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Ultraviolet dynamics from ground-state overlap in the Kondo model
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We consider a quantum quench from the strongly correlated ground state of the Kondo model to a Fermi sea.
We calculate the overlap between the ground states before and after the quench, as well as the Loschmidt echo,
i.e., the transition amplitude between the initial state and the evolved state at a time t after the quench. The
overlap is known to determine the dynamics of the echo at large times. We show, in addition, that the overlap
depends algebraically on the emergent Kondo length, with a power-law exponent that is the difference of long
and short-time contributions that appear in the echo. Our result suggests that, in general, there may be more
information contained in the overlap than previously recognized.
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I. INTRODUCTION

When a many-body Hamiltonian is suddenly quenched,
the system’s full response cannot always be calculated per-
turbatively. A quantity that captures this singularity is the
overlap between the ground states before and after the quench.
Due to its fundamental role in nonequilibrium dynamics [1]
and quantum phase transitions [2], ground-state–to–ground-
state overlaps have been calculated in settings ranging from
quantum impurity models [3–5] through single-particle and
many-body localized systems [6–8], to spin chains [9,10] and
lattices [11], Luttinger liquids [12], and particles with frac-
tional exclusion statistics [13] using techniques that include
conformal field theory, the numerical renormalization group,
matrix product states, and tensor networks.

Since the overlap compares ground states, it is not surpris-
ing that it provides information about infrared (IR) physics,
such as long-time dynamics. For instance, if the interac-
tion between a Fermi liquid and a local impurity is sud-
denly quenched, the transition amplitude between the initial
ground state and the time-evolved state after the quench—
the Loschmidt echo—decays algebraically at long times,
with an exponent equal to that governing the system size
dependence of the overlap [1,14–18]. However, unlike truly
infrared probes, the ground-state–to–ground-state overlap is
determined by the whole Fermi sea, not just the Fermi surface
[4]. It must therefore also contain information about properties
beyond the infrared. We believe that this aspect of the overlap
has been neglected because of a too-narrow focus on the
overlap’s dependence on the system size—an infrared scale.
To remedy this oversight, we study a model with an emergent
scale and consider the overlap’s dependence on this scale. We
are not the first to do so [4,5], but the additional ingredient in
our study is the link we establish to nonequilibrium dynamics
beyond the infrared.

The rest of this paper is structured as follows. First we
define the anisotropic Kondo model that we study and state
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our main results. Then we present our analysis, which is
based on the coherent-state expansion—a representation of
the Kondo ground state in terms of a discrete set of bosonic
coherent states—that is, in principle, exact. Next we present
our (numerical) results and then end the main text with a
paragraph summarizing our conclusions. Seven Appendixes
contain further background, technical details, and additional
numerical results.

II. MODEL AND MAIN RESULTS

We consider a one-dimensional Fermi sea, coupled to a
spin-1/2 magnetic moment via a local exchange interaction
J‖Sz(0)sz + J⊥[Sx(0)sx + Sy(0)sy]. Here �S(0) is the electron
spin density at x = 0, and �s is the impurity spin. The in-
teraction famously generates an emergent scale, the Kondo
temperature Tk . The impurity spin and the Fermi sea form a
spin singlet in which the impurity is screened by the electron
gas at distances larger than the Kondo length ξ = h̄vF /2Tk ,
where vF is the Fermi velocity. Below we set h̄ = vF = 1.
We consider quenches (J‖, J⊥) → (J ′

‖, 0). The vanishing
transverse coupling J ′

⊥ = 0 in the final Hamiltonian produces
a diverging Kondo length ξ ′ → ∞. This is associated with
imperfect screening of the impurity spin, and the initial and
final Hamiltonians therefore have distinct infrared properties.
Quenches in the Kondo and related models have been studied
numerous times before, both theoretically [17–27] and exper-
imentally [28], but the connection between the ground-state–
to–ground-state overlap and dynamics beyond the infrared has
not.

Using a combination of analytical and numerical
techniques, we calculated the Loschmidt echo P(t ) =
〈J‖, J⊥|e−iHJ′‖ ,0t |J‖, J⊥〉, where |J‖, J⊥〉 is the ground state be-
fore and HJ ′

‖,0 the Hamiltonian after the quench. We found
distinct power laws in the regimes t 	 ξ and t 
 ξ , i.e.,

|P(t )| ∝
{(

a
t

)χ/2
if a 	 t 	 ξ,(

a
ξ

)χ/2( ξ

t

)β/2
if ξ 	 t 	 L,

(1)
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where L is the system size, and a is a short-distance cutoff
of the order of the Fermi wavelength. The exponent β that
governs the IR dynamics (t 
 ξ ) equals the exponent that
appears in the Anderson orthogonality theorem, in agreement
with previous studies [1,4], and depends on J ′

‖ but not on
the parameters of the prequench Hamiltonian, provided J⊥ is
finite. In contrast, the UV exponent depends on both J‖ and J ′

‖.
Next we calculated the ground-state–to–ground-state overlap
Q ≡ |〈J‖, J⊥|J ′

‖, 0〉|2 and found

Q = C(J‖, J ′
‖)

(
a

ξ

)χ/2(
ξ

L

)β/2

. (2)

As is known already [1,3], the L dependence of the overlap is
governed by the same exponent that governs the IR dynamics
of the echo. In contrast, the overlap’s ξ dependence at fixed
J‖ reveals a new power law with an exponent equal to the
difference between the UV and IR exponents of the echo. This
is our main result.

Previous studies [4,5] considered the quench (J‖, J⊥) →
(J‖, J ′

⊥), i.e., J‖ was held fixed during the quench, and in
general the Kondo length was quenched between finite values
ξ and ξ ′. A very nontrivial analytical result was obtained
for the case of a finite postquench Kondo length. However,
in the limit ξ ′ 
 ξ , i.e., quenching to J ′

⊥ = 0, this result
reduces to the simple power law |〈J‖, J⊥|J ′

‖, J ′
⊥〉|2 ∝ (ξ/ξ ′)β/2

reminiscent of the overlap between Fermi seas, with ξ ′ playing
the role of system size and ξ that of Fermi wavelength. The
(ξ/t )β/2 factor in our result for P(t ) is consistent with this
interpretation: it coincides with the IR response of a Fermi
sea with Fermi wavelength ξ . In [4,5], no ultraviolet contri-
bution to the power-law exponent for ξ was found. Consistent
with this, we find that up to finite-size errors, the ultraviolet
contribution χ in Eq. (2) vanishes when we choose J‖ = J ′

‖.
For the overlap to be sensitive to ultraviolet physics, it is
therefore essential to have J‖ 
= J ′

‖. It is tempting to interpret
the factor (a/ξ )χ/2 in Eq. (2) and the factor (a/t )χ/2 in Eq. (1)
in terms of Anderson’s orthogonality theorem and conclude
that the physics above the Kondo scale also allows an effective
description in terms of (phase-shifted) Fermi seas. In the UV
effective theory, ξ would play the role of an effective system
size. For sufficiently large J‖, we can show analytically that
this picture is indeed correct. In this regime the exponent
χ approximately equals the power-law exponent one would
obtain by applying the Anderson orthogonality theorem to the
trivial initial state obtained by setting J⊥ = 0 in the prequench
Hamiltonian. However, for smaller J‖, the analytical argument
breaks down and we find numerically that χ starts to deviate
from the J⊥ → 0 result. In the absence of analytical results,
we cannot prove conclusively that a UV Fermi sea picture is
correct, but if it is, there is a renormalization of J‖ from its
bare value.

III. ANALYSIS

In our analysis, we exploit the exact mapping known to
exist between the Kondo model with nonuniversal ultravi-
olet scales integrated out and the Ohmic spin-boson model
[29–31]. Given a microscopic Kondo Hamiltonian that ac-
counts for physics at all length scales down to the lattice

constant, one integrates out UV modes far from the Fermi
energy but stops the mode elimination at a scale 1/a well
above the Kondo temperature. At energy scales below this
cutoff, the microscopic model is equivalent to an effective
Hamiltonian,

H =
∑

n∈Z; σ=↑,↓
qnc†

nσ cnσ + J̃‖
2

σz[ψ
†
↑ψ↑ − ψ

†
↓ψ↓]

+ J̃⊥[σ−ψ
†
↑ψ↓ + σ+ψ

†
↓ψ↑], (3)

involving linearly dispersing electrons cnσ , with qn =
2πn/L, n ∈ Z , in a single (unfolded) chiral channel. Here
σ± = σx ± iσy and σ j, j = x, y, z are Pauli matrices acting
on the impurity spin. The operator

ψσ =
∑

n

e−a|qn|/2cnσ (4)

creates an electron in a wave packet centered around the origin
and with group velocity vF . The width of the wave packet
is ∼ a, and this enforces a soft UV cutoff at the scale at
which mode elimination was halted. The Kondo couplings
renormalize to J̃‖ and J̃⊥. Using the fact that mode elimination
leaves physics at energies below 1/a unchanged and that
Kondo physics only sets in at Tk 	 1/a, it is possible to
calibrate J̃‖ with respect to the original microscopic model.
This gives J̃‖ = 2ϕ, where ϕ is the difference in phase shifts
between spin-up and spin-down electrons at the Fermi energy,
when instead of the exchange interaction, the bare Fermi sea
is subjected to a spin-dependent static potential J‖Sz(0). The
value of J̃⊥ depends on system-specific ultraviolet details in
a way that is hard to calculate in practice. However, many
infrared properties of the system, among them the ones we
consider, are universal functions of the Kondo scale, and this
allows one to make nontrivial statements about the behavior
of the system without knowledge of the relation between the
microscopic parameters and the renormalized J̃⊥.

The spin-boson model describes a two-level system
linearly coupled to a bath of harmonic oscillators. The
Hamiltonian is

Hα,
 =
∞∑

n=1

ωnb†
nbn − √

α

∞∑
n=1

gn

2
(bn + b†

n)σz + 


2
σx, (5)

where bn are bosonic annihilation operators. We take 
 > 0
and denote the ground state of Hα,
 as |α,
〉. In the thermo-
dynamic limit, the bath spectrum becomes dense, and the bath
is completely characterized by the spectral function J (ω) =∑∞

n=1 g2
nδ(ω − ωn). Typically, a spectral function with an

infrared power law is considered. Below, we derive some
results assuming a spectral density of the general form

J (ω) = 2ω1−s
0 ωse−aω, (6)

where e−aω is a soft UV cutoff. Using operator bosonization,
the low-energy Hamiltonian (3) can be mapped onto Hα,


with

ωn = [h̄vF ]qn, gn = 2

√
πqn

L
e−aq/2, (7)
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and

α =
(

J̃‖
2π

− 1

)2

=
(ϕ

π
− 1

)2
, 
 = J̃⊥

πa
. (8)

In the thermodynamic limit, the resulting spectral density is
of the form (6) with s = 1, i.e., a linear spectral density at low
frequency. This is referred to as the Ohmic case.

In the thermodynamic limit, one introduces Dirac-δ nor-
malized bosonic field operators φω = limL→∞

√
L/2πbn and

calculates the Kondo length as follows [32]:

ξ = lim
ω→0

〈α,
|φω + φ†
ω√

2ω
σz|α,
〉. (9)

In the fermionic language the above definition translates to
ξ = limx→∞ 4x2〈Sz(x)sz〉. The familiar Kondo temperature,
defined via the static spin susceptibility [33], is related to the
Kondo length [34] as TK = 1/2ξ . For the Kondo quenches we
are interested in, we must evaluate the spin-boson Loschmidt
echo,

P(t ) = eitEα′ ,0〈α,
|e−iHα′ ,0t |α,
〉, (10)

where Eα′,0 is the ground-state energy of Hα′,0. Here, α′ =
(ϕ′/π − 1)2, and the relationship between ϕ′ and J ′

‖ is the
same as that between ϕ and J‖.

Our analysis is based on an exact expansion of the
ground state of Hα,
 in terms of a discrete set of coherent
states. The theory behind the expansion was first set out in
Refs. [32,35,36]. Here and in Appendix A, we give a brief
review. According to an elementary theorem by Cahill [37], an
arbitrary state |ψ〉 of a set of bosonic modes can be written as a
discrete sum |ψ〉 = ∑∞

m=1 cm| fm〉, where | fm〉 is a multimode
coherent state, i.e., bn| fm〉 = fmn| fm〉. The representation is
not unique, and there is always sufficient freedom to choose
the coefficients fmn real. The spin-boson Hamiltonian is in-
variant with respect to the unitary transformation T that sends
bn → −bn and σz → −σz. We confine our attention to the
so-called delocalized phase, where the ground state |α,
〉
transforms under T as T |α,
〉 = −|α,
〉, so that 〈σz〉 = 0.
For the Ohmic case (s = 1), the interval α ∈ (0, 1) is within
the delocalized phase [38]. With the help of Cahill’s theorem,
we can then exactly parametrize the ground state as

|α,
〉 =
∞∑

m=1

cm√
2

(| fm〉|↑〉 − |− fm〉|↓〉). (11)

In order to put this result to practical use, the sum in Eq. (11)
is truncated to a finite number of M terms and the optimal
parameters cm and fmn are found via the variational principle.
Any desired accuracy can in principle be attained by tak-
ing M sufficiently large. In the limit of small α, the single
term expansion M = 1 becomes exact [36,39,40]. Significant
headway can be made analytically with the minimization (as
we review in Appendix A), and as a result, one is eventually
left with only M2 + M − 1 parameters whose values must be
found via numerical minimization. However, some analytical
results can be obtained without explicitly calculating the
optimal values of these parameters. An example is a result

that we derive in Appendix B, namely, that at large times

P(t ) � |〈α,
|α′, 0〉|2 exp
α′

4

∫ ∞

0
dω

J (ω)

ω2
e−iωt . (12)

Whereas P(t ) is regular in the thermodynamic limit, if
the individual factors on the right of Eq. (12) are cal-
culated separately, the calculations must be performed for
a finite system size. The time dependence of Eq. (12) is
the same as exp(iEα′,0t )〈IR| exp(−iHα′,0t )|IR〉, with |IR〉 =
|0〉(|↑〉 − |↓〉)/

√
2. This is because in the delocalized phase,

the coherent-state parameters fmn tend to zero for modes n
whose frequencies ωn tend to zero [34]. As a result, infrared
probes cannot distinguish the initial state from the bosonic
vacuum. Specializing now to the Ohmic case, we find that at
large times compared to ξ ,

P(t ) = Q

(
2π it

L

)−β/2

, (13)

with β = α′ and where we use the Kondo and spin-boson
notations Q ≡ |〈α,
|α′, 0〉|2 interchangeably. Since P(t )
should not vanish when we take the limit L → ∞, we con-
clude that Q ∝ L−β/2. In Appendix C we comment further
on these known results and explain how they relate to the
Anderson orthogonality theorem. In Appendix D we derive an
expression for the echo in terms of the variational parameters
of the coherent-state expansion that are valid for all times and
form the basis of our numerical study below.

Now we turn to the Kondo length dependence of the
overlap. We first present a heuristic argument by means of
which the numerical results we subsequently present may be
anticipated. Provided ξ 
 a, we expect ξ to set the scale for
dynamics at times sufficiently larger than a. This motivates
the scaling ansatz

P(t ) = Z (α, α′, ξ/a)Fα,α′

(
t

ξ (α,
, a)

)
, (14)

in which all parameter dependencies have been rendered
explicit. If this ansatz is correct, we can extract Z from the
long-time result (13) and obtain

Z =
(

2πξ

L

)−β/2

Q. (15)

Now, consider the behavior of P(t ) at times short compared
to ξ . We expect the degrees of freedom that are relevant in this
regime to be ignorant of physics at the Kondo scale. For large
J‖, i.e., small α, we can show analytically using the M = 1
expansion that for a 	 t 	 ξ ,

P(t ) = C

(
it

a

)−χ/2

, (16)

with χ = (ϕ/π − ϕ′/π )2 = (
√

α − √
α′)2/2 and C indepen-

dent of ξ . (See Appendix E for a derivation.) This is the same
behavior as we would have obtained if before the quench
we had J⊥ = 0, and hence ξ = ∞. Our analytical argument,
however, breaks down at larger α. Let us nonetheless assume
that a short-time power law of the form (16) holds for arbitrary
α with a ξ -independent C. Universal scaling according to the
ansatz (14) implies that P(t )/Z depends only on t and ξ in the
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FIG. 1. The computed Loschmidt echo P(t ) for α = 0.85 and
α′ = 0.1. The different curves correspond different 
/a values
∈ {0.156, 0.18, 0.205, 0.23, 0.255, 0.28, 0.305}. The main panel
shows the amplitude of the scaled function P(t )/Z vs t/ξ , with Z and
ξ calculated from Eqs. (9) and (15), not fitted. The inset shows the
unscaled data vs time in units of a. The sloped dashed line represents
the short-time power law (16), with C and χ obtained by fitting to
the amplitude data for t < 10−1ξ .

combination t/ξ . The ξ independence of C then implies that
Z ∝ ξ−χ/2. Using our analytic expression (15) for Z , we arrive
at the result we want, namely, Q ∝ ξ (β−χ )/2. Below Eq. (13)
we concluded that the overlap Q scales with system size as
L−β/2. Since the only other length scale that Q can depend on
is a, we reproduce Eq. (2), our main result.

IV. RESULTS

In the remainder of this work, we present our numerical
study based on the coherent-state expansion. We note that a
powerful extension of the technique has been developed to
deal with general time-dependent problems [41,42]. However,
due to the simple form of the postquench Hamiltonian, no
sophisticated techniques are needed here, once the initial state
is expressed in terms of the bosons. We reuse the numerical
ground-state data of [32]. The data were obtained by simu-
lated annealing for an expansion truncated to M = 7 terms
at most. In [32], multiple checks were done to verify that
numerical convergence is satisfactory. In Appendix F we show
how the curves for P(t ) calculated at increasing M rapidly
converge. We estimate that the error in P(t ) is at most on
the order of 1% at large times and less at shorter times. For
given α, we have data for ξ/a ranging over between 1 and 2
decades, with the shortest ξ an order of magnitude larger than
the short-distance cutoff a. For each of the 50 combinations of
(α,
) at which data was taken, we calculated the Loschmidt
echo and the scaling factor Z for quenches to various α′ ∈
[0, 1.5]. Further details are provided in Appendix G. In Fig. 1,
we show results for the quench α = 0.85 → α′ = 0.1 as a
representative example. |P(t )| follows a short-time power
law in the time window a < t < ξ . From the inset we see
that |P(t )| is relatively independent of 
 at small t . We see
excellent universal scaling in accordance with the ansatz (14).
Note that the scaling factors ξ and Z were not determined by
fitting, as is frequently done when one looks for universality,
but were calculated using Eqs. (9) and (15).

FIG. 2. Symbols: The short-time power-law exponent χ defined
in Eq. (16), at five different values of α′, as extracted from our
numerical P(t ) data, an example of which is shown in Fig. 1. Curves:
The small α prediction χ = (ϕ/π − ϕ′/π )2.

In Fig. 2 we show examples of the short-time power-law
exponent we extracted from the Loschmidt echo. For α �
0.5, we find good agreement with the approximate analytical
result χ = (ϕ/π − ϕ′/π )2/2. At larger α, |P(t )| still obeys
a short-time power law, but the power-law exponent deviates
from (ϕ/π − ϕ′/π )2/2. At small α, modes with 1/ξ 	 ωn 	
1/a are associated with displacements fmn � √

αgn/2ωn, as
if 
 = 0, and this allows for a straightforward explanation
of the power law in terms of the response of noninteracting
spin-up and spin-down Fermi seas to a local quench. However,
at larger α, we find numerically that the same asymptotic
behavior of fmn only sets in close to the ultraviolet cutoff
1/a. If a noninteracting Fermi sea explanation is possible in
this regime, the coherent-state expansion does not make this
manifest. When α = α′, the analytical result of Refs. [4,5]
is that χ = 0. The largest deviation we found from this is
χ = 0.018 at α = α′ = 0.8. We believe this is a small finite-
size error, and note that we unambiguously find that χ is
minimal when α = α′. We also note oscillatory behavior that
might be a numerical error in the results for α′ = 0, 0.1
and α > 0.6. The same fluctuations are not seen at other α′
values. Given that the same ground-state data was used for

FIG. 3. Symbols: The ground-state–to–ground-state overlap
squared |〈α′, 0|α, 
〉|2 vs the Kondo length ξ for various α′, at
α = 0.85. Lines: The power law |〈α′, 0|α, 
〉|2 = Gξη, with G and
η obtained by fitting to the data with ξ � 25a.
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FIG. 4. Symbols: Each data point corresponds to a fixed value
of α and β. The x and y coordinates of each point are respectively
(β − χ )/2, with the short-time power-law exponent χ corresponding
to the symbols in Fig. 2, and the power-law exponent η cf. Eq. (17),
as extracted from the data in such as that plotted in Fig. 3. Black line:
The heuristic prediction η = (β − χ )/2. Inset: An enlarged view of
the clustered β = 0.5 data.

all α′, we attribute any error that is present to the numerical
extraction of the power-law exponent rather than to errors in
the ground-state data.

With the assumption verified that in the regime a 	
t 	 ξ the Loschmidt echo is both independent of 


and obeys a power law t−χ/2, our conclusion regarding
the power-law dependence of the ground-state overlap on
the Kondo length must be correct. We have calculated
(2πa/L)−β/2|〈α′, 0|α,
〉|2 directly and indeed find that at
fixed α and α′ (i.e., fixed J‖ and J ′

‖ in the Kondo language)

|〈α′, 0|α,
〉|2 = Q has a power-law dependence on ξ , i.e.,

|〈α′, 0|α,
〉|2 ∝ ξη. (17)

As an example, in Fig. 3, we show results for α = 0.85 and
various α′. In Fig. 4 we compare the power-law exponent η of
the overlap, extracted from data such as that shown in Fig. 3,
to the short-time power-law exponent χ of the Loschmidt
echo, extracted from data such as that shown in Fig. 1. We see
very good agreement with our prediction that η = (β − χ )/2.
The largest deviations are seen at α′ = 0, α > 0.6. As we
noted already, the extracted values of the exponent χ for these
data points may contain some noise. However, even here, the
largest deviation between the extracted η values and the line
representing η = (β − χ )/2 is 5%. For the other data sets, the
deviation is of the order of a percent at most.

V. CONCLUSION

For the Kondo model, we have demonstrated that the
Loschmidt echo and the overlap between ground states before
and after the quench are connected not only via dynamics
at long times, but also via dynamics at short times. Our
main results are contained in Eqs. (1) and (2) and can be
summarized as follows. If one subtracts the slope seen at short
times in the log-log plot of the Loschmidt echo (Fig. 1), from
the slope seen at long times, one obtains the slope seen in

the log-log plot of the ground-state–to–ground-state overlap
squared versus the Kondo length (Fig. 3). The overlap’s
dependence on the emergent length scale ξ thus elegantly
encodes information about both IR and UV dynamics. Apart
from Anderson’s orthogonality theorem, the other essential
ingredients that produced this result were the universal scaling
and power-law behavior of the Loschmidt echo at short times.
In light of this, it may be interesting to revisit results for
the overlap in studies of other systems that have focused on
system size dependence to see if similar connections exist.
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APPENDIX A: IDENTIFYING THE
VARIATIONAL PARAMETERS OF THE
MULTICOHERENT-STATE EXPANSION

As mentioned in the main text, significant headway can
be made analytically with the variational optimization of the
truncated trial state

|ψ〉 =
M∑

m=1

cm√
2

(| fm〉|↑〉 − |− fm〉|↓〉). (A1)

Here we briefly review the relevant results.
By setting the variation of 〈Hα,
〉 with respect to fmn, m =

{1, 2, . . . , M} equal to zero, one obtains a set of equations of
the form

(Uωn + V )

⎛
⎜⎝

f1n
...
fMn

⎞
⎟⎠ = √

αgnW, (A2)

with ωn the frequency and gn the hybridization of the bosonic
mode n, as in the spin-boson Hamiltonian (5), and the entries
of the real M × M matrices U and V and the real column
vector W depend on the trial state |ψ〉 but are independent
of the mode index n, i.e., the same U, V , and W enter the
equations for each n. (See [32] for explicit expressions.) This
structure comes about because (a) Hα,
 is quadratic in bn

and b†
n, and (b) there are no direct processes in Hα,
 that

scatter bosons from a mode n to a mode n′ 
= n. By noting that
each matrix element of the inverse of Uωn + V is the ratio of
polynomials in wn that are respectively of order M − 1 and M,
and that the denominator is the same for all elements (being
the determinant of Uωn + V ), we discover that

fm,n =
√

αgn

2
hm(ωn), hm(z) =

∑M−1
l=0 μm,l zl∏M

l=1 (z − �l )
, (A3)

where μm,l is real. Furthermore, because Uωn + V is real,
the �l that are not real come in complex conjugate pairs. It
is intuitively clear that for modes with natural frequencies
ωn 
 
, the tunneling term 
σx/2 becomes a negligible
perturbation and hence, i.e., fmn � √

αgn/2ωn. This implies
that μm,M−1 = 1. The same conclusion follows rigorously
from the observation that associated with mode n, there are
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unavoidable positive contributions to the energy proportional
to ωn( fmn − √

αgn/2ωn)2. Energy considerations also dictate
that there are no poles �l on the positive real line. Finding
the M2 + M − 1 unknown parameters �m, μm1m2 , and cm

variationally constitutes a global minimization problem that
we solve numerically. However, as we show below, some
exact results for quench dynamics can also be derived without
explicitly computing the optimal �m, μm1m2 , and cm.

APPENDIX B: LONG-TIME BEHAVIOR OF THE
LOSCHMIDT ECHO

Here we give a simple analytical derivation of the long-
time behavior of the Loschmidt echo based on the coherent-
state expansion. The derivation does not require explicit
computation of the optimal values of the variational param-
eters and is valid for an expansion with an arbitrary number
M of terms. We believe the result is therefore exact.

First note that the ground-state energy of the postquench
Hamiltonian Hα′,0 is

E ′
0 = −α′

∞∑
n=1

g2
n

4ωn
. (B1)

Next, note that because Hα′,0 preserves the z component of
spin and is quadratic in boson operators, it is straightforward
to compute the time evolution of |α,
〉. After some algebra,
these observations lead to the result

P(t ) =
∑

m1,m2

cm1 cm2

〈
fm1 |α′+〉〈α′ + | fm2

〉

× exp
1

4

∞∑
n=1

g2
n

[√
α′

ωn
− √

αhm1 (ωn)

]

×
[√

α′

ωn
− √

αhm2 (ωn)

]
e−iωnt , (B2)

where

|α′±〉 = exp ±
√

α′
∞∑

n=1

gn

2ωn
(b†

n − bn)|0〉, (B3)

so that |α′+〉|↑〉 and |α′−〉|↓〉 are the two degenerate ground
states of Hα′,0 and

〈 fm|α′+〉 = exp −1

8

∞∑
n=1

g2
n

[√
α′

ωn
− √

αhm(ωn)

]2

. (B4)

At long times, the frequency sum in Eq. (B2) is dominated
by the contribution from small frequencies, where gn/ωn

dominates over hm(ωn). (Recall that the hm(ω) remain finite
when ω → 0.) Thus, asymptotically,

P(t ) � |〈α,
|α′, 0〉|2 exp
α′

4

∞∑
n=1

g2
n

ω2
n

e−iωnt (B5)

where

|α′, 0〉 = (|α′+〉|↑〉 − |α′−〉|↓〉)/
√

2 (B6)

is the ground state of Hα′,0 with T eigenvalue −1. In the
thermodynamic limit it is convenient to rewrite this result as

P(t ) � |〈α,
|α′, 0〉|2 exp
α′

4

∫ ∞

0
dω

J (ω)

ω2
e−iωt (B7)

using the bath spectral function J (ω).

APPENDIX C: KONDO MODEL AND ANDERSON’S
ORTHOGONALITY THEOREM

The algebraic decay t−α′/2 and L−α′/2 of respectively the
Loschmidt echo and the overlap has been obtained before, for
instance, using numerical renormalization group technology
[3]. It is a manifestation of the fact that under renormaliza-
tion, the Kondo ground state (of the prequench Hamiltonian)
flows to a strong-coupling infrared fixed point of the form
|IR〉 = (|θ = −π〉|↑〉 − |θ = π〉|↓〉)/

√
2. Here, we use the

notation |θ〉 to represent a noninteracting Fermi sea in which
electrons undergo phase shifts that depend on their spin
direction, such that at the Fermi energy these phase shifts
equal θ/2 and −θ/2 for spin-up and spin-down electrons,
respectively. The postquench ground state, on the other hand,
is of the form |ϕ′,∞〉 = (|θ = −ϕ′〉|↑〉 − |θ = ϕ′〉|↓〉)/

√
2.

The power-law behavior of the overlap can be understood
by replacing the true initial state with |IR〉 and applying the
celebrated Anderson orthogonality theorem, which states that
|〈±π | ± ϕ′〉|2 ∝ (L/λF )−(1/2−ϕ′/2π )2

, where λF is the Fermi
wavelength and the proportionality constant is of order unity.
Since the infrared fixed point of the Kondo model is reached
when length scales shorter than ∼ ξ are integrated out, the ef-
fective Fermi wavelength to use when applying the Anderson
orthogonality theorem is of order ξ . Another classic result in
many-body theory [16] states that for noninteracting fermions,
the Loschmidt echo decays algebraically ∝ (εFt )−(1/2−ϕ′/2π )2

,
with the same power-law exponent as that governing the
L dependence of the overlap. When applying this result to
the long-time dynamics of the Kondo model, the effective
Fermi energy to use is ε ∼ h̄vF /ξ . Finally, we note that the
coherent-state expansion provides an analytic derivation of
these results. The derivation is exact because no restriction
is placed on the number M of terms to which the expansion is
truncated.

APPENDIX D: FURTHER ANALYTICAL PROGRESS IN
THE OHMIC CASE

It is useful to write the Loschmidt echo (B2) as

P(t ) =
∑
m1m2

cm1 cm2

〈
fm1 |α′ + 〉〈

α′ + | fm2

〉
Pm1m2 (t ), (D1)

where

Pm1m2 (t ) = exp
∞∑

n=1

πqne−(a+it )qn

L

{
αhm1 (qn)hm1 (qn)

−
√

αα′

qn

[
hm1 (qn) + hm2 (qn)

] + α′

q2
n

}
. (D2)

The first and second terms in the curly brackets need no
infrared regularization and we can replace the sum over
discrete modes with an integral. We cannot do the same with
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the third term. Here, however, the discrete sum is computed
straightforwardly.

∞∑
n=1

πα′e−aqn

Lqn
e−(a+it )qn = −α′

2
ln[1 − e−2π (a+it )/L]. (D3)

Thus
Pm1m2 (t ) = [1 − e−2π (a+it )/L]−α′/2

× exp

{
α

2
Am1m2 (t ) −

√
αα′

2

[
Bm1 (t ) + Bm2 (t )

]}
,

(D4)

where

Am1m2 (t ) =
∫ ∞

0
dq qe−q(a+it )hm1 (q)hm2 (q),

Bm(t ) =
∫ ∞

0
dq e−q(a+it )hm(q). (D5)

Also,
〈α′ + | fm〉

= exp

[
−α

4
Amm(0) +

√
αα′

2
Bm(0)

](
2πa

L

)α′/4

. (D6)

The fact that hm(q) is a rational function of q allows us
to perform the above integrals analytically. Using a method
explained in detail in [32], we obtain

Am1m2 (t ) = e−iφ
M∑

l=1

Res
[
qe−iφhm1 (qe−iφ )hm2 (qe−iφ )

× F (q|a + it |), q = �l e
iφ
]

=
M∑

l=1

{[
hm1l hm2l + �l

(
ḣm1l hm2l + hm1l ḣm2l

)]
× F [�l (a + it )] − �l (a + it )hm1l hm2l

×
[

F [�l (a + it )] + 1

�l (a + it )

]}
(D7)

and

Bm(t ) = e−iφ
M∑

l=1

Res
[
hm1 F (q|a + it |), q = �l e

iφ
]

=
M∑

l=1

hm1lF [�l (a + it )], (D8)

where F (z) = e−z�(0,−z) and �(γ , z) is the incomplete �

function. The phase φ is the argument of a + it , i.e., eiφ =
(a + it )/|a + it |, while

hml = lim
q→�l

(q − �l )hm(q) =
∑M−1

n=0 μmn�
n
l∏M

n=1
=l (�l − �n)
, (D9)

and

ḣml = lim
q→�l

d

dq
[(q − �l )hm(q)]

=
∑M−1

n=1 μmnn�n−1
l∏M

n=1
=l (�l − �n)
− hml

M∑
n=1
=l

1

�l − �n
. (D10)

FIG. 5. The relative change in P(t ) when the number of terms
in the trial state is incremented by 2. Results are shown for α = 0.85
and 
 = 0.157a. We estimate ξ = 180a. We show curves for α′ = 0.

In these formulas we assume that the poles �l of hm(q) all
have negative real parts, a fact that we have not proven. It is,
however, borne out by the numerics. Furthermore, the addi-
tional terms that would occur if there were poles with positive
real parts would only introduce additional contributions to the
Loschmidt echo that decay exponentially over time and are
unimportant at large times. These equations form the basis
of our numerical study of the full P(t ). For future reference,
we express the Kondo length ξ and the scaling factor Z ,
as introduced in the main text, in terms of the ground-state
parameters:

ξ =
√

α

2

∑
m1m2

cm1 cm2

[
hm1 (0) + hm2 (0)

]〈
fm1

∣∣ fm2

〉
, (D11)

Z =
(

2πξ

L

)−α′/2

|〈α′, 0|α,
〉|2

=
(

ξ

a

)−α′/2
∣∣∣∣∣

M∑
m=1

cm exp

[
−α

4
Amm(0) +

√
αα′

2
Bm(0)

]∣∣∣∣∣
2

.

(D12)

FIG. 6. The calculated Kondo length ξ for each of the parameter
values (α,
) for which the ground state of Hα,
 was numerically
calculated. Lines connect data points corresponding to the same α.
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FIG. 7. The amplitude of the computed Loschmidt echo P(t ) for α = 0.85. Different panels correspond to different α′ values. The different
curves correspond to different 
/a values ∈ {0.156, 0.18, 0.205, 0.23, 0.255, 0.28, 0.305}. The main panel shows the amplitude of the
scaled function P(t )/Z vs t/ξ , with Z and ξ calculated from Eqs. (D11) and (D12). The inset shows the unscaled data vs time in units of a. The
sloped dashed line represents the short-time power law |P| = C(t/a)−ξ/2, with C and χ obtained by fitting to the amplitude data for t < 10−1ξ .

APPENDIX E: ANALYTICAL RESULTS AT SMALL α

The coherent-state expansion truncated to a single term
(M = 1) is known as the Silbey-Harris ansatz [39,40]. The
Silbey-Harris ansatz is exact for small α. Here we use this fact
to obtain an explicit expression for P(t ) in the limit of small
α. We use this expression to give an analytical derivation of
the short-time power law of P(t ), valid for sufficiently small
α. For M = 1, there is only one variational parameter �1. Its
optimal value is −
R where 
R satisfies


R = 
〈 f1 |− f1〉 = 
 exp −αA11(0) < 
. (E1)

The Kondo length is

ξ =
√

α

π
R
. (E2)

For A11(t ) and B1(t ) we obtain

A11(t ) = [1 + 
R(a + it )]F [−
R(a + it )] − 1

B1(t ) = F [−
R(a + it )], (E3)

and for P(t ) we obtain

P(t ) =
(

it

a

)−α′/2

× exp
{α

2
[A11(t )−A11(0)] −

√
αα′[B1(t ) − B1(0)]

}
.

(E4)

Provided 
 is sufficiently smaller than 1/a, we have

Ra, 
Rt 	 1 in the regime a 	 t <	 ξ and we can ex-
pand F [−
R(a + it )] for small arguments using F (−z) =
− ln(z) − γE + O(z), where γE = 0.57 . . . is the Euler-
Mascheroni constant. We then find [A11(t ) − A11(0)] =
[B1(t ) − B1(0)] = − ln(1 + it/a) independent of ξ , and

P(t ) =
(

it

a

)−χ/2

, (E5)

with χ = (
√

α − √
α′)2. We note that the same result

would be obtained if we took f1n = √
αgn/2ωn. In the

Kondo language this corresponds to the initial state |UV〉 =
(| − ϕ〉|↑〉 − |ϕ〉|↓〉)/

√
2, with ϕ = π (1 − √

α). Here | ± ϕ〉
represents a noninteracting Fermi sea in which electrons
undergo phase shifts that depend on their spin direction, such
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that at the Fermi energy these phase shifts equal ±ϕ/2 and
∓ϕ/2 for spin-up and spin-down electrons, respectively.

APPENDIX F: CONVERGENCE OF THE
MULTICOHERENT-STATE EXPANSION

In Ref. [32] numerous tests were performed to demonstrate
that a sufficient number of terms were included to ensure good
convergence of the numerically obtained ground-state data.
Here we provide one more piece of evidence. For given α

and 
, we optimize multipolaron trial states with successively
larger M. Because of parity effects, we increase M by 2 in
each step. We then calculate the relative change in P(t ) as M
is increased. In Fig. 5, we show the results obtained at the
least converged data point in our full data set, namely, α =
0.85, 
 = 0.157a. We consider α′ = 0, which corresponds to
the case where the extracted short-time power-law exponent

is likely least accurate. We see that convergence is better for
smaller t . This is easy to understand: optimizing ultraviolet
degrees of freedom is prioritized, because this yields greater
energy gains than optimizing infrared degrees of freedom. We
also see the rapid convergence of the ansatz: the change in P
drops by roughly

√
10 between successive increments of M by

2. We therefore expect the P(t ) curve for M = 7 to be accurate
to about 1%, with a higher accuracy at short times.

APPENDIX G: FURTHER NUMERICAL RESULTS

Here we provide some further numerical results. In Fig. 6
we plot the Kondo lengths associated with each of the ground
states we obtained numerically. In Fig. 7 we plot the rest of
numerical Loschmidt echo data for the α = 0.85 data set. (The
data for α′ = 0.1 was already presented in the main text.)
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