almost impossible to create perfectly
planar interfaces [18].

We have obtained the first perturbative correction G(1) in
Eq. (5), which is the solution of Eq. (4) in the presence of
three dielectric regions, as presented in Eq. (1). On the other
hand, the calculations and their subtleties shown in the present
paper may be useful for those who want to extend them to
find other orders of corrections, enhancing the accuracy of
the analytical results, or to investigate systems with a larger
number of dielectric regions.

We discussed here the situation where a flat 2D system is
in the presence of a nonplanar interface, but, for example, a
graphene sheet is not exactly flat. The perturbative analytical
calculations presented here can also be used to get insights
on the problem where the 2D system is itself nonplanar.
Similarly, we expect that the Fermi velocity for a nonplanar
2D material becomes dependent on the coordinates, so that
coordinate dependent optical conductivity and scattering of
electrons would be present in a nonplanar 2D conductor
material, as well as they are present in a planar 2D material
in the presence of a nonplanar interface.

Finally, we remark that, beyond the physical implications
revealed by the analytical perturbative results presented here,
these results can also be used as a reference by researchers
who want to develop numerical methods to address these
kind of problems with more accurate results, since, when the
distance of the 2D system from the nonplanar interface grows
up, or when the amplitude of the nonplanar interface becomes
smaller, numerical calculations and the analytical perturbative
approach presented here must be in agreement.
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APPENDIX A: SOLUTIONS FOR G(0)(q, z, r′
‖, d )

AND G(1)(q, z, r′
‖, d )

When we have a plane interfaces between the media ε3 and
ε2 and between ε2 and ε1, namely,

ε(r) = ε(z) = ε3θ [z − d] + ε2θ [z]θ [d − z] + ε1θ [−z],

(A1)

the solution φ(0) of Eq. (4) [or the solution of Eq. (11)] can
be obtained directly via image method or solving directly this
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equation. The correspondent Fourier version (noting that only
r‖ is involved in the Fourier transform) of Eq. (4) for this case
is [7]

q2ε(z)G(0)(q, z, r′
‖, d ) − ∂

∂z

[
ε(z)

∂G(0)(q, z, r′
‖, d )

∂z

]

= 4πδ(z − d )e−iq·r′
‖ . (A2)

Integrating this equation in z, between d − η and d + η and
sending η → 0 we get

ε3

[
∂

∂z
G(0)(q, z, r′

‖, d )

]
z=d+η

− ε2

[
∂

∂z
G(0)(q, z, r′

‖, d )

]
z=d−η

= −4πe−iq·r′
‖ . (A3)

Integrating again, now between −η and +η, we get

ε2

[
∂

∂z
G(0)(q, z, r′

‖, z′)
]

z=+η

(A4)

−ε1

[
∂

∂z
G(0)(q, z, r′

‖, z′)
]

z=−η

= 0. (A5)

These equations, together with the continuity condition for
G(0)(q, z, r′

‖, z′) and the requirement of limz→±∞ G(0) = 0,
lead to solution in the form shown in Eq. (16), with:

G(0)
III (q, z, r′

‖, d ) = D(0)(q, r′
‖, d )e−qz, (A6)

G(0)
II (q, z, r′

‖, d ) = B(0)(q, r′
‖, d )eqz + C(0)(q, r′

‖, d )e−qz,

(A7)

G(0)
I (q, z, r′

‖, d ) = A(0)(q, r′
‖, d )eqz, (A8)

A(0)(q, r′
‖, d ) = ε28πe−iq·r′

‖

q[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

, (A9)

B(0)(q, r′
‖, d ) = ε+

124πe−iq·r′
‖

q[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

, (A10)

C(0)(q, r′
‖, d ) = ε−

214πe−iq·r′
‖

q[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

, (A11)

D(0)(q, r′
‖, d ) = [ε−

21e−qd + ε+
12eqd ]4πe−iq·r′

‖

q[ε−
23ε

−
12e−2qd + ε+

23ε
+
12]

. (A12)

Now, let us focus on the solution form G(1). When we
have a plane interface between the media ε3 and ε2, but a
nonplanar interface between ε2 and ε1, as described by Eq. (2),
we obtain the solution for φ in Eq. (4) via perturbative method,
according to Eq. (5). The first correction to G(0), namely G(1),
can be obtained by solving Eq. (12) (in coordinate space) or
Eq. (15) in Fourier space. The procedures to solve this latter
equation are described in Sec. II, with the functions mentioned
in Eq. (21) given by

G(1)
III (q, z, r′

‖, d ) = D(1)(q, r′
‖, d )e−qz, (A13)

G(1)
II (q, z, r′

‖, d ) = B(1)(q, r′
‖, d )eqz + C(1)(q, r′

‖, d )e−qz,

(A14)

G(1)
I (q, z, r′

‖, d ) = A(1)(q, r′
‖, d )eqz, (A15)

A(1)(q, r′
‖, d ) = ε−

23(T2ε2 + T1ε2q − T2ε1)e−qd

q[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

− ε+
23(−T2ε2 + T1ε2q + T2ε1)eqd

q[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

, (A16)

B(1)(q, r′
‖, d ) = ε−

23(−T2ε1 + T2ε2 + T1ε1q)e−qd

q[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

, (A17)

C(1)(q, r′
‖, d ) = ε+

23(−T2ε1 + T2ε2 + T1ε1q)eqd

q[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

, (A18)

D(1)(q, r′
‖, d ) = 2ε2(−T2ε1 + T2ε2 + T1ε1q)eqd

q[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

, (A19)

with

T1 = − ε−
12

ε2

∫
1

(2π )2 d2q′h(q − q′)q′G(0)(q′, 0, r′
‖, d ),

(A20)

T2 =
∫

1

(2π )2
d2q′h(q − q′)(q′ · q)G(0)(q′, 0, r′

‖, d ),

(A21)

G(0)(q′, 0, r′
‖, d ) = ε28πe−iq′ ·r′

‖

q[ε−
23ε

−
12e−q′d + ε+

23ε
+
12eq′d ]

. (A22)

APPENDIX B: BOUNDARY CONDITIONS

Let us start, considering

G(r‖, z, r′
‖, d ) =

⎧⎪⎨
⎪⎩

GIII(r‖, z, r′
‖, d ), d < z

GII(r‖, z, r′
‖, d ), λh(r‖) < z < d.

GI(r‖, z, r′
‖, d ), z < λh(r‖)

(B1)
Requiring the continuity of the Green function, we have

GII(r‖, λh(r‖), r′
‖, d ) = GI(r‖, λh(r‖), r′

‖, d ), (B2)

from which we get

GII(r‖, 0, r′
‖, d ) +

[
∂

∂z
GII(r‖, z, r′

‖, d )

]
z=0

λh(r‖) + · · ·

= GI(r‖, 0, r′
‖, d ) +

[
∂

∂z
GI(r‖, z, r′

‖, d )

]
z=0

λh(r‖) + · · ·

(B3)

Using Eq. (5) in Eq. (B3), we have

G(0)
II (r‖, 0, r′

‖, z′) + λG(1)
II (r‖, 0, r′

‖, z′)

+
[

∂

∂z
G(0)

II (r‖, z, r′
‖, z′)

]
z=0

λh(r‖) + O(λ2)

= G(0)
I (r‖, 0, r′

‖, z′) + λG(1)
I (r‖, 0, r′

‖, z′)

+
[

∂

∂z
G(0)

I (r‖, z, r′
‖, z′)

]
z=0

λh(r‖) + O(λ2), (B4)

from which we obtain the two boundary conditions written
next. First, for G(0), we have

G(0)
II (r‖, 0, r′

‖, z′) = G(0)
I (r‖, 0, r′

‖, z′), (B5)
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whose Fourier version is

G(0)
II (q, 0, r′

‖, z′) = G(0)
I (q, 0, r′

‖, z′), (B6)

which we also write as

G(0)(q, 0+, r′
‖, z′) = G(0)(q, 0−, r′

‖, z′), (B7)

used in Eq. (17). Second, for G(1), we obtain

G(1)
II (r‖, 0, r′

‖, d ) − G(1)
I (r‖, 0, r′

‖, d )

= −
{[

∂

∂z
G(0)

II (r‖, z, r′
‖, d )

]
z=0

−
[

∂

∂z
G(0)

I (r‖, z, r′
‖, d )

]
z=0

}
h(r‖), (B8)

which can be written as

G(1)(r‖, 0+, r′
‖, d ) − G(1)(r‖, 0−, r′

‖, d )

= −
{[

∂

∂z
G(0)(r‖, z, r′

‖, d )

]
z=0+

−
[

∂

∂z
G(0)(r‖, z, r′

‖, d )

]
z=0−

}
h(r‖), (B9)

whose Fourier version is shown in Eq. (18).
For the region z = d , we require the following continuity

condition for the Green function:

GIII(q, d, r′
‖, z′) = GII(q, d, r′

‖, z′). (B10)

Expanding this equation, we have

G(0)
III (q, d, r′

‖, z′) + λG(1)
III (q, d, r′

‖, z′) + O(λ2)

= G(0)
II (q, d, r′

‖, z′) + λG(1)
II (q, d, r′

‖, z′) + O(λ2),

(B11)

from which we obtain the other two boundary conditions. For
G(0), we get

G(0)
III (q, d, r′

‖, z′) = G(0)
II (q, d, r′

‖, z′), (B12)

which can be written in the notation

G(0)(q, d+, r′
‖, z′) = G(0)(q, d−, r′

‖, z′). (B13)

For G(1), we get

G(1)
III (q, d, r′

‖, z′) = G(1)
II (q, d, r′

‖, z′), (B14)

which can be written in the notation

G(1)(q, d+, r′
‖, z′) = G(1)(q, d−, r′

‖, z′), (B15)

used in Eq. (17).

APPENDIX C: OBTAINING G(1)(r‖, z, r′
‖, d )

The solution for G(1) in terms of x and y can be obtained using Eqs. (6), (21), and (A13)–(A22). This leads to

G(1)
III (r‖, z, r′

‖, z′) = ε−
21

1

4π

∫
1

(2π )2 d2q
∫

1

(2π )2 d2q′h(q − q′)
{
∇‖G(0)

I (q, d − z,−r‖, d ) · ∇′
‖G(0)

I (q′, 0, r′
‖, z′)

+ε1

ε2

[
∂

∂ z̃
G(0)

I (q, z̃,−r‖, z′)
]

z̃=d−z

[
∂

∂ z̃
G(0)

I (q′, z̃, r′
‖, z′)

]
z̃=0

}
, (C1)

G(1)
II (r‖, z, r′

‖, z′) = 1

8π

1

ε2
ε−

21

∫
1

(2π )2 d2q
∫

1

(2π )2 d2q′h(q − q′)
{
ε−

23

[[∇‖G(0)
I (q, z̃,−r‖, d )

]
z̃=z−d · ∇′

‖G(0)
I (q′, 0, r′

‖, z′)

+ ε1

ε2

[
∂

∂ z̃
G(0)

I (q, z̃,−r‖, d )

]
z̃=z−d

[
∂

∂ z̃
G(0)

I (q′, z̃, r′
‖, z′)

]
z̃=0

]

+ ε+
23

[[∇‖G(0)
I (q, z̃,−r‖, d )

]
z̃=d−z · ∇′

‖G(0)
I (q′, 0, r′

‖, z′)

+ ε1

ε2

[
∂

∂ z̃
G(0)

I (q, z̃,−r‖, d )

]
z̃=d−z

[
∂

∂ z̃
G(0)

I (q′, z̃, r′
‖, z′)

]
z̃=0

]}
, (C2)

G(1)
I (r‖, z, r′

‖, d ) = 1

8π

ε−
21

ε2

∫
1

(2π )2 d2q
∫

1

(2π )2 d2q′h(q − q′)
{
ε−

23

[
∇‖G(0)

I (q, z − d,−r‖, d ) · ∇′
‖G(0)

I (q′, 0, r′
‖, d )

+
[

∂

∂ z̃
G(0)

I (q, z̃,−r‖, d )

]
z̃=z−d

[
∂

∂ z̃
G(0)

I (q′, z̃, r′
‖, d )

]
z̃=0

]

+ε+
23

[
∇‖G(0)

I (q, z + d,−r‖, d ) · ∇′
‖G(0)

I (q′, 0, r′
‖, d ) −

[
∂

∂ z̃
G(0)

I (q, z̃,−r‖, d )

]
z̃=z+d

×
[

∂

∂ z̃
G(0)

I (q′, z̃, r′
‖, d )

]
z̃=0

]}
. (C3)
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Now, considering the symmetry

G(0)
I (r‖, z, r′

‖, z′) = G(0)
I (−r‖, z,−r′

‖, z′), (C4)

we get, after manipulations, the formulas (22)–(26).

APPENDIX D: ENERGY OF INTERACTION

When we put together a set of macroscopic (real) charges [described by ρ(r)], in the presence of dielectric media, we have
to take into account the state of polarization induced in these media [26]. The total work W to assemble the system described by
ρ(r) includes the work done on the dielectric media. If the behavior of the media is linear, then we can use the formula [26]

W = 1

2

∫
d3rρ(r)φ(r). (D1)

Let us consider the total potential φ divided into two parts:

φ(r) = φρ (r) + φind(r), (D2)

where φρ is the potential associated with the distribution ρ(r), whereas φind is the potential produced by the averaged induced
charges on the dielectric media. Considering

ρ(r) = Qδ(r−r′), (D3)

and using the notation φρ → φQ, we have

W = 1
2 QφQ(r′) + 1

2 Qφind(r′). (D4)

The term 1
2 QφQ(r′) can be seen as the work to build the point charge Q, which is divergent and will be discarded. Then,

effectively, we will consider just the second term in the right-hand side of Eq. (D4), which leads to Eq. (35).

APPENDIX E: POTENTIAL AND ELECTRIC FIELDS IN COORDINATE REPRESENTATION

The functions φ(0) and φ(1) in Eq. (50) are given explicitly by

φ(0)(r‖, d, r′
‖, d ) = Q

π

∫ ∞

0
dq

[ε−
21e−q2d + ε+

12]

[ε−
23ε

−
12e−2qd + ε+

23ε
+
12]

J0(q|r′
‖ − r‖|), (E1)

φ(1)(r‖, d, r′
‖, d ) = 4ε−

21ε
2
2

Q

π

∫
d2r̃h(r̃‖)

∫ ∞

0
dq̃

q̃

[ε−
23ε

−
12e−q̃d + ε+

23ε
+
12eq̃d ]

∫ ∞

0
dq

q

[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

×
{

J1(q̃|r̃‖ − r‖|)J1(q|r̃‖ − r′
‖|)A(1)(r̃‖, r‖, r′

‖) + ε1

ε2
J0(q̃|r̃‖ − r‖|)J0(q|r̃‖ − r′

‖|)
}
, (E2)

where

A(1)(r̃‖, r‖, r′
‖) = (x̃ − x)

|r̃‖ − r‖|
(x̃ − x′)
|r̃‖ − r′

‖|
(E3)

+ (ỹ − y)

|r̃‖ − r‖|
(ỹ − y′)
|r̃‖ − r′

‖|
. (E4)

The fields E(0)
‖ and E(1)

‖ are given by

E(0)
‖ (r‖, d, r′

‖, d ) = −Q
1

π

∫ ∞

0
dq

[ε−
21e−q2d + ε+

12]

[ε−
23ε

−
12e−2qd + ε+

23ε
+
12]

qJ1(q|r′
‖ − r‖|)

r′
‖ − r‖

|r′
‖ − r‖| , (E5)

E(1)
‖ (r‖, d, r′

‖, d ) = ε−
21ε

2
2

4

π
Q

∫
d2r̃h(r̃‖)

∫ ∞

0
dq̃

q̃

[ε−
23ε

−
12e−q̃d + ε+

23ε
+
12eq̃d ]

∫ ∞

0
dq

q

[ε−
23ε

−
12e−qd + ε+

23ε
+
12eqd ]

×
{

q̃J0(q̃|β1|)J1(q|β2|)A(1)(r̃‖, r‖, r′
‖)

β1

|β1|
− J1(q̃|β1|)J1(q|β2|)A(1)(r̃‖, r‖, r′

‖)
β1

|β1|2

+ J1(q̃|β1|)J1(q|β2|)A(2)(r̃‖, r‖, r′
‖)β3 − ε1

ε2
q̃J1(q̃|β1|)J0(q|β2|)

β1

|β1|
}
, (E6)
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where

β1 = r̃‖ − r‖, (E7)

β2 = r̃‖ − r′
‖, (E8)

β3 = −(ỹ − y)x̂ + (x̃ − x)ŷ, (E9)

A(2)(r̃‖, r‖, r′
‖) = (x̃ − x′)

|r̃‖ − r′
‖|

(ỹ − y)

|r̃‖ − r‖|3 − (ỹ − y′)
|r̃‖ − r′

‖|
(x̃ − x)

|r̃‖ − r‖|3 . (E10)

[1] Y.-R. Jang and B. I. Min, Renormalization constant and effec-
tive mass for the two-dimensional electron gas, Phys. Rev. B 48,
1914 (1993).

[2] L. Zheng and A. H. MacDonald, Correlation in double-
layer two-dimensional electron-gas systems: Singvri-Tosi-
Land-Sjölander theory at b=0, Phys. Rev. B 49, 5522 (1994).

[3] J. González, F. Guinea, and M. A. H. Vozmediano, Non-Fermi
liquid behavior of electrons in the half-filled honeycomb lattice
(A renormalization group approach), Nucl. Phys. B 424, 595
(1994).

[4] M. A. H. Vozmediano and F. Guinea, Effect of Coulomb in-
teractions on the physical observables of graphene, Phys. Scr.
2012, 014015 (2012).

[5] D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov,
A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K.
S. Novoselov, F. Guinea, and A. K. Geim, Dirac cones reshaped
by interaction effects in suspended graphene, Nat. Phys. 7, 701
(2011).

[6] E. J. G. Santos and E. Kaxiras, Electric-field dependence of the
effective dielectric constant in graphene, Nano Lett. B 13, 898
(2013).

[7] P. A. D. Gonçalves and N. M. R. Peres, An Introduction to
Graphene Plasmonics (World Scientific, 2016).

[8] E. C. Marino, Quantum Field Theory Approach to Condensed
Matter Physics (Cambridge University Press, Cambridge and
New York, 2017).

[9] E. C. Marino, Quantum electrodynamics of particles on a
plane and the Chern-Simons theory, Nucl. Phys. B 408, 551
(1993).

[10] J. D. L. Silva, A. N. Braga, W. P. Pires, V. Sérgio Alves, D. T.
Alves, and E. C. Marino, Inhibition of the Fermi velocity renor-
malization in a graphene sheet by the presence of a conducting
plate, Nucl. Phys. B 920, 221 (2017).

[11] W. P. Pires, J. D. L. Silva, A. N. Braga, V. Sérgio Alves, D. T.
Alves, and E. C. Marino, Cavity effects on the Fermi velocity
renormalization in a graphene sheet, Nucl. Phys. B 932, 529
(2018).

[12] R. E. V. Profumo, M. Polini, R. Asgari, R. Fazio, and
A. H. MacDonald, Electron-electron interactions in decoupled
graphene layers, Phys. Rev. B 82, 085443 (2010).

[13] M. I. Katsnelson, Coulomb drag in graphene single layers
separated by a thin spacer, Phys. Rev. B 84, 041407 (2011).

[14] M. Carrega, T. Tudorovskiy, A. Principi, M. I. Katsnelson, and
M. Polini, Theory of coulomb drag for massless dirac fermions,
New J. Phys. 14, 063033 (2012).

[15] W. L. Clinton, M. Esrick, H. Ruf, and W. S. Sacks, Image
potential for stepped and corrugated surfaces, Phys. Rev. B 31,
722 (1985).

[16] P. M. Echenique, F. Flores, and R. H. Ritchie, Image potential
effects for low and high energy electrons, Surf. Sci. 251, 119
(1991).

[17] P. M. Echenique, F. Flores, and R. H. Ritchie, Properties of
image-potential-induced surface states of insulators, Phys. Rev.
B 2, 4239 (1970).

[18] T. S. Rahman and A. A. Maradudin, Effect of surface roughness
on the image potential, Phys. Rev. B 21, 504 (1980).

[19] H. Sun and G. Shi-Wei, Effective image potential and surface
electronic states outside stepped dielectric surfaces, Phys. Rev.
B 41, 3145 (1990).

[20] W. L. Clinton, M. A. Esrick, and W. S. Sacks, Image potential
for nonplanar metal surfaces, Phys. Rev. B 31, 7540 (1985).

[21] D. A. Iranzo, S. Nanot, E. J. C. Dias, I. Epstein, C. Peng, D. K.
Efetov, M. B. Lundeberg, R. Parret, J. Osmond, J.-Y. Hong, J.
Kong, D. R. Englund, N. M. R. Peres, and F. H. L. Koppens,
Probing the ultimate plasmon confinement limits with a van der
waals heterostructure, Science 360, 291 (2018).

[22] B. Amorim, P. A. D. Gonçalves, M. I. Vasilevskiy, and N. M.
R. Peres, Impact of graphene on the polarizability of a neighbor
nanoparticle: a dyadic green’s function study, Appl. Sci.–Basel
7, 1158 (2017).

[23] E. J. C. Dias, D. A. Iranzo, P. A. D. Gonçalves, Y. Hajati, Y. V.
Bludov, A.-P. Jauho, N. A. Mortensen, F. H. L. Koppens, and
N. M. R. Peres, Probing nonlocal effects in metals with
graphene plasmons, Phys. Rev. B 97, 245405 (2018).

[24] A. J. Chaves, N. M. R. Peres, D. R. da Costa, and G. A. Farias,
Localized surface plasmons in a continuous and flat graphene
sheet, Phys. Rev. B 97, 205435 (2018).

[25] J. Hadamard, Leçons sur le Calcul des Variations (Librarie
Scientifique A. Hermann et Fils, Paris, 1910).

[26] J. D. Jackson, Classical Electrodynamics (Wiley, 1962).

075437-15

https://doi.org/10.1103/PhysRevB.48.1914
https://doi.org/10.1103/PhysRevB.48.1914
https://doi.org/10.1103/PhysRevB.48.1914
https://doi.org/10.1103/PhysRevB.48.1914
https://doi.org/10.1103/PhysRevB.49.5522
https://doi.org/10.1103/PhysRevB.49.5522
https://doi.org/10.1103/PhysRevB.49.5522
https://doi.org/10.1103/PhysRevB.49.5522
https://doi.org/10.1016/0550-3213(94)90410-3
https://doi.org/10.1016/0550-3213(94)90410-3
https://doi.org/10.1016/0550-3213(94)90410-3
https://doi.org/10.1016/0550-3213(94)90410-3
https://doi.org/10.1088/0031-8949/2012/T146/014015
https://doi.org/10.1088/0031-8949/2012/T146/014015
https://doi.org/10.1088/0031-8949/2012/T146/014015
https://doi.org/10.1088/0031-8949/2012/T146/014015
https://doi.org/10.1038/nphys2049
https://doi.org/10.1038/nphys2049
https://doi.org/10.1038/nphys2049
https://doi.org/10.1038/nphys2049
https://doi.org/10.1021/nl303611v
https://doi.org/10.1021/nl303611v
https://doi.org/10.1021/nl303611v
https://doi.org/10.1021/nl303611v
https://doi.org/10.1016/0550-3213(93)90379-4
https://doi.org/10.1016/0550-3213(93)90379-4
https://doi.org/10.1016/0550-3213(93)90379-4
https://doi.org/10.1016/0550-3213(93)90379-4
https://doi.org/10.1016/j.nuclphysb.2017.04.014
https://doi.org/10.1016/j.nuclphysb.2017.04.014
https://doi.org/10.1016/j.nuclphysb.2017.04.014
https://doi.org/10.1016/j.nuclphysb.2017.04.014
https://doi.org/10.1016/j.nuclphysb.2018.05.010
https://doi.org/10.1016/j.nuclphysb.2018.05.010
https://doi.org/10.1016/j.nuclphysb.2018.05.010
https://doi.org/10.1016/j.nuclphysb.2018.05.010
https://doi.org/10.1103/PhysRevB.82.085443
https://doi.org/10.1103/PhysRevB.82.085443
https://doi.org/10.1103/PhysRevB.82.085443
https://doi.org/10.1103/PhysRevB.82.085443
https://doi.org/10.1103/PhysRevB.84.041407
https://doi.org/10.1103/PhysRevB.84.041407
https://doi.org/10.1103/PhysRevB.84.041407
https://doi.org/10.1103/PhysRevB.84.041407
https://doi.org/10.1088/1367-2630/14/6/063033
https://doi.org/10.1088/1367-2630/14/6/063033
https://doi.org/10.1088/1367-2630/14/6/063033
https://doi.org/10.1088/1367-2630/14/6/063033
https://doi.org/10.1103/PhysRevB.31.722
https://doi.org/10.1103/PhysRevB.31.722
https://doi.org/10.1103/PhysRevB.31.722
https://doi.org/10.1103/PhysRevB.31.722
https://doi.org/10.1016/0039-6028(91)90965-U
https://doi.org/10.1016/0039-6028(91)90965-U
https://doi.org/10.1016/0039-6028(91)90965-U
https://doi.org/10.1016/0039-6028(91)90965-U
https://doi.org/10.1103/PhysRevB.2.4239
https://doi.org/10.1103/PhysRevB.2.4239
https://doi.org/10.1103/PhysRevB.2.4239
https://doi.org/10.1103/PhysRevB.2.4239
https://doi.org/10.1103/PhysRevB.21.504
https://doi.org/10.1103/PhysRevB.21.504
https://doi.org/10.1103/PhysRevB.21.504
https://doi.org/10.1103/PhysRevB.21.504
https://doi.org/10.1103/PhysRevB.41.3145
https://doi.org/10.1103/PhysRevB.41.3145
https://doi.org/10.1103/PhysRevB.41.3145
https://doi.org/10.1103/PhysRevB.41.3145
https://doi.org/10.1103/PhysRevB.31.7540
https://doi.org/10.1103/PhysRevB.31.7540
https://doi.org/10.1103/PhysRevB.31.7540
https://doi.org/10.1103/PhysRevB.31.7540
https://doi.org/10.1126/science.aar8438
https://doi.org/10.1126/science.aar8438
https://doi.org/10.1126/science.aar8438
https://doi.org/10.1126/science.aar8438
https://doi.org/10.3390/app7111158
https://doi.org/10.3390/app7111158
https://doi.org/10.3390/app7111158
https://doi.org/10.3390/app7111158
https://doi.org/10.1103/PhysRevB.97.245405
https://doi.org/10.1103/PhysRevB.97.245405
https://doi.org/10.1103/PhysRevB.97.245405
https://doi.org/10.1103/PhysRevB.97.245405
https://doi.org/10.1103/PhysRevB.97.205435
https://doi.org/10.1103/PhysRevB.97.205435
https://doi.org/10.1103/PhysRevB.97.205435
https://doi.org/10.1103/PhysRevB.97.205435



