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Shear sound of two-dimensional Fermi liquids
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We study the appearance of a sharp collective mode which features transverse current fluctuations within the
bosonization approach to interacting two-dimensional Fermi liquids. This mode is analogous to the shear sound
modes in elastic media, and, unlike the conventional zero sound mode, it is damped in weakly interacting Fermi
liquids and only separates away from the particle-hole continuum when the quasiparticle mass becomes twice
the transport mass m∗ � 2m. The shear sound should be present in a large class of interacting charged and neutral
Fermi liquids especially those proximate to critical points where the quasiparticle mass diverges. In metals this
mode remains linearly dispersing in the presence of the long-ranged Coulomb force, unlike the conventional zero
sound mode which becomes the plasma mode. We also detail a quick path between bosonization and classical
Landau’s Fermi liquid theory by constructing a mapping between the solutions of the classical kinetic equation
and the quantized bosonic eigenmodes. By further mapping the kinetic equation into a one-dimensional tight-
binding model we solve for the entire spectrum of collective and incoherent particle-hole excitations of Fermi
liquids with nonzero F0 and F1 Landau parameters.
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I. INTRODUCTION

When Landau introduced his theory of the Fermi liquid
more than 60 years ago [1,2] it was not immediately clear the
extent to which it was an approximate description. Subsequent
developments, such as the theorem of Luttinger [3] asserting
the adiabatic invariance of the Fermi volume, contributed to
strengthen the belief on the essential validity of Landau’s the-
ory. At the dawn of the twentieth century the advent of modern
approaches like the renormalization group of fermions [4]
and higher dimensional bosonization [5–8] contributed to
cement the agreement that in two dimensions (2D) and higher
Landau’s Fermi liquid theory (LFLT) captures the essential
long wavelength and low energy behavior of a large class of
interacting systems with a Fermi surface known as Landau
Fermi liquids (LFL).

Typically weakly interacting LFL have a single sharp
collective excitation known as the zero sound mode, with
the remaining excitations forming incoherent particle-hole
continuum [9,10]. This mode becomes the plasma mode in
charged LFLs as depicted in Fig. 1(a) due to the presence
of the long range Coulomb interactions. However, as we will
demonstrate, a well separated shear sound mode can emerge
from the particle-hole continuum and become an additional
sharp collective mode in LFLs once the interactions are
beyond a certain threshold. This unconventional collective
mode has the characteristics of a shear sound wave resembling
the transverse excitations of an elastic medium, which can
oscillate transversely to the propagation direction of the shear
wave as depicted in Fig. 1(d). This mode is absent in classical
fluids due to their vanishing shear modulus and its presence
in the quantum Fermi liquids is a vivid reminder of the deep
differences between quantum and classical fluids.

The possibility of a shear sound mode in interacting LFLs
was long ago recognized by the 3He community [9–13].
However, in three-dimensional (3D) Fermi liquids the mode
requires typically a larger interaction strength to separate
from the particle-hole continuum and it also remains closer
to the particle-hole continuum than in 2D. Although there is
evidence for the presence of this mode in three-dimensional
3He [14], its quantitative understanding remains elusive [15],
largely because of its proximity to the particle-hole con-
tinuum. As we will argue, this mode should be easier to
observe in two dimensions and might be present in a variety
of experimentally accessible metallic and neutral Fermi liq-
uids. Approximately, we expect the mode to separate from
the particle-hole continuum once the quasiparticle mass is
renormalized beyond a factor of 2 compared to the bare mass.

To study this unconventional collective mode, we apply
the higher dimensional bosonization formalism to LFLs. This
formalism is essentially a second quantized field theoretic ver-
sion of Landau Fermi liquid theory. We will describe a short
path between the bosonization and conventional Fermi liquid
theory which highlights this intimate connection. In particular,
the harmonic nature of the bosonized theory leads to an equiv-
alence between classical and quantum equations of motion
for collective modes, analogous to how the Ehrenfest theorem
relates the dynamics of classical and quantum harmonic oscil-
lators. Therefore, for purposes of collective modes, the results
are equivalent to those of classic LFLT [5–8]. Our approach
is inspired by and in close connection to recent top-down
approaches to bosonization which start from LFLT viewed as
a classical field theory and construct from it a quantum field
theory by inferring the quantization relations of its classical
variables [16,17].
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FIG. 1. Schematic of the particle-hole (p-h) continuum and the
collective modes of the Fermi liquid in 2D (a) with and (b) without
shear sound (red, dashed line). In the case of neutral Fermi liquids,
the zero sound (plasma modes in metal) will have a linear depen-
dence instead of the square root dependence shown here. (c) Zero and
(d) shear sound with wave vector q parallel to the x axis. The color
scale represents the density and the arrows the current fluctuations.

II. FORMALISM

The long-wavelength and low-energy description of most
phases of matter involves a finite number of continuum fields
related to conservation laws and order parameters in the case
of broken symmetry phases. However, LFL depart radically
from this, in that they have an infinite number of slow degrees
of freedom which parametrize the shape of the Fermi sur-
face [6]. The state of a LFL can be parametrized by the Fermi
radius at any point in space x, pF

x,θ = p0
F + ux,θ , where θ is the

angle on the Fermi surface. In bosonization the Fermi radius
becomes a quantum mechanical operator whose algebra is
given by [6–8,16,17]

[ûx,θ , ûx′,θ ′ ] = (2π )2

ipF
δ(θ − θ ′)∂nδ(x − x′) + O(û), (1)

where ∂n = p̂θ · ∂x is the derivative along the normal p̂θ of the
Fermi surface. We introduce a matrix notation for θ that will
compactify our formulas by defining

v
†
θ Gθ,θ ′wθ ′ ≡

∫
dθdθ ′v∗(θ )G(θ, θ ′)w(θ ′). (2)

With this notation, the Hamiltonian governing the dynam-
ics of the Fermi surface can be written as

Ĥ =
∫

d2x û†
x,θ hθ,θ ′ ûx,θ ′ , (3)

where h(θ, θ ′) = vF pF[2πδ(θ ′ − θ ) + F (θ ′ − θ )]/2(2π )3.
F (θ ′ − θ ) is the Landau function characterizing the interac-
tions between quasiparticles [18]. Notice that LFLT has an
infinite number of conserved quantities which measure the
spatially averaged shape of the Fermi surface. Formally, any
operator of the form ĝ(θ ) = ∫

d2x g(θ )ûx,θ is a conserved
quantity.

To exploit translational invariance we introduce the
Fourier modes of the Fermi surface deformations ûq,θ ≡∫

d2x ûx,θ e−iq·x. These operators can be interpreted as bare
particle-hole creation operators c†

p+q/2cp−q/2 with p coarse

grained over a region near the angle θ on the Fermi sur-
face [8,19]. The equation of motion following from Eqs. (1)
and (3) for these operators is

i∂t ûq,θ = [ûq,θ , Ĥ ] = Kθ,θ ′ ûq,θ ′ , (4)

K (θ, θ ′) = vFq · p̂θ

(
δ(θ − θ ′) + 1

2π
F (θ − θ ′)

)
. (5)

The equation above can be recognized to be an opera-
tor version of the classic Landau’s linearized kinetic equa-
tion [9,10]. Notice that ûq,θ do not satisfy canonical bosonic
commutation relations and that the kinetic matrix Kθ,θ ′ is non-
Hermitian. However, there exists a simple similarity transfor-
mation between K and its Hermitian conjugate:

K = T K†T −1, Tθ,θ ′ = (2π )2q · p̂θ

pF
δ(θ − θ ′). (6)

We are now in a position to state a mapping between the
classical solutions of Landau’s kinetic equation and their
quantum counterpart. For each classical eigenfunction of the
kinetic equation ψλ,q,θ , there is a quantum eigenmode ψ̂λ,q
given by

ψ̂λ,q = ψ
†
λ,q,θT −1

θ,θ ′ ûq,θ ′ , (7)

where Kθ,θ ′ψλ,q,θ ′ = Eλψλ,q,θ and i∂t ψ̂λ,q = Eλψ̂λ,q. By
choosing a suitable normalization for the classical solutions
ψ

†
λ,q,θ T −1

θ,θ ′ψλ′,q,θ ′ = sgn(Eλ)δλ,λ′ , we arrive at canonical
bosonic eigenmodes describing the fluctuations of the shape
of the Fermi surface:

[ψ̂λ,q, ψ̂
†
λ′,q′] = (2π )2δ(q − q′)sgn(Eλ)δλ,λ′ , (8)

where the sign of the eigenvalue Eλ dictates which one of the
pair ψ̂λ,q, ψ̂

†
λ′,q′ is raising and which one is lowering operators.

These eigenmodes describe both collective oscillations such
as the zero sound and also the continuum of particle-hole
excitations. Any two-body operator can be represented
as a linear combination of these modes and in particular
ûq,θ = ∑

λ sgn(Eλ)ψ̂λ,qψλ,q,θ .

III. MAPPING TO A CHAIN

As we have seen, the quantum problem reduces to the
eigenvalue problem of the classic kinetic equation. We begin
by simplifying the classical eigenvalue problem by exploiting
its symmetries. Rotational symmetry allows us to restrict
q = qx̂. We measure the angle along the Fermi surface θ
from this axis. Additionally, we assume a mirror symmetry
F (θ ) = F (−θ ), Kθ,θ ′ = K−θ,−θ ′ , which decouples the even
and odd parity eigenmodes, which we label with a superscript
σ = ± denoting ψσ

λ,q,θ = σψσ
λ,q,−θ .

There is also a time-reversal symmetry K∗
θ,θ ′ = Kθ,θ ′ which

implies that the eigenfunctions can be taken to be purely
real [20]. The kinetic equation also has a particle-hole-
like symmetry which follows from an inversion in momen-
tum space: Kθ+π,θ ′+π = −Kθ,θ ′ . Therefore the eigenfunctions
ψσ

λ,q,θ come in pairs with opposite eigenvalues. Namely, if
ψσ

λ,q,θ is an eigenfunction with eigenvalue Eσ
λ , then ψσ

λ,q,θ+π is
an eigenfunction with eigenvalue −Eσ

λ . For fixed q these two
solutions describe physically distinct modes. The one with
positive (negative) eigenvalue will be a creation (destruction)
operator, and its destruction (creation) operator partner will
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live in the space of excitations with momentum −q. This
feature can be traced back to the property that particle-hole
excitations with small momentum q can only be created in
one of the halves of the Fermi surface satisfying q · p̂θ > 0.

We describe now a convenient representation of the kinetic
equation in a similar spirit to a recent treatment of spin-orbit
coupled systems [21]. We begin by decomposing into angular
momentum channels (q implicit below):

F (θ ) = F0 +
∞∑

l=1

2Fl cos(lθ ), (9)

ψ+
λ,θ = ψ+

λ,0 +
∞∑

l=1

2ψ+
λ,l cos(lθ ), (10)

ψ−
λ,θ =

∞∑
l=1

2ψ−
λ,l sin(lθ ). (11)

With this the kinetic equation takes the form of a non-
Hermitian tight-binding model in which the sites are the
angular momentum channels:

Eσ
λ ψσ

λ,l+1 = tlψ
σ
λ,l + tl+2ψ

σ
λ,l+2, (12)

where tl = vFq(1 + Fl )/2. The above equation applies when
l � 0 for σ = + and when l � 1 for σ = − and is accompa-
nied by the corresponding boundary conditions

E+
λ ψ+

λ,0 = 2t1ψ
+
λ,1, (13)

E−
λ ψ−

λ,1 = t2ψ
−
λ,2. (14)

We see that the Landau parameters play the role of bond
disorder in the effective tight-binding model. Notice that
the eigenvalue problem for the odd modes is completely
independent of F0. A remarkable property which becomes
transparent in this way of writing the problem is that there
exists a simple relation between the eigenvalue problem in
the odd and even subspaces. Namely, the eigenvalue problem
in the even sector for a set of Landau parameters {Fl} can
be mapped into the problem in the odd sector with modified
Landau parameters {F ′

l } by relabeling sites as l → l + 1, such
that the Landau parameters are related by F ′

l+1 = Fl , and by
removing the factor of 2 when going from the even Eq. (13)
to odd boundary condition Eq. (14).

IV. SHEAR SOUND

We begin by considering the simplest interacting Fermi
liquid with only a nonzero s-wave Landau parameter F0 �= 0
and Fl>0 = 0. In this case the tight-binding chain has only one
defective bond connecting the l = 0 site at the end of the chain
in the even sector σ = +. As detailed in the Supplemental
Material [22], one can solve Eq. (12) recursively. There are
two kinds of solutions. The first kind form the analog of a
“band” and describe excitations in the particle-hole continuum
(E < vF q), and are found to be (up to global constant)

ψ+
l�1 =

sin(l + 1)θE − E
vFq sin lθE − F0 sin(l − 1)θE

sin θE
, (15)

where cos θE = E/vFq and parametrizes the angle on the
Fermi surface where the particle-hole pair is created. The
second kind are isolated solutions analogous to bound states

FIG. 2. Fermi surface deformations for zero (a) and shear (b)
sound eigenmodes (F0 = 1, F1 = 3).

created by the “bond disorder.” The F0 model has a single
isolated bound state that is present only for F0 > 0 and cor-
responds to the celebrated zero sound mode. Its dispersion is
found to be [23]

E0

vFq
= 1 + F0√

1 + 2F0
, F0 > 0, (16)

and the wave function of the zero sound is

ψ+
l�1 = ψ+

0

1 + F0

(1 + 2F0)l/2
, (17)

ψ+
0 =

(
2πq

pF

vFq

E0

F0(1 + F0)

(1 + 2F0)2

)1/2

. (18)

In the F0 model the odd parity modes are identical to the
noninteracting Fermi gas, and hence there is no transverse
collective modes and only the particle-hole continuum. We
will now consider a more realistic model of the LFL which
has nonvanishing {F0, F1} Landau parameters. The mapping
described in the previous section between odd and even parity
sectors immediately implies that this model can support an
undamped collective odd mode. The dispersion and wave
function of this mode is found to be

E1

vFq
= 1 + F1

2
√

F1
, F1 > 1, (19)

ψ−
l�2 = ψ−

1

1 + F1

F (l−1)/2
1

, ψ−
1 =

[
πq

8pF

vFq

E1

(
1− 1

F 2
1

)]1/2

. (20)

The shape of the Fermi surface deformations associated
with shear and zero sound modes are illustrated in Fig. 2.
As we will see this extra collective mode features transverse
current fluctuations with no density oscillations in analogy
with the shear sound of elastic media. The even sector gets
modified by the introduction of a finite F1, the details of which
will be discussed in Sec. VIII. This modification is unessential
to our current discussion for F0, F1 > 0.

The study of shear fluctuations of interacting electrons has
an important precedent in the work of Conti and Vignale [24]
(see also Ref. [25]). Our expression for the shear sound
velocity in Eq. (19) is in agreement with theirs (see Eq. (4.12)
from Ref. [24]) in the regime in which the collective mode is
well separated from the particle hole continuum, namely when
ω 	 vF q, which requires F1 	 1 [26]. We emphasize that our
results are expected to be exact in the long-wavelength limit
of a LFL provided that higher angular momentum Landau
parameters (l � 2) are negligible.
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V. DENSITY AND CURRENT RESPONSES

Any two-body operator has a linear expansion in bosonic
eigenmodes:

Ôq =
∫

dθO(q, θ )ûq,θ =
∑

λ

Oλ,qψ̂λ,q. (21)

This expansion allows us to quantify the amplitude
of the oscillation of any physical quantity in any given
eigenmode and to compute linear response functions. In
particular, the density and current operators of the liq-
uid take the following form: ρ̂q = pF

∫
dθ ûq,θ /(2π )2, jq =

p2
F/m

∫
dθ ûq,θ p̂θ /(2π )2, where m is the transport mass that

controls the Drude weight. The amplitude of these quantities
is found to be

ρλ,q = sgn(Eλ)
pF

2π
ψ+

λ,0, (22)

jλ,q = sgn(Eλ)
p2

F

2πm
(ψ+

λ,1q̂|| + ψ−
λ,1q̂⊥). (23)

Notice that the density and the longitudinal component of
the current only have weight in the even parity sector, whereas
the transverse component of the current only has weight in the
odd parity sector. Therefore the shear sound, which has odd
parity, will have purely transverse current oscillations with no
accompanying density fluctuations.

Notably, the imaginary part of the density-density correla-
tion will feature a sharp peak at the energy of the zero-sound
mode when it separates from the particle-hole continuum. In
a system with F0 > 0 and Fl>0 = 0, the spectral weight of this
peak is found to be

wρρ,0 = pFvFq2

8E0

(
1 + 1

F0

)(
1 + 1

2F0

)−2

. (24)

This result is consistent with the f -sum rule nq2

m =
2
π

∫ ∞
0 dω ω

∑
λ wρρ,λδ(ω − Eλ), from which the F0 → ∞

limit of the above spectral weight can be approximated. In this
limit, the zero sound mode has an energy that is much larger
than all other modes so that it exhausts the sum rule, nq2

m �
2
π
wρρ,0E0. Using the electron density n = p2

F
4π

for a circular
Fermi surface and writing the effective mass as m = pF/vF,
we arrive at wρρ,0 � pFvFq2

8E0
, which can also be obtained by

directly taking the F0 → ∞ limit of Eq. (24).
Similarly, the imaginary part of the transverse current-

current correlation will feature a sharp peak at the energy of
the shear sound mode when it separates from the particle-hole
continuum for F1 > 1 (for details of correlation functions
see [22]). The spectral weight of this peak vanishes as F1 → 1
and is found to be [22]

w j⊥ j⊥ = p3
FvFq2

32m2E1

(
1 − 1

F 2
1

)
. (25)

VI. RELATION TO MEASURABLE QUANTITIES

LFLT is parametrized by an infinite number of dimension-
less parameters {Fl}, whose determination for specific micro-
scopic models can only typically be done approximately. For-
tunately, the leading Landau parameters have simple relations

FIG. 3. Comparison of the velocity of shear sound in 2D and 3D
as a function of the mass renormalization.

to common experimental probes. In particular, F1 controls the
ratio of the quasiparticle mass to the transport mass [27]

m∗

m
= 1 + F1. (26)

Notice that the transport mass only equals the bare mass
m0 in Galilean invariant systems [28–30]. m∗ can be obtained
from specific heat measurements, or quantum oscillations,
while m can be inferred from the Drude weight, or the London
penetration length [31]. Therefore, we expect that in systems
where interactions have rendered m∗ � 2m (F1 > 1) the shear
sound will emerge out of the particle-hole continuum as a
sharp excitation, provided that the higher angular momentum
Landau parameters (l � 2) remain small.

VII. COMPARISON BETWEEN 2D AND 3D

Although we have focused on two dimensions similar phe-
nomena can occur in three dimensions. In fact, the possibility
of a shear sound mode in 3He was long ago recognized [9–13].
In 3D a critical Landau parameter F1 > 6 is required, provided
that the higher angular momentum Landau parameters (l � 2)
remain small. To allow a more direct comparison with the
two-dimensional case, we can relate this to the quasiparticle
renormalization, which in 3D is given by [9,10]

m∗

m
= 1 + F1

3
, in 3D. (27)

Therefore we can say that in 3D, the shear sound is ex-
pected to appear when the quasiparticle mass is renormalized
to be three times the transport mass. Figure 3 shows the
behavior of 2D and 3D shear sound modes. Although the
Landau parameters of 3He are believed to be above the critical
value [10], and there is experimental evidence for it [14], its
quantitative understanding has remained elusive [15], largely
because it is relatively close to the particle-hole continuum
of 3He even at largest attainable values of F1 [10]. As we
will elaborate in the discussion section, strongly interacting
two-dimensional metals and helium adsorbed on graphite are
promising alternative platforms for the observation of the
shear sound mode.
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FIG. 4. Phase diagrams showing the region (a) in the F0 − F1

parameter space in which the zero sound mode is outside the particle-
hole continuum and (b) in the F1 − F2 parameter space in which the
shear sound mode is outside the particle-hole continuum.

VIII. IMPACT OF HIGHER LANDAU PARAMETERS

So far we have focused on a simple model of shear sound in
which higher angular momentum Landau parameters vanish
(Fl>1 = 0). In this section we describe the impact of finite
higher angular momentum channels on the zero and shear
sounds. As it turns out, the qualitative nature of these collec-
tive modes remains unchanged even though their solutions are
dependent on these higher Landau parameters.

Let us first revisit the even parity sector of the LFL with
nontrivial F0 and F1 parameters. As we elaborate in the
Supplemental Material [22], the zero sound mode velocity and
wave function acquires a dependence on the F1 parameter in
addition to the F0 parameter. Figure 4(a) depicts the modified
criterion for the appearance of zero sound for nonzero F0 and
F1. Notably, when F1 � 1, the zero sound mode is outside of
particle-hole continuum for any value of F0 � −1 for which
the LFL is stable.

From the even to odd sector mapping, an analogous mod-
ified criterion for the appearance of shear sound for nonzero
F1 and F2 is expected. This is shown in Fig. 4(b). Likewise,
the shear sound remains qualitatively unchanged from the
F2 = 0 case, although its velocity and wave function are
now dependent on both the F1 and F2 parameters [22]. A
nonzero F2 alters the minimum value of F1 above which the
shear sound mode emerges from the particle-hole continuum.
Similarly, when F2 � 1, the shear sound mode emerges from
the particle-hole continuum for any value of F1 � −1 for
which the LFL is stable.

A nonzero F2 parameter also modifies the zero sound re-
gion in the F0 − F1 space. When its value is sufficiently large,
an additional even parity collective mode emerges from the
particle-hole continuum which is distinct from the zero sound.
More details are discussed in the Supplemental Material [22].
We expect, however, that these higher angular momentum
modes will be harder to realize and probe than the shear sound
in typical systems.

IX. DISCUSSION

We begin by discussing the applicability of our results. For
brevity we have focused on spinless fermions but our results
apply as well to the case of the symmetric modes of spin un-
polarized systems in which spin up and down Fermi surfaces
oscillate identically. Also, we have focused on Fermi liquids
interacting via short range forces. LFLT in metals requires ac-
counting for the long ranged Coulomb interaction. However, it
is not hard to show that the Coulomb interaction modifies only
the behavior of the modes in the even sector which involve
longitudinal current-density fluctuations, e.g., transforming
the zero sound into a plasma mode [9]. Modes in the odd sec-
tor, like the shear sound, remain unaltered by the Coulomb in-
teraction because they do not involve charge fluctuations and
hence our discussion of these modes is applicable to metals.

As we have described, we expect that in systems where
interactions have rendered m∗ � 2m (F1 > 1) the shear sound
will emerge out of the particle-hole continuum as a sharp
excitation. We suspect that such relatively moderate renormal-
ization should be accessible in a variety of two-dimensional
LFLs. For example, in 3He films on graphite [32,33] where
m∗ diverges on approaching a Mott transition [34,35]. Also
in quasi-2D metals near criticality such as the iron based
superconductors which have a diverging m∗ [36,37]. It is
under debate if both or only one of the masses is en-
hanced at such a critical point [38–42]. The finite and
smooth behavior of the residual conductivity near the critical
point [43] suggests that m∗ has greater enhancement than
m as required for the appearance of the shear sound [44].
Additional candidates include quasi-two-dimensional heavy-
Fermion materials with large enhancements of the quasipar-
ticle mass [45–47], ultracold fermionic gases with enhanced
p-wave interactions [48,49], and two-dimensional transition
metal dichalcogenides [50–52].

Finally, we would like to comment on potential
experimental probes. One way to study this collective
mode is to measure ultrasound attenuation as attempted
in three-dimensional 3He [14,15]. Alternatively, in metals,
devices like the Corbino viscometer [53] or multiterminal
devices that could generate vorticity of current flow [54,55],
such as those studied in the hydrodynamic approach to
electron transport [56,57], could be used to excite shear
sound provided they can be operated in a sufficiently fast
dynamical regime to minimize the excitation of particle-hole
pairs. It would also be interesting to study the behavior of the
shear sound under magnetic fields, which recent studies have
incorporated within the bosonization formalism [58,59].
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