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We develop a multipolar theory of second-harmonic generation (SHG) by dielectric nanoparticles made of
noncentrosymmetric materials with bulk quadratic nonlinearity. We specifically analyze two regimes of optical
excitation: illumination by a plane wave and single-mode excitation, when the laser pump drives the magnetic
dipole mode only. Considering two classes of nonlinear crystalline solids (dielectric perovskite material and III-V
semiconductor), we apply a symmetry approach to derive selection rules for the multipolar composition of the
nonlinear radiation. The developed description can be used for design of efficient nonlinear optical nanoantennas
with reconfigurable radiation characteristics.
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I. INTRODUCTION

The resonant response is one of the main routes to increase
the efficiency of nonlinear signal generation at the subwave-
length scales in the absence of phase matching effects. That is
why optical nonlinearity at the nanoscale is usually associated
with the enhancement of electric fields in plasmonic nanos-
tructures due to geometric plasmon resonances [1,2]. Despite
the significant progress in this area [3], there exist fundamen-
tal drawbacks that limit the efficiency of nonlinear generation
with metallic structures. Besides the evident problem of high
ohmic losses, typical metals have cubic lattice with inversion
symmetry which restricts second-order nonlinear effects, such
as the second-harmonic generation (SHG) [4]. It can be ob-
served only due to the surface effects or the field gradients
in the bulk of nanoparticles [3,5], which are relatively weak.
Recently, a novel nanophotonic platform based on high-index
dielectric nanoparticles has emerged [6]. All-dielectric nanos-
tructures are free from high ohmic losses and offer a wide
variety of dielectric and semiconductor materials including
those with nonzero bulk second order susceptibility tensor.
Excitation of Mie resonances in such nanoparticles provides
novel opportunities for nonlinear optics [7,8] and allows one
to achieve record-high nonlinear conversion efficiencies at the
nanoscale [9–15].

Despite the intense experimental studies of the SHG effects
in Mie-resonant nanostructures, a comprehensive theory of the
SHG emission from nanoparticles with nonzero bulk nonlin-
earity tensor χ̂ (2) has not been proposed yet. The important
works related to the SHG generation were focused on the
surface and bulk effects in nanoparticles with centrosymmet-
ric crystalline lattice: in noble metal nanoparticles [16–18]
including the shape effects [19], and in Mie-resonant silicon
nanoparticles [20,21]. In this work, we theoretically study the
SHG by individual spherical high-index dielectric nanoparti-
cles made of noncentrosymmetric materials (aluminum gal-
lium arsenide AlGaAs and barium titanate BaTiO3), which

possess a large bulk quadratic susceptibility. These materials
are actively employed for nonlinear all-dielectric nanopho-
tonics [9,11,22–24]. We systematically describe the SHG in
nanoparticles and mechanisms of its resonant enhancement,
depending on the symmetry of the crystalline structure and
polarization of the incident light. We employ methods of mul-
tipolar electrodynamics providing a transparent interpretation
for the measurable far-field characteristics, such as radiation
efficiency and radiation patterns [7,21,25].

Using analytical techniques, we demonstrate the ability to
manipulate the nonlinear radiation of a spherical nanoparticle
by varying illumination properties. By means of symmetry
analysis of the SHG process we obtain the selection rules for
the nonlinear generation, and identify which channels of mul-
tipole composition are active in SHG. These rules previously
were known only for nanoparticles of a spherical [16] and
arbitrary shape [19] made of centrosymmetric materials. The
knowledge of these basic mechanisms of nonlinear generation
in a single spherical nanoparticle can be extended in appli-
cation to complex nonlinear structures, such as nanoparticle
oligomers [26,27] or nanoparticle arrays in metasurfaces [8].

The paper is organized as follows: In Sec. II we discuss
the problem of nonlinear light scattering of a plane wave
by a dielectric nanoparticle made of BaTiO3 or AlGaAs
materials. Applying Green’s function approach, we calculate
the efficiency of SHG and multipolar content of the second-
harmonic (SH) field. We also consider the particular case of
SHG through excitation of a single magnetic dipole mode. We
discuss how the intensity and the far-field properties of the
SH field vary while direction of the excited dipole moment
changes relatively to the crystalline structure of material.
By explicit calculations we show how the mode content of
SH field varies. In Sec. III we derive selection rules which
govern the channels of mode coupling at fundamental and
SH wavelengths based on the symmetry of vector spherical
harmonics and the crystalline structure. In Sec. IV we apply
the formulated selection rules to explain the results obtained
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in Sec. II and build the complete table of possible generated
multipoles for SHG process driven by dipole modes.

II. SECOND-HARMONIC GENERATION FORMALISM

A. Green’s function approach. Plane-wave excitation

We consider a spherical dielectric particle of the radius a
characterized by a frequency-dependent dielectric permittivity
ε2(ω), embedded in a homogeneous host medium with ε1 = 1.
The nanoparticle is made of the material with a noncentrosym-
metric crystalline structure, and its nonlinear electromagnetic
properties are captured by the quadratic susceptibility tensor
χ̂ (2). While for AlGaAs the linear susceptibility tensor ε2(ω)
is isotropic, for BaTiO3 this tensor inherits the uniaxial crystal
structure of the material. In this case, the anisotropy of the
SHG tensor and of the linear permittivity tensor are not two
independent phenomena and have a common microscopic
origin [28]. However the anisotropy is rather weak in the
case of BaTiO3; it dramatically increases the complexity of
the problem comparing to isotropic linear scattering. Hence,
from now on we use the approximation of isotropic linear
susceptibility tensor. The effect of anisotropy on the selection
rules will be discussed in more details at the end of the paper
in Sec. IV.

The problem of linear light scattering by a sphere is solved
using the multipolar expansion following the Mie theory
[29,30]. In our work we consider time dependence of the
fields in the form e−iωt . For the illumination by the x-polarized
plane wave E0exeik1z incident along the z direction, the field
inside the spherical nanoparticle (r < a) is expanded in vector
spherical harmonics as follows:

Eω(r) =
∞∑

n=1

in (2n + 1)

n(n + 1)

[
cnM(1)

o1n(k2(ω), r)

− idnN(1)
e1n(k2(ω), r)

]
, (1)

where the wave numbers k1(ω) = ω
√

ε1/c, k2(ω) =
ω

√
ε2(ω)/c. Magnetic Mo1n and electric Ne1n spherical

harmonics with the total angular momentum n and the
momentum projection ±1, the indexes e, o describing their
parity with respect to the reflection along y axis (or ϕ → −ϕ

transformation), and the coefficients cn, dn are given in
Appendix A; the superscript (1) is used to define spherical
Bessel functions.

The induced nonlinear polarization at the second-harmonic
frequency is defined by the second-order polarizability tensor:

P2ω
α (r) = ε0χ

(2)
αβγ Eω

β (r)Eω
γ (r), (2)

where Eω
α are the Cartesian components of the fundamental

field inside the nanoparticle. We take into account only the
bulk nonlinear response leaving outside the consideration
potential surface sources of SHG. The SH field outside the
particle at r > a can be found using dyadic Green’s function
Ĝ of a sphere:

E2ω(r) = (2ω)2μ0

∫
V

dV ′Ĝ(2ω, r, r′)P2ω(r′), (3)

satisfying the following equation rot rot Ĝ(ω, r, r′) =
( ω

c )2ε(r, ω)Ĝ(ω, r, r′) + 1̂δ(r − r′) , where 1̂ is the unit
dyadic, ε(r, ω) = ε2(ω) for r < a, and ε(r) = 1 for r > a.

The explicit multipole decomposition of the Green func-
tion is given in Ref. [31] and also in Appendix A. Substitut-
ing the expansion of the Green function in the form of the
spherical waves into Eqs. (2) and (3) we obtain the multipolar
decomposition of the second harmonic field

E2ω(r) =
∞∑

n=1

n∑
m=0

∑
W =M,N

E0
(
DWemnW(3)

emn[k1(2ω), r]

+ DWomnW(3)
omn[k1(2ω), r]

)
. (4)

Here, the denotation W = M, N distinguishes between elec-
tric and magnetic harmonics; the superscript (3) is used to
define spherical Hankel functions of the first kind. The ex-
pansion coefficients DW e

o mn are readily evaluated as a sum of
overlap integrals between the two vector spherical harmonics
at the ω frequency and one harmonic at the 2ω frequency,
weighted by the χ̂ (2) tensor:

DWe
omn

∼
∫

V
W(1)

e
omn[k2(2ω), r]χ̂ (2)Eω(r)Eω(r)dV . (5)

The explicit form of these coefficients is given in Appendix A.
Finally, the second-harmonic conversion efficiency σSH,

defined as the ratio of the total SH radiated power PSH

to the energy flux of the fundamental wave I0 through the
geometrical cross section πa2 of the particle, can be expressed
through the coefficients DW e

o mn as follows [32]:

σSH = PSH

πa2I0

= 2π

πa2[k1(2ω)]2

∞∑
n=1

∑
W =M,N

n(n + 1)

(2n + 1)

×
[

n∑
m=1

(n + m)!

(n − m)!
(|DWemn|2 + |DWomn|2) + 2|DWe0n|2

]
.

(6)

Using Eq. (6), we calculate the conversion efficiency σSH for
BaTiO3 and AlGaAs particles of subwavelength sizes under
the plane-wave excitation. In this section, we assume that
the main axes of crystalline lattice are oriented along the
coordinate system: [100]‖ex, [010]‖ey, [001]‖ez (see Fig. 1).
In Sec. IV we will discuss other crystalline orientations. In the
chosen coordinate system the second-order polarization of the
BaTiO3 crystal has the following form:⎛⎝P2ω

x

P2ω
y

P2ω
z

⎞⎠ = ε0

⎛⎝ 0 0 0 0 d15 0
0 0 0 d15 0 0

d31 d31 d33 0 0 0

⎞⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Eω
x Eω

x

Eω
y Eω

y

Eω
z Eω

z

2Eω
y Eω

z

2Eω
x Eω

z

2Eω
x Eω

y

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (7)
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(a)

(b)

FIG. 1. Geometry of the considered problem. The crystalline
lattice structure of materials under the consideration, BaTiO3 (a) and
AlGaAs (b), is also shown in figure. The orientation of crystalline
lattice is with respect to the coordinate system fixed throughout the
paper if else is not specified.

where χzzz = d33 = 6.8 pm/V, χzxx = χzyy = d31 = 15.7
pm/V, χxxz = χyyz = d15 = 17 pm/V [33]. In the principal
axis system of the AlGaAs crystal, the tensor of the second-
order nonlinear susceptibility contains only off-diagonal ele-
ments χ

(2)
i jk ≡ χ (2) = 100 pm/V being nonzero if any of two

indices i, j, k do not coincide:⎛⎝P2ω
x

P2ω
y

P2ω
z

⎞⎠ = 2ε0χ
(2)

⎛⎝Eω
y Eω

z

Eω
x Eω

z

Eω
x Eω

y

⎞⎠. (8)

The fundamental wavelengths are fixed for BaTiO3 and
AlGaAs to 1050 nm and 1550 nm, respectively. These values
were chosen in accordance with the typical experimental
frequencies used for observation of SHG from these materials
and correspond to the Yb+3 laser (1050 nm) [23] or the
Er+3 doped fiber laser (1550 nm) [9]. Since AlGaAs has a
higher refractive index (∼3.5) compared to BaTiO3 (∼2.4),
the particle sizes are within the same range.

The calculated dependences of SHG on the nanoparticle
radius are shown in Figs. 2(a) and 3(a) demonstrating pro-
nounced resonant structure. In order to distinguish between
different multipolar resonances, we have separately calculated
the contribution from each multipolar channel in Eq. (6)
[see the colored curves in Fig. 2(a) and Fig. 3(a)]. The
contributions of the harmonics with the same total angular
momentum n and different momentum projections m are com-
bined together. Identification of the harmonics with particular
momentum projection contributing to the SH emission will
be discussed in detail in Sec. IV (see Tables III, IV, V).
We also support the SH spectra with the plot of the linear
scattering spectra of a plane wave at the fundamental and SH
wavelengths in Figs. 2 and 3(b), clearly showing individual
Mie resonances.
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FIG. 2. Second harmonic generation spectra for BaTiO3 calcu-
lated at the normal incidence, according to Fig. 1. Incident wave
wavelength is 1050 nm. (a) Solid black line shows the total SH inten-
sity, normalized to the incident power I0 = 1013 W/m2 and the geo-
metric cross section πa2. Colored lines show different multipole con-
tributions to the second harmonic field. (b) Scattering cross section,
normalized to the geometric cross section for the two wavelengths:
1050 nm (dashed line) and 525 nm (solid line), to show the positions
of the multipole resonances. E/MD—electric/magnetic dipole, Q—
quadrupole, O—octupole, H—hexadecapole, T—triacontadipole.

One can see that the peaks at the SH wavelength are modu-
lated with the broad resonance at the fundamental wavelength,
which is clearly seen by comparing the panels (a) and (b) in
Fig. 2 and Fig. 3. As a result, the SHG efficiency increases
by several orders of magnitude when approaching the mag-
netic dipole (MD) resonance at the fundamental wavelength
[34,35]. The dramatic enhancement is observed when the
double-resonance condition is fulfilled [36–38] for instance at
electrical octupole (EO) resonance [see Figs. 2 and 3(a)]. Re-
sults of our analytical calculations are confirmed by full-wave
numerical modeling performed with the finite-element solver
COMSOL Multiphysics, following the procedure applied in
Refs. [9,21,22,25]. The multipolar amplitude coefficients are
then numerically retrieved and reproduce Figs. 2 and 3.

The magnitude of the SH conversion efficiency is intensity-
dependent σSH ∼ I0, as it describes the two-photon process.
Specifically, for a given intensity of the incident wave of
I0 = 1 GW/cm2 the conversion efficiency reaches the value
of 10−5 for BaTiO3 nanoparticle and 5 × 10−4 for AlGaAs
nanoparticles in the same radius range of around 200 nm.
These values are about one order of magnitude higher than the
experimental values measured for nanodisks in similar exper-
imental conditions [9,12]. This discrepancy can be related to
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FIG. 3. Second harmonic generation spectra for AlGaAs at the
normal incidence, according to Fig. 1. Incident wavelength is
1550 nm. (a) Solid black line shows the total SH intensity, nor-
malized to the incident power I0 = 1013 W/m2 and the geometric
cross section πa2. Colored lines are multipoles contributions into
the SH intensity. (b) Scattering cross section, normalized to the
geometric cross section for the two wavelengths: 1550 nm (dashed
line) and 775 nm (solid line), to show the positions of multipole
resonances. E/MD—electric/magnetic dipole, Q—quadrupole, O—
octupole, H—hexadecapole, T—triacontadipole.

the lower SHG efficiency from disk resonators studied in the
experiments due to the substrate effects and the uncertainty of
retrieving of the efficiency value from experimental data.

Another important feature is the particular multipolar con-
tent of the SH field. For instance one can notice that the MD
is absent in the SH field generated in the BaTiO3 nanoparticle,
and no electric dipole (ED) field is generated in the AlGaAs
nanoparticle. This cancellation is dictated by the symmetry of
the χ̂ (2) tensor and direction and polarization of the funda-
mental wave. It will be further illustrated in Sec. II B, studied
in detail from the symmetry point of view in Sec. III, and
discussed in Sec. IV.

B. Single-mode approximation

Here, we specifically focus on the SHG driven by the MD
mode only. In the vicinity of pronounced resonances, the field
distribution inside the particle excited by the fundamental
wave can be approximated by the corresponding eigenmode
[21,25]. Selective and enhanced coupling to specific multipole
modes can be facilitated by the beam engineering [39,40].
If the refractive index is high enough, k1(ω)a

√
ε2(ω) ∼ π ,

the fundamental MD resonance dominates in the fundamental

FIG. 4. The geometry of the magnetic dipole mode excitation
in the nanoparticle and corresponding angles of dipole moment
rotation.

field in a particular spectral region (around 220 nm radius
for the fundamental wavelengths in Fig. 2 and Fig. 3). The
case of SHG driven by MD excitation represents an instruc-
tive example for understanding the multipolar nature of the
generated electromagnetic fields in Mie-resonant dielectric
nanoparticles.

We employ a single-mode approximation and assume that
the field inside the AlGaAs nanoparticle at r < a is given by
a MD mode profile with the y-aligned magnetic moment:

Eω
M (r) = E0

3ic1

2
M(1)

o11(k2(ω), r). (9)

This geometry corresponds to m||ey or θ = π/2, ϕ = π/2 in
Fig. 4. Integration of the trigonometric functions in Eq. (5)
over the angles shows that within the framework of single-
mode MD approximation (9) and crystalline axes of material
oriented according to Fig. 1, the multipolar composition fea-
tures electric octupole and magnetic quadrupole for the Al-
GaAs nanoparticle, allowing us to write down the expression
for the field:

E2ω(r > a) = E0
[
DNo23 N(3)

o23(k1(2ω), r) + DMe02 M(3)
e02

× (k1(2ω), r) + DMe22 M(3)
e22(k1(2ω), r)

]
. (10)

The multipolar amplitudes DNo23, DMe02, and DMe22 can be
also conveniently found using the Lorentz lemma following
the procedure described in Ref. [21], being alternative to the
Green’s function integration in Sec. II A. This allows us to
write the expression for D amplitudes through transmission
coefficient tE ,M

n (a) (see Ref. [21]) of the incident spherical
wave irradiating the particle. After some algebra, we obtain
compact analytical expressions for the multipolar coefficients:

DMe02 = −36i
√

30πχ (2)tM
2 (k2a)

5ε2(ω)3/2 I2E0c1(k2a)2O02,

DMe22 = 18i
√

20πχ (2)tM
2 (k2a)

5ε2(ω)3/2 I2E0c1(k2a)2O22, (11)

DNo23 = 72
√

70πχ (2)tE
3 (k2a)

35ε2(ω)ε2(2ω)

√
ε2(2ω)

ε2(ω)
I2E0c1(k2a)2O23,
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FIG. 5. SHG conversion efficiency decomposed into relative
magnetic quadrupolar (blue solid line) and electric octupolar (red
dashed line) contributions in the AlGaAs nanoparticles at the pump
wavelength of 1550 nm. Insets show the far-field SH radiation
patterns at a1 = 200 nm, a2 = 227 nm, a3 = 234 nm. The top
figure shows the field distribution inside the nanoparticle of radius
a2 = 227 nm at the fundamental and SH frequencies.

where

I2(k2a) =
∫ k2a

0
j2
1 (x) j2

(
2

√
ε2(2ω)

ε2(ω)
x

)
x2dx,

Omn = 1√
n(n + 1)

√
(2n + 1)

4π

(n − m)!

(n + m)!
.

The relative contribution of different multipoles varies
when the SH wavelength is tuned to corresponding Mie res-
onances. This immediately follows from the expressions for
multipolar amplitudes Eq. (11). In Fig. 5 we trace this behav-
ior by plotting the dependence of the SH intensity on nanopar-
ticle size. When the radius is increased, the contribution of
EO mode starts to dominate over the magnetic quadrupole
(MQ) changing the far-field radiation pattern from axially
symmetric for smaller particles to the multilobed pattern near
the EO resonance at a = 234 nm. The field distribution inside
the nanoparticle (see insets in Figs. 5–7) was obtained with
the help of COMSOL Multiphysics package. The radiation
patterns (see insets in Figs. 5–8), showing the distribution of
the generated SH intensity in the far field, were plotted with
the use of the formula Eq. (4) and were verified numerically
by full-wave calculations in COMSOL.

Rotation of the pump magnetic dipole in the xy plane
(θ = π/2 in Fig. 4) enables the generation of the ED mode
in AlGaAs nanoparticle, which is also illustrated in Table I.
The presence of the specific modes in the SH spectrum will

(rad)
FIG. 6. Dependence of the SH intensity and generated multipoles

on the pump magnetic dipole rotation by angle ϕ in the xy plane
(θ = π/2) in AlGaAs particles of two radii a = 190 nm (a), 230 nm
(b) at the pump wavelength 1550 nm. Insets show the SH radiation
patterns at ϕ1 = 0, ϕ2 = π/4.

be discussed in detail in Sec. IV based on symmetry reasons.
For the smaller nanoparticle of a = 190 nm [Fig. 6(a)], being
remote from the EO-resonant size, the EO contribution in the
SH field is negligible. At ϕ = 0 or π/2, the SH radiation is
dominated by the magnetic quadrupole. If the pump magnetic
dipole is rotated by ϕ = π/4, the ED relative contribution
exceeds MQ and the radiation pattern significantly changes.
For the larger nanoparticle of a = 230 nm [Fig. 6(b)], the EO
term dominates in the SH emission.

The results of analogous calculations for BaTiO3 particle
are summarized in Fig. 7. Here, two different orientations
of the magnetic dipole (ϕ = π/2, θ = 0 and ϕ = π/2, θ =
π/2) are shown and the resonant switching between dipolar,
quadrupolar, and octupolar modes is observed.

In Fig. 8 we illustrate the effect of the MD rotation in the
yz plane (ϕ = π/2) for the BaTiO3 particle of radius a = 140
nm, corresponding to the MQ peak in Fig. 3(b). Rotation of
MD in the xy plane will not give any changes due to symmetry
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Nanoparticle radius (nm)

FIG. 7. Dependence of the SH intensity in BaTiO3 particles on
the nanoparticle radius decomposed into relative electric dipolar
(ED), magnetic quadrupolar (MQ), electric octupolar (EO) contri-
butions at the pump magnetic dipole wavelength of 1050 nm for
ϕ = π/2, θ = π/2 (a), and θ = 0 (b). The insets show far field
patterns of SH radiation for nanoparticle sizes a1 = 180 nm and
a2 = 214 nm. The field distributions inside a nanoparticle are shown
for the fundamental and SH wavelengths for nanoparticle radius a2.

of BaTiO3 lattice with respect to this rotation. At θ = 0 the
induced nonlinear source does not contain a MQ component,
and, thus, weak SHG is determined by the nonresonant ED.
When the angle θ is increased, the total SHG intensity grows
and the leading contribution to the SH radiation originates
from the resonant MQ.

III. SYMMETRY ANALYSIS FOR THE
SECOND-HARMONIC GENERATION

In this section, we analyze the possibility of SHG through
different multipole channels which is determined by the
particular symmetry of modes at the fundamental and SH

(rad)

SH
G

 in
te

ns
ity

 (a
rb

. u
ni

ts
)

FIG. 8. Dependence of the SH intensity and generated multipoles
on the pump magnetic dipole rotation by angle θ in the yz plane
(ϕ = π/2) in BaTiO3 particle of radius a = 140 nm. Insets show SH
radiation patterns at θ1 = 0, θ2 = π/4, θ3 = π/2.

frequencies. The integrals over the nanoparticle volume

Iμn,μ′n′→μ′′n′′ =
∫

r<a
dV χ

(2)
αβγW (1)

α,μn(r)W (1)
β,μ′n′ (r)W (1)

γ ,μ′′n′′ (r)

(12)

determine the contributions of the multipoles μ′n′, μn to
the SHG expansion coefficients DW e

o mn in Eq. (5). Here, the
indices μ,μ′, μ′′ stand for the parity e, o and the projection
m of vector spherical harmonics W(1)

e
omn(r). For each particular

value of indices such integrals can be readily calculated
analytically, and a large number of them turn out to be zero.
Our goal is to reveal the general origin of these cancellations.
All our considerations are based on the following general
theorem [41,42]. Let ψ

(α)
i be one of the basis functions of an

irreducible (nonunit) representation α of a system’s symmetry
group. Then the integral of this function over the configuration
space of the physical system vanishes identically:

∫
ψ

(α)
i dq =

0. In order for the integral to be nonzero, the integrand must
contain a term that is invariant when any of the symmetry
operations of the group are applied, otherwise the integral
vanishes.

TABLE I. Single-mode excitation. Generated nonlinear multi-
poles in AlGaAs nanoparticle for two orientations of the pump MD
moment under the rotation in the xy plane (θ = π/2). The shaded
region coincides with the shaded region in Table V.
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FIG. 9. Schematic illustration of (a) an atomic cluster with Td

symmetry and (b) a spherical nanoparticle made of material with Td

crystalline symmetry. Cation and anion atoms are shown by blue and
red color, respectively.

In the considered case, the cancellations stem from both (i)
the microscopic crystalline symmetry of the material and (ii)
from the macroscopic spherical symmetry of the nanoparticle
as a whole. In order to illustrate this distinction, we show
in Fig. 9(a) a tetrahedral nanoparticle cut from a material
with Td point group symmetry, e.g., AlGaAs, and in Fig. 9(b)
the spherical nanoparticle made of the crystal with Td point
group symmetry. Then, since a tetrahedron has the same Td

symmetry, all the allowed transitions will be defined by the
crystalline symmetry only. However, spherical symmetry of
the nanoparticle in Fig. 9(b) imposes additional restrictions
on the second harmonic generation, absent in a tetrahedron.
The restrictions are provided by a certain parity of sphere
eigenmodes with respect to the symmetry transformations of
a sphere. Hence, we can make use of selection rules based on
spatial parity of eigenmodes. As such, most of the cancella-
tions of the integrals Eq. (12) stem from simple spherical sym-
metry considerations, discussed in the following Sec. III A.
The rest of the relevant cancellations can be explained as
inherited from the crystal point group symmetry and will be
considered in Sec. III B.

We note that in our consideration we neglect the roughness
of the spherical particle surface imposed by the crystalline
structure as we assume nanoparticle containing large enough
number of atoms. The possible nonlocal corrections to the
linear dielectric response of the nanoparticle, arising from
the spatial dispersion of the permittivity, and sensitive to the
difference between tetradehral and spherical symmetry [43],
are also neglected here, and the particle is described by the
local isotropic permittivity tensor.

A. Restrictions imposed by the spherical symmetry

The symmetry analysis of the integrals Eq. (12) becomes
more straightforward when the spherical harmonics W are
presented in a vector form. To this end we use the following
relationship between the Cartesian basis vectors and the elec-
tric dipole harmonics in the limit k → 0: N (1)

e11(0, r) ≡ Nx ∝
ex, N (1)

o11(0, r) ≡ Ny ∝ ey, N (1)
e01(0, r) ≡ Nz ∝ ez. This allows

us to rewrite the integral Eq. (12) as

Iμn,μ′n′→μ′′n′′ ∝ χ
(2)
αβγ

∫
r<a

dV [Nα · W μn(r)]

× [Nβ · W μ′n′ (r)][Nγ · W μ′′n′′ (r)]. (13)

Let us consider the integral (13) in more detail. First of all,
it contains a sum of several integrals of three scalar products
of vector spherical harmonics, where each term corresponds to
one of χ (2)-tensor components. We are seeking for the cases
when the integrand is invariant under the transformations
of the O(3) symmetry group. We expect the integral to be
nonzero, if at least one of the integrand terms contains a func-
tion invariant under all rotations and inversion transformation.
The scalar products entering Eq. (13) can be readily expanded
over the scalar spherical harmonics, see Refs. [44,45] and
Appendix B. Afterwards, the resulting integrals can be ana-
lyzed for different χ (2)-tensor components and three general
rules A, B, and C, governing whether the integrals are zero or
not, can be formulated for each component separately.

Rule A: Parity under inversion and reflection in the y =
0 plane. The vector spherical harmonics (Appendix A) are
transformed in the same way as the real scalar spherical
harmonics ψe

omn [46–49] under the coordinate rotat ions, while
under inversion ψe

omn and Ne
omn acquire a sign (−1)n and Me

omn

acquires a sign (−1)n+1, so the parity of magnetic vector har-
monics is inverse to the parity of electric and scalar harmonics.
We introduce the parity indices pi = (−1)n for Ne

omn, and
pi = (−1)n+1 for Me

omn describing the behavior of spherical
harmonics under the spatial inversion. Another parity index
pr describes the behavior of the harmonics under the reflection
in the y = 0 plane, equivalent to the change of the azimuthal
angle ϕ → −ϕ. The functions ψemn, Nemn, and Momn are even
with respect to such reflection, pr = 1, while the functions
ψomn, Nomn, and Memn are odd, pr = −1. Thus, the inversion
and reflection parity selection rules can be summarized as

pi pi′ pi′′ = −1 (inversion), (14)

pαβγ
r pr pr′ pr′′ = 1 (reflection). (15)

The rule Eq. (14) is applied to the right-hand side of Eq. (13)
as a whole. The rule Eq. (15) is applied to the individual
products of different Cartesian components corresponding
to each nonzero element χαβγ of the nonlinear susceptibility
tensor in Eq. (13). The factor pαβγ

r in Eq. (15) is the parity of
the product xαxβxγ under the reflection, which is illustrated in
Fig. 10. In the following, we will also use notation of pω

i(r) or
p2ω

i(r) for the parity indices corresponding to the fundamental
or the SH modes.

Rule B: Conservation of the angular momentum projection.
Once the scalar products in Eq. (13) are calculated, the matrix
element is reduced to the overlap integral of scalar spherical
harmonics. The angular momentum projection rule for the
tesseral harmonics can be written as

±mα ± m2ω ± mβ ± m′ω ± mγ ± m′′ω = 0. (16)

The matrix element (13) can be nonzero only if there exists a
combination of signs when Eq. (16) is satisfied.

Rule C: Triangle inequality for the total angular momentum.
This rule can be formulated as

−h + |n′ω − n′′ω| � n2ω � |n′ω + n′′ω| + h, (17)

where the index h ∈ [0..3] denotes the number of electric
harmonics under the integral (12). The presence of the index
h stems from the fact that the Cartesian components of vector
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FIG. 10. Parity indices of the χ̂ (2)-tensor components. The solid
and dashed lines show the nonzero tensor components for AlGaAs
and BaTiO3 correspondingly for the crystal lattice oriented according
to Fig. 1.

electric harmonics with the total angular momentum n include
only the scalar harmonics with the momentum n ± 1, while
the projections of magnetic harmonics include only the states
with the same angular momentum n.

Now, let us illustrate the rules obtained above with some
specific examples. We start with examining the possibility
of the generation of z-polarized electric dipolar mode (Nz =
Ne01) in a AlGaAs nanoparticle by combining the y-polarized
magnetic dipolar mode (My = Mo11) and the x-polarized
electric dipolar mode (Nx = Ne11). Here pi pi′ pi′′ = 1, so such
generation is prohibited by the first selection rule. Next, we
try to replace Nz by some electric quadrupolar mode, for
example, No12. For this mode we have pi pi′ pi′′ = −1, pαβγ

r =
−1 according to Fig. 10, and pαβγ

r pr pr′ pr′′ = (−1) · (−1) · 1 ·
1 = 1. Hence, such a process is not prohibited by the first two
rules. But the sum of angular momentum projections (16) for
considered three multipoles is always odd, while for the tensor
component it is even (Fig. 10). This means that the total sum
is never zero, and such a generation process is prohibited by
the second rule.

These rules above provide a large number of possible
cancellations, however, some exceptions are possible due to
the properties of scalar products. To get all cancellations
for the specific tensor component, we either should use the
rules of how three scalar products are coupled, following the
algorithm given in Appendix B, or apply additional symmetry
reasons, discussed below.

B. Restrictions imposed by the crystal point group symmetry

In the previous Sec. III A, we have separately considered
the cancellations of the terms in Eq. (12) corresponding to
the individual components of the χ (2) tensor. However, some
of the components χ

(2)
αβγ are equal due to the crystal point

group symmetry that can result in additional cancellations
after the summation over tensor components is performed.

Such mutual cancellations are taken care of by the theory of
representations of symmetry groups in a universal automatic
fashion. The detailed analysis is given below.

a. Transformation of the matrix elements under symmetry
operations. In order to determine the behavior of the matrix
elements Eq. (12) under the application of the point symmetry
group operation, we consider how vector spherical harmonics
are transformed. Here, one has to take into account that the
transformed harmonic is in general expressed via a sum of
the harmonics with different angular momentum projections
m and parity e/o, but the same polarization (M or N) and
the same total angular momentum n [46–49]. The scalar
products, entering the integral Eq. (13) are transformed under
the symmetry operation r → D(1)r as

Nα (D(1)r) · Wμn(D(1)r) = D(1)
α̃αD(n)

μ̃μNα̃ (r) · Wμ̃n(r). (18)

Here D(n)
μ̃μ(g) are the representation matrices of the symmetry

operation g with momentum n for tesseral harmonics [50],
in case of rotations they reduce to the combinations of the
Wigner matrices. As an example we consider the case when
the W harmonics are the electric dipole harmonics, Wμn →
Nβ , β = x, y, z and D(1) is a rotation around the z axis,
e.g., D(1)

xx = D(1)
yy = cos ϕ, D(1)

xy = −D(1)
yx = − sin ϕ, D(1)

zz = 1.
In this case Eq. (18) simplifies to

[Nα · Nβ](D(1)r) = D(1)
α̃αD(1)

β̃β
Nα̃ (r) · Nβ̃ (r), (19)

i.e., a scalar product of two electric dipole modes is trans-
formed as a second-rank cartesian tensor.

The condition that the integral Eq. (13) remains invariant
under the symmetry transformation Eq. (18) is written as

Iμn,μ′n′→μ′′n′′ = D(n)
μ̃μD(n′ )

μ̃′μ′D
(n′′ )
μ̃′′μ′′̃Iμ̃n,μ̃′n′→μ̃′′n′′ , (20)

where the matrix elements Ĩ are given by Eq. (12) with χαβγ

being replaced by

χ̃
(2)
α′β ′γ ′ = D(1)

αα′D
(1)
ββ ′D

(1)
γ γ ′χ

(2)
αβγ . (21)

b. Application to harmonic generation. The most general
consideration would require an expansion of the χ (2) tensors
Eq. (7), Eq. (8) of BaTiO3 and AlGaAs, transforming under
the spherical symmetry operations according to Eq. (21), over
the irreducible representations of the O(3) symmetry group.
However, in practice it turns out that the relevant cancellations
of the matrix elements Eq. (13), not captured in the previous
Sec. III A, can be explained in a simpler way. Instead of
the whole O(3) group it suffices to apply a crystal point
subgroup of the O(3) group, i.e., to use a smaller set of
symmetry operations. When the crystal point group operation
is applied, the tensor χ (2) stays invariant, which means that
χ̃ = χ , and Ĩ = I . Hence, the matrix elements I in Eq. (20)
are transformed as a direct product of the three representations
governing the transformation of the corresponding vector
spherical harmonics. In order to stay nonzero, the integrals
Eq. (20) should contain a combination, invariant to the sym-
metry operation of the crystal. More formally, the reducible
representation governing the transformation Eq. (13) should
contain an identity representation.

The symmetry analysis of the second harmonic genera-
tion is then reduced to (i) expanding the vector spherical
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harmonics over the basis functions of the irreducible repre-
sentation of the crystal point symmetry group and (ii) using
the Clebsh-Gordan coefficients available for all point groups
[42,51]. The classification of the dipole, quadrupole, and
octupole spherical harmonics for Td and C4v point groups of
AlGaAs and BaTiO3, respectively, is given in Appendix C
and Table VI. The examples of basis functions of irreducible
representations, which behave in the same way under sym-
metry transformations as the spherical harmonics, are also
given. The expansion has been done using the transformation
properties of vector spherical harmonics.

For example, we see from Table VI that the electric
dipole modes are transformed in the Td group according
to the F2 irreducible representation, i.e., as components of
the radius vector r. Conversely, the magnetic dipole modes
behave as pseudovector components, i.e., according to the F1

representation.
Such an approach allows us to find all the selection rules

of the nanoparticle with the same or higher symmetry as the
material [Fig. 9(a)]. It can be a tetrahedral nanoparticle for Td

or a quadrangular pyramid nanoparticle for C4v . This is pos-
sible due to the fact that we consider the integrand behavior
under such transformations only. The further cancellations can
appear due to the scalar product properties, for example, the z
component of Me01 harmonic is zero, so it can provide some
extra restrictions (see Appendix B).

IV. DISCUSSIONS

Let us apply the developed selection rules to the cases
studied in Sec. II, where we already discussed the absence
of particular harmonics in the generated field.

Plane-wave excitation. Under the excitation of BaTiO3

(AlGaAs) nanoparticle with a plane wave, we observed the
absence MD (ED) modes in the SH field. It is illustrative to
start with the restrictions imposed by the spherical symmetry
of modes that account for most of the selection rules.

Here, we will consider only the dipole terms in the excita-
tion, and higher modes can be treated analogously. Applying
Rule A to the BaTiO3 nanoparticle in the case of dipole modes
(n = 1) we do not obtain any restrictions due to the inversion
parity, because both terms ED ⊗ ED and MD ⊗ ED are con-
tained in the fundamental field. One can find that the reflection
parity of the SH mode should be p2ω

r = 1. Indeed, according
to the Mie theory generated dipole modes at the fundamental
frequency can be only Ne11 and Mo11, and for both of them
pω

r = 1, while for BaTiO3 χ̂ (2) tensor pαβγ
r = 1 (see Fig. 10).

From the angular momentum projection conservation Rule
B, we find the limits for angular momentum of SH modes.
For the tensor components the sum ±mα ± mβ ± mγ is even
according to Fig. 10. Thus, ±m2ω ± m′ω ± m′′ω should also
be even, and from the Mie theory it follows that m′ω = m′′ω =
1, which makes m2ω even. This immediately rules out all
magnetic dipole modes as the only dipole mode with even
m and p2ω

r = 1 is Mo01, which is identical to zero. Electric
dipole mode Ne01 has the same reflection parity and, thus, is
allowed in the SHG process (see Table III). These reasons also
show that the higher order magnetic and electric modes can
also exist. According to Rule C the highest possible harmonic
generated from the dipole modes is the electric mode with
n = 5 as shown in Table III: ED ⊗ ED → ET .

TABLE II. Single-mode excitation. Generated nonlinear multi-
poles in BaTiO3 nanoparticle for two orientations of the pump MD
moment under the rotation in the yz plane (ϕ = π/2). The shaded
region coincides with the shaded region in Table III.

The selection rules for AlGaAs are shown in Table V. The
same arguments as in the case of BaTiO3 can be applied, while
considering dipole channels of SHG. The only difference is
that the parity of tensor components for AlGaAs pαβγ

r = −1
(see Fig. 10). Rule A will be fulfilled if the parity pr of
one of the modes will be changed in sign, allowing MD ⊗
ED → MD transition. Other possible channels ED ⊗ ED �→
ED or MD ⊗ MD �→ ED are forbidden, as it would require
generation of No01 mode, which is identical to zero. Moreover,
the dipole modes generation in SH field will be still prohibited
even if the higher order modes will be excited at fundamental
wavelength.

Single magnetic mode excitation. In Sec. II B, we have
discussed the excitation of the SH mode with a single mag-
netic mode at the fundamental frequency. Let us first study
in more detail the case of y-oriented dipole Mo11. Applying
derived selection rules, one can get from Rule C that the
highest possible generated mode is the octupole mode n � 3.
For BaTiO3 nanoparticle from Rule B, we have already estab-
lished that m2ω should be even. The inversion and reflection
parities from Rule A gives us that p2ω

i = −1 and p2ω
r = 1.

For total angular momentum value of n = 3 this means that
only electric modes should be generated (inversion rule), and
they should be even (reflection rule), which gives us for even
m only two possible modes: Ne03 and Ne23. For n = 2 only
odd magnetic quadrupole mode possesses required reflection
and inversion parity, which gives us only Mo22 contribution
as Mo02 ≡ 0. These selection rules are summarized in the
highlighted row of Table II, which also corresponds to the
highlighted region of the extended Table III.

Until now we have considered only one orientation of the
crystalline lattice, shown in Fig. 1. However, the different
orientation of the BaTiO3 lattice provides other selection

TABLE III. Possible multipoles generated in second harmonic
by the dipolar terms products in the incident field. BaTiO3 lattice
orientation is [100]‖ex, [010]‖ey, [001]‖ez.
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TABLE IV. Possible multipoles generated in second harmonic
by the dipolar terms products in the incident field. BaTiO3 lattice
orientation is [100]‖ey, [010]‖ez, [001]‖ex

rules. For instance, one can rotate the BaTiO3 lattice by 90◦
obtaining [100]‖ey, [010]‖ez, [001]‖ex, which changes the
parity indices pαβγ

r = 1, and ±mα ± mβ ± mγ should be odd.
The resulting selection rules are summarized in Table IV. One
can see that harmonics with different projection m can be
generated, allowing both MD and ED channels. This provides
us an opportunity to control the SH signal by changing the
relative orientation between the field polarization and the
crystalline lattice.

The same approach allows us to analyze the modes gen-
erated at SH by pumping at single MD mode in the AlGaAs
nanoparticle, as shown in Table I. The shaded region describes
excitation of the MD mode corresponding to y-oriented mag-
netic dipole (my). The same argument as in the case of BaTiO3

allows up to octupole mode generation. We have already
discussed in this section that the generation of ED mode is
possible in AlGaAs due to the pαβγ

r = −1 parity. Because of
that, the inversion and reflection parity values should be equal
to p2ω

i = −1 and p2ω
r = −1. Thus, for n = 3 No23 is the only

nonzero mode satisfying the parity conditions, while for n = 2
the even magnetic modes have proper parity, thus, Me02 and
Me22 are present (shaded rows in Tables I and V).

The selection rules provided by the crystalline lattice sym-
metry. So far we have discussed the selection rules which were
governed by the symmetry of the vector spherical harmonics
and related conditions A, B, and C. However, there are SHG
channels, which are allowed by the mode symmetry but
become restricted due to crystalline symmetry only.

For the SHG by rotated MD in AlGaAs nanoparticle for
ϕ = π/4 (see Table I) modes Mo11 and Me11 are present
in the fundamental field, while the channels of generation

TABLE V. Possible multipoles generated in the second harmonic
by the dipolar terms products in the incident field. AlGaAs lattice
rotation angle is β = 0◦.

TABLE VI. Symmetry classification of vector spherical harmonics.

of higher quadrupole modes are forbidden Mo11 ⊗ Me11 �→
Mo12, Me12, Mo22, however some of them satisfy the mode
symmetry rules. These processes are restricted by the crys-
talline symmetry rules discussed in Sec. III B: In the Td

symmetry group the magnetic dipole modes are transformed
as components of the pseudovector L (F1 representation).
The modes Mo12, Me12, Mo22 also behave under the sym-
metry operations as components of a pseudovector L (F1

representation), see Table VI. Now, the physical question,
of whether the SHG process is possible, is reduced to the
mathematical question of whether the direct product F1 ⊗
F1 contains F1. The nine-dimensional reducible representa-
tion F1 ⊗ F1 is equal to a direct sum of irreducible rep-
resentations A1 ⊕ E ⊕ F2 ⊕ F1 [42,51]. If we label the 3-
pseudovectors, forming the basis of the representation F1 as
M and M ′, the nine linear combinations transforming to A1, E ,
F1, F2 are M · M ′ (A1),

√
3(MxM′

x − MyM′
y) and 2MzM′

z −
MxM′

x − MyM′
y (E ), MxM′

y + MyM′
x and two cyclic permu-

tations (F2) and M × M ′ (F1). The latter must be understood
componentwise. We are interested only in the magnetic dipole
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contribution, i.e., in the pseudovector M × M ′ transforming
according to F1. However, in our case M and M ′ are equal,
since both modes at the first harmonic frequency belong to
the same electric field. As such, the vector product M × M ′

is zero and the conversion from the magnetic dipole modes
to the Mo12, Me12, Mo22 quadrupolar modes is forbidden by
the Td crystal symmetry. For similar reasons, such a process is
prohibited for the conversion from the electric dipole modes
No11 and Ne11. On the other hand, a sum frequency generation
process, when the incident modes have different frequency,
can be possible, since M × M ′ in general is not zero.

Anisotropy of the linear response of the nanoparticle.
Finally, let us briefly discuss the effect of the uniaxial sym-
metry of the linear response of the dielectric tensor, present
for BaTiO3 on the obtained selection rules for the second
harmonic generation. The impact of anisotropy on linear
scattering has been studied in details in Refs. [52,53]. How-
ever, for the considered range of parameters the anisotropy
is not very strong, namely

√
εxx = √

εyy = 2.33 and
√

εzz =
2.29 at the fundamental wavelength of 1050 nm [54] and√

εxx = √
εyy = 2.48 and

√
εzz = 2.42 at the SH wavelength

of 525 nm [55], a rigorous extension of the approach pre-
sented in this paper to the anisotropic case manifests itself
a complicated problem. Thus, we have applied numerical
simulation method in order to check the effects of the present
material anisotropy on the SH field multipole content. The
spectral dependence of the SHG cross section is shown in
Fig. 11 similarly to Fig. 2 but with account for anisotropic
permittivity tensor. Simulations results have shown that the
difference in the nonlinear response is rather weak, and the
multipolar contents are generally preserved for the given set
of the parameters.

The further speculations on the influence of the anisotropy
will bring us to the conclusion on the selection rules modifi-
cation. In general, the linear scattering of a plane wave on an
isotropic particle preserves both the multipole order (n, m),
and the electric or magnetic parity, namely each spherical
harmonic contained in a plane wave generates a scattered
harmonic with the same numbers (n, m), and the same elec-
tric/magnetic parity. In the process of anisotropic particle
scattering the mode numbers are not conserved [53,56] and
multipole orders n, their projections m (in case of arbitrary
orientation of the optic axis of the crystal), and electric
and magnetic degrees of freedom are getting mixed. The
SHG process will also entangle the multipole orders due
to the structure of the anisotropic Green’s function. These
two processes change the selection rules A–C. However, the
formulation of the exact selection rules in this case is a matter
of future work; there will be a particular resemblance to the
case of the SHG from a cylindrical nanoparticle with isotropic
linear permittivity tensor [57].

V. CONCLUSION

In conclusion, we have theoretically analyzed the sec-
ond harmonic generation by spherical dielectric nanoparticles
made of materials with nonzero bulk second order nonlinear
susceptibility tensor χ̂ (2). Considering two typical crystalline
solids, BaTiO3 and AlGaAs, we have studied the intensity
of SHG under a plane wave illumination and analyzed the

contribution of different multipole components into the total
SH intensity. We have shown that under the resonant ex-
citation of a single magnetic dipole mode one can achieve
control of the directionality of SH emission by rotating the
dipole moment with respect to the material’s crystalline lat-
tice. Finally, we have developed a symmetry approach which
provides an explanation why only particular modes can be
observed in the SH field and defined general selection rules for
SHG. Our symmetry analysis fully agrees with numerical and
analytical results and also demonstrates promising predictive
power, which can be used for design of efficient nonlinear
light sources based on nanoparticle ensembles.
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APPENDIX A: VECTOR SPHERICAL HARMONICS

Vector spherical harmonics used above are defined as

Me
omn = ∇ × (

rψe
omn

)
, (A1)

Ne
omn = ∇ × Me

omn

k
, (A2)

where

ψemn = cos mϕPm
n (cos θ )zn(ρ), (A3)

ψomn = sin mϕPm
n (cos θ )zn(ρ) (A4)

are the scalar spherical functions, proportional to the tesseral
spherical functions. Functions zn(ρ) can be replaced by spher-
ical Bessel functions of any type, ρ is k(ω)r = ω

√
εr/c.

Memn(k, r) = −m

sin(θ )
sin(mϕ)Pm

n (cos(θ ))zn(ρ)eθ

− cos(mϕ)
dPm

n (cos(θ ))
dθ

zn(ρ)eϕ, (A5)

Momn(k, r) = m

sin(θ )
cos(mϕ)Pm

n (cos(θ ))zn(ρ)eθ

− sin(mϕ)
dPm

n (cos(θ ))
dθ

zn(ρ)eϕ, (A6)

Nemn(k, r) = zn(ρ)

ρ
cos(mϕ)n(n + 1)Pm

n (cos(θ ))er

+ cos(mϕ)
dPm

n (cos(θ ))
dθ

1

ρ

d

dρ
[ρzn(ρ)]eθ

− m sin(mϕ)
Pm

n (cos(θ ))
sin(θ )

1

ρ

d

dρ
[ρzn(ρ)]eϕ,

(A7)
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Nomn(k, r) = zn(ρ)

ρ
sin(mϕ)n(n + 1)Pm

n (cos(θ ))er

+ sin(mϕ)
dPm

n (cos(θ ))
dθ

1

ρ

d

dρ
[ρzn(ρ)]eθ

+ m cos(mϕ)
Pm

n (cos(θ ))
sin(θ )

1

ρ

d

dρ
[ρzn(ρ)]eϕ.

(A8)

The Mie coefficients for the field inside the nanoparticle can
be expressed as follows:

cn(ω) = [ρ1hn(ρ1)]′ jn(ρ1) − [ρ1 jn(ρ1)]′hn(ρ1)

[ρ1hn(ρ1)]′ jn(ρ2) − [ρ2 jn(ρ2)]′hn(ρ1)
(A9)

dn(ω) =
√

ε2[ρ1hn(ρ1)]′ jn(ρ1) − √
ε2[ρ1 jn(ρ1)]′hn(ρ1)

ε2[ρ1hn(ρ1)]′ jn(ρ2) − [ρ2 jn(ρ2)]′hn(ρ1)
,

(A10)

here ρ1 is k1(ω)a = ω
√

ε1a/c, ρ2 is k2(ω)a = ω
√

ε2a/c.

The Green function for a dielectric sphere of radius a for r > a > r′ at frequency 2ω is given by

Ĝ(r, r′, 2ω) = ik2(2ω)

4π

∞∑
n=1

n∑
m=0

(2 − δ0)
2n + 1

n(n + 1)

(n − m)!

(n + m)!

· (
a(2)

n (2ω)
(
M(3)

emn[k1(2ω), r] ⊗ M(1)
emn[k2(2ω), r′] + M(3)

omn[k1(2ω), r] ⊗ M(1)
omn[k2(2ω), r′]

)
+ b(2)

n (2ω)
(
N(3)

emn[k1(2ω), r] ⊗ N(1)
emn[k2(2ω), r′] + N(3)

omn[k1(2ω), r] ⊗ N(1)
omn[k2(2ω), r′]

))
, (A11)

where superscripts (1) and (3) appear, when we replace zn(ρ) by spherical Bessel functions, and the spherical Hankel functions
of the first kind, respectively, δ0 = 1 when m = 0, and δ0 = 0 when m �= 0. Coefficients in the Green function have a similar
denominator as the Mie coefficients:

a(2)
n (ω) = [ρ2 jn(ρ2)]′hn(ρ2) − [ρ2hn(ρ2)]′ jn(ρ2)

[ρ2 jn(ρ2)]′hn(ρ1) − μ2/μ1[ρ1hn(ρ1)]′ jn(ρ2)
,

b(2)
n (ω) = [ρ2 jn(ρ2)]′hn(ρ2) − [ρ2hn(ρ2)]′ jn(ρ2)

μ2/(
√

ε2μ1)[ρ2 jn(ρ2)]′hn(ρ1) − √
ε2[ρ1hn(ρ1)]′ jn(ρ2)

.

The rigorous expression for the D-coefficients is as follows:

DWe
omn

=
(

2ω

c

)2 ik2(2ω)

4π
(2 − δ0)

2n + 1

n(n + 1)

(n − m)!

(n + m)!

(
a(2)

n (2ω)
b(2)

n (2ω)

) ∫
V

W(1)
e
omn(k2(2ω), r)χ̂Eω(r)Eω(r)dV .

Here, W(1)
e
omn(k2(2ω), r) is a vector spherical harmonic

M(1)
e
omn(k2(2ω), r) or N(1)

e
omn(k2(2ω), r).

APPENDIX B: RIGOROUS APPROACH FOR THE
SELECTION RULES IMPOSED BY THE SPHERICAL

SYMMETRY

Considering three scalar products of vector spherical har-
monics in Eq. (13), we find that each of them can be expanded
in a finite sum of several specific scalar functions ψe

omn with
the coefficients independent on angle [44,45]. In turn, the
product of three scalar functions can be again represented in
the form of a sum over spherical scalar harmonics. We are
looking for the cases when the coefficient before the invariant
term ψe00 is nonzero, which also provides integral (13) is
nonzero.

Here, we are only interested in the scalar products with
Cartesian harmonics Nα , which have angular momentum n =
1. As a result, we have two different types of scalar products:

(1) If W μn is replaced by Npr mn, and Nα is replaced by
Np′

r m′1, where pr is the parity index, introduced in Sec. III A,
obtaining [58]:

[Np′m′1Npmn] ∝
∑

m′′=m±m′,
n′′=n±1,

n′′ �=n

c(r)ψp·p′m′′n′′ . (B1)

For instance:

[Ne01(0, r) · Ne01
(
k, r)

)
] = [Ne01]z (B2)

= 2

3

(
z1(ρ)

ρ

(
ψe00

z0(ρ)
+ ψe02

z2(ρ)

)
+ z0(ρ) − z2(ρ)

3

(
ψe00

z0(ρ)
− ψe02

z2(ρ)

))
. (B3)

(2) If W μn is replaced by Mpr mn, and Nα is replaced by
Np′

r m′1, we obtain a similar expression. Since for Cartesian
projections of magnetic harmonics n′′ = n, the summation
over full angular momentum is simplified:

[Np′m′1Mpmn] ∝
∑

m′′=m±m′,
n′′=n

c(r)ψp·p′m′′n′′ . (B4)

For instance:

[No11(0, r) · Mo11(k, r)] = [Mo11]y ∼ ψo01 = 0 (B5)

[Ne01(0, r) · Me13(k, r)] = [Me13]z = 2

3
z3(ρ)ψo13 (B6)

In our considerations, we are not interested in the exact
form of the coefficients c(r), because they have no angular
dependence, so they are invariant under all transformations
of the sphere and can’t alter the selection rules. If radial
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integration turns into zero, this is not due to the symmetry
and can’t be considered in this simple way. Finally, we obtain
the integrand consisting of the sum of products of scalar
spherical harmonics ψe

omn, which can be easily expressed via
the Clebsh-Gordan coefficients [49,59]. This means that the
product of two of three scalar harmonics must contain a
third one:

ψp′m′n′ψpmn ∝
∑

m′′=m±m′,n′′
ψp·p′m′′n′′Cn′′0

n0n′0. (B7)

The Clebsh-Gordan coefficient Cn′′0
n0n′0 is nonzero only when

n′′ has the same parity as sum of n and n′. The usual triangle
inequality for n must be satisfied as well. It appears in accor-
dance with the fact that the product of two functions should
have the same inversion behavior as the third.

Below we present several examples of computation of
the integrals, obtaining selection rules for particular mode
channels:∫

V
χxxz[NxMo11(2ω)][NxMo11(ω)][NzNe01(ω)]dV (B8)

=
∫

V
χxxz[Ne11(0)Mo11(2ω)][Ne11(0)Mo11(ω)]

× [Ne01(0)Ne01(ω)]dV (B9)

→ χxxz

∫
V

ψe01ψe01(c1ψe02 + c2ψe00)dV �= 0, (B10)

here c1 and c2 depend on the radius only and are angular
independent. Thus, the coupling is possible with the tensor
component χxxz.∫

V
χxxz[Nx(0)Ne11(2ω)][Nx(0)Mo11(ω)][Nz(0)Ne01(ω)]dV

(B11)

=
∫

V
χxxz[Ne11(0)Ne11(2ω)][Ne11(0)Mo11(ω)]

× [Ne01(0)Ne01(ω)]dV (B12)

→ χxxz

∫
V

(c1ψe22 + c2ψe00 + c3ψe02)ψe01ψe02dV = 0,

(B13)

so this coupling is prohibited because C20
1020 is zero. We see

that actually, it is prohibited due to Rule A because the
integrand is odd with respect to spatial inversion. The three
selection Rules A–C, given in the main text, follow from this
procedure, but mix all the harmonics, neglecting properties of
specific scalar products.

APPENDIX C: SYMMETRY CLASSIFICATION OF
VECTOR SPHERICAL HARMONICS

In order to reveal how the crystalline symmetry affects
the possibility of multipolar generation, we need to know
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FIG. 11. The SHG cross section for BaTiO3 nanoparticle without
(solid lines) and with (dashed lines) account for the anisotropy of
material parameters. All the parameters of simulations are the same
as in Fig. 2(a), but the anisotropic tensor of the dielectric permittivity
is defined by components

√
εxx = √

εyy = 2.48 and
√

εzz = 2.42 at
the SH wavelength of 525 nm.

the behavior of the vector spherical functions under the
transformations from the crystal symmetry group. Here we
give the table for two types of crystalline symmetries where
we indicate the corresponding irreducible representations and
express the spherical functions via the basis functions of
these representations, that are transformed via each other
in the same way. The numerical coefficients are obtained
properly, but their explicit values are not required to derive the
selection rules. While the selection rules in spherical BaTiO3

nanoparticles can be determined just from the conservation
of the angular momentum projection quantum number m, the
table can be also useful for the nanoparticles of the pyramidal
shape. Similar classifications for other symmetries can be
found in Ref. [60].

APPENDIX D: ANISOTROPY OF THE LINEAR MATERIAL
PARAMETERS

Here we provide the comparison between the SHG from a
nanoparticle with isotropic and anysotropic tensor of dielec-
tric permittivities as discussed in Sec. IV. The results of the
numerical simulations of the SHG efficiency are presented
in Fig. 11 for the case of a BaTiO3 nanoparticle. The contri-
butions coming from different multipole moments are shown
with different colors and are marked. One can see that there
is weak dependence of the obtained spectra for the given
parameters of anisotropy.

[1] M. Kauranen and A. V. Zayats, Nonlinear plasmonics, Nat.
Photonics 6, 737 (2012).

[2] N. C. Panoiu, W. E. I. Sha, D. Y. Lei, and G.-C. Li, Nonlinear
optics in plasmonic nanostructures, J. Opt. 20, 083001 (2018).

075425-13

https://doi.org/10.1038/nphoton.2012.244
https://doi.org/10.1038/nphoton.2012.244
https://doi.org/10.1038/nphoton.2012.244
https://doi.org/10.1038/nphoton.2012.244
https://doi.org/10.1088/2040-8986/aac8ed
https://doi.org/10.1088/2040-8986/aac8ed
https://doi.org/10.1088/2040-8986/aac8ed
https://doi.org/10.1088/2040-8986/aac8ed


KRISTINA FRIZYUK et al. PHYSICAL REVIEW B 99, 075425 (2019)

[3] J. Butet, P.-F. Brevet, and O. J. F. Martin, Optical sec-
ond harmonic generation in plasmonic nanostructures: From
fundamental principles to advanced applications, ACS Nano 9,
10545 (2015).

[4] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press,
Burlington, 2003), pp. 69–133.

[5] A. Capretti, C. Forestiere, L. Dal Negro, and G. Miano, Full-
wave analytical solution of second-harmonic generation in
metal nanospheres, Plasmonics 9, 151 (2014).

[6] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y.
S. Kivshar, and B. Luk’yanchuk, Optically resonant dielectric
nanostructures, Science 354, aag2472 (2016).

[7] D. A. Smirnova and Y. S. Kivshar, Multipolar nonlinear
nanophotonics, Optica 3, 1241 (2016).

[8] S. Kruk and Y. Kivshar, Functional meta-optics and nanopho-
tonics governed by Mie resonances, ACS Photonics 4, 2638
(2017).

[9] R. Camacho-Morales, M. Rahmani, S. Kruk, L. Wang, L. Xu,
D. A. Smirnova, A. S. Solntsev, A. Miroshnichenko, H. H. Tan,
F. Karouta, S. Naureen, K. Vora, L. Carletti, C. De Angelis, C.
Jagadish, Y. S. Kivshar, and D. N. Neshev, Nonlinear generation
of vector beams from AlGaAs nanoantennas, Nano Lett. 16,
7191 (2016).

[10] J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and
S. A. Maier, Bridging the gap between dielectric nanophotonics
and the visible regime with effectively lossless GaP antennas,
Nano Lett. 17, 1219 (2017).

[11] P. P. Vabishchevich, S. Liu, M. B. Sinclair, G. A. Keeler, G.
M. Peake, and I. Brener, Enhanced second-harmonic generation
using broken symmetry III-V semiconductor fano metasurfaces,
ACS Photonics 5, 1685 (2018)

[12] V. F. Gili, L. Ghirardini, D. Rocco, G. Marino, I. Favero,
I. Roland, G. Pellegrini, L. Duò, M. Finazzi, L. Carletti, A.
Locatelli, A. Lemaître, D. Neshev, C. De Angelis, G. Leo,
and M. Celebrano, Metal–dielectric hybrid nanoantennas for
efficient frequency conversion at the anapole mode, Beilstein
J. Nanotechnology 9, 2306 (2018).

[13] D. Rocco, V. F. Gili, L. Ghirardini, L. Carletti, I. Favero, A.
Locatelli, G. Marino, D. N. Neshev, M. Celebrano, M. Finazzi,
G. Leo, and C. De Angelis, Tuning the second-harmonic gener-
ation in AlGaAs nanodimers via nonradiative state optimization
[Invited], Photonics Research 6, B6 (2018).

[14] L. Carletti, A. Locatelli, O. Stepanenko, G. Leo, and C. De
Angelis, Enhanced second-harmonic generation from magnetic
resonance in AlGaAs nanoantennas., Opt. Exp. 23, 26544
(2015).

[15] A. N. Poddubny and D. A. Smirnova, Nonlinear generation
of quantum-entangled photons from high-Q states in dielectric
nanoparticles, arXiv:1808.04811.

[16] J. I. Dadap, J. Shan, and T. F. Heinz, Theory of optical second-
harmonic generation from a sphere of centrosymmetric mate-
rial: small-particle limit, J. Opt. Soc. Am. B 21, 1328 (2004).

[17] Y. Pavlyukh and W. Hübner, Nonlinear mie scattering from
spherical particles, Phys. Rev. B 70, 245434 (2004).

[18] R. Singla and W. L. Mochan, arXiv:1901.00918.
[19] M. Finazzi, P. Biagioni, M. Celebrano, and L. Duò, Selection

rules for second-harmonic generation in nanoparticles, Phys.
Rev. B 76, 125414 (2007).

[20] S. V. Makarov, M. I. Petrov, U. Zywietz, V. A. Milichko, D.
A. Zuev, N. Y. Lopanitsyna, A. Y. Kuksin, I. S. Mukhin, G.

P. Zograf, E. V. Ubyivovk, D. A. Smirnova, S. V. Starikov,
B. N. Chichkov, and Y. S. Kivshar, Efficient second-harmonic
generation in nanocrystalline silicon nanoparticles, Nano Lett.
17, 3047 (2017).

[21] D. A. Smirnova, A. I. Smirnov, and Y. S. Kivshar, Multi-
polar second-harmonic generation by Mie-resonant dielectric
nanoparticles, Phys. Rev. A 97, 013807 (2018).

[22] S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, D.
Smirnova, L. Wang, H. H. Tan, C. Jagadish, D. N. Neshev,
and Y. S. Kivshar, Nonlinear optical magnetism revealed by
second-harmonic generation in nanoantennas, Nano Lett. 17,
3914 (2017).

[23] F. Timpu, A. Sergeyev, N. R. Hendricks, and R. Grange,
Second-harmonic enhancement with Mie resonances in per-
ovskite nanoparticles, ACS Photonics 4, 76 (2017).

[24] C. Ma, J. Yan, Y. Wei, P. Liu, and G. Yang, Enhanced second
harmonic generation in individual barium titanate nanoparti-
cles driven by Mie resonances, J. Mater. Chem. C 5, 4810
(2017).

[25] D. A. Smirnova, A. B. Khanikaev, L. A. Smirnov, and Y.
S. Kivshar, Multipolar third-harmonic generation driven by
optically induced magnetic resonances, ACS Photonics 3, 1468
(2016).

[26] K. Thyagarajan, J. Butet, and O. J. F. Martin, Augmenting sec-
ond harmonic generation using fano resonances in plasmonic
systems, Nano Lett. 13, 1847 (2013)

[27] F. Timpu, N. R. Hendricks, M. Petrov, S. Ni, C. Renaut, H.
Wolf, L. Isa, Y. Kivshar, and R. Grange, Enhanced second-
harmonic generation from sequential capillarity-assisted par-
ticle assembly of hybrid nanodimers, Nano Lett. 17, 5381
(2017).

[28] Y. Pavlyukh, J. Berakdar, and W. Hubner, Semi-classical ap-
proximation for second-harmonic generation in nanoparticles,
New J. Phys. 14, 093044 (2012).

[29] C. F. Bohren and D. R. Huffman, Absorption and scattering by
a sphere, Absorption and Scattering of Light by Small Particles
(John Wiley and Sons, Ltd., 2007), Chap. 4, pp. 82–129.

[30] G. Mie, Contributions to the optics of turbid media, particularly
of colloidal metal solutions, Ann. Phys. 330, 377 (1908).

[31] L.-W. Li, P.-S. Kooi, M.-S. Leong, and T.-S. Yee, Electromag-
netic dyadic green’s function in spherically multilayered media,
IEEE Transactions on Microwave Theory and Techniques 42,
2302 (1994).

[32] K. A. Fuller, Scattering and absorption cross sections of com-
pounded spheres. I. Theory for external aggregation, J. Opt.
Soc. Am. A 11, 3251 (1994).

[33] S. Cabuk, The nonlinear optical susceptibility and electro-optic
tensor of ferroelectrics: First-principle study, Central Eur. J.
Phys. 10, 239 (2012).

[34] S. Chervinskii, K. Koskinen, S. Scherbak, M. Kauranen, and
A. Lipovskii, Nonresonant Local Fields Enhance Second-
Harmonic Generation from Metal Nanoislands with Dielectric
Cover, Phys. Rev. Lett. 120, 113902 (2018).

[35] S. A. Scherbak and A. A. Lipovskii, Understanding the second-
harmonic generation enhancement and behavior in metal core-
dielectric shell nanoparticles, J. Phys. Chem. C 122, 15635
(2018).

[36] M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni,
A. Locatelli, C. D. Angelis, G. Cerullo, R. Osellame, B.
Hecht, L. Duò, F. Ciccacci, and M. Finazzi, Mode matching in

075425-14

https://doi.org/10.1021/acsnano.5b04373
https://doi.org/10.1021/acsnano.5b04373
https://doi.org/10.1021/acsnano.5b04373
https://doi.org/10.1021/acsnano.5b04373
https://doi.org/10.1007/s11468-013-9608-9
https://doi.org/10.1007/s11468-013-9608-9
https://doi.org/10.1007/s11468-013-9608-9
https://doi.org/10.1007/s11468-013-9608-9
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1364/OPTICA.3.001241
https://doi.org/10.1364/OPTICA.3.001241
https://doi.org/10.1364/OPTICA.3.001241
https://doi.org/10.1364/OPTICA.3.001241
https://doi.org/10.1021/acsphotonics.7b01038
https://doi.org/10.1021/acsphotonics.7b01038
https://doi.org/10.1021/acsphotonics.7b01038
https://doi.org/10.1021/acsphotonics.7b01038
https://doi.org/10.1021/acs.nanolett.6b03525
https://doi.org/10.1021/acs.nanolett.6b03525
https://doi.org/10.1021/acs.nanolett.6b03525
https://doi.org/10.1021/acs.nanolett.6b03525
https://doi.org/10.1021/acs.nanolett.6b05026
https://doi.org/10.1021/acs.nanolett.6b05026
https://doi.org/10.1021/acs.nanolett.6b05026
https://doi.org/10.1021/acs.nanolett.6b05026
https://doi.org/10.1021/acsphotonics.7b01478
https://doi.org/10.1021/acsphotonics.7b01478
https://doi.org/10.1021/acsphotonics.7b01478
https://doi.org/10.1021/acsphotonics.7b01478
https://doi.org/10.3762/bjnano.9.215
https://doi.org/10.3762/bjnano.9.215
https://doi.org/10.3762/bjnano.9.215
https://doi.org/10.3762/bjnano.9.215
https://doi.org/10.1364/PRJ.6.0000B6
https://doi.org/10.1364/PRJ.6.0000B6
https://doi.org/10.1364/PRJ.6.0000B6
https://doi.org/10.1364/PRJ.6.0000B6
https://doi.org/10.1364/OE.23.026544
https://doi.org/10.1364/OE.23.026544
https://doi.org/10.1364/OE.23.026544
https://doi.org/10.1364/OE.23.026544
http://arxiv.org/abs/arXiv:1808.04811
https://doi.org/10.1364/JOSAB.21.001328
https://doi.org/10.1364/JOSAB.21.001328
https://doi.org/10.1364/JOSAB.21.001328
https://doi.org/10.1364/JOSAB.21.001328
https://doi.org/10.1103/PhysRevB.70.245434
https://doi.org/10.1103/PhysRevB.70.245434
https://doi.org/10.1103/PhysRevB.70.245434
https://doi.org/10.1103/PhysRevB.70.245434
http://arxiv.org/abs/arXiv:1901.00918
https://doi.org/10.1103/PhysRevB.76.125414
https://doi.org/10.1103/PhysRevB.76.125414
https://doi.org/10.1103/PhysRevB.76.125414
https://doi.org/10.1103/PhysRevB.76.125414
https://doi.org/10.1021/acs.nanolett.7b00392
https://doi.org/10.1021/acs.nanolett.7b00392
https://doi.org/10.1021/acs.nanolett.7b00392
https://doi.org/10.1021/acs.nanolett.7b00392
https://doi.org/10.1103/PhysRevA.97.013807
https://doi.org/10.1103/PhysRevA.97.013807
https://doi.org/10.1103/PhysRevA.97.013807
https://doi.org/10.1103/PhysRevA.97.013807
https://doi.org/10.1021/acs.nanolett.7b01488
https://doi.org/10.1021/acs.nanolett.7b01488
https://doi.org/10.1021/acs.nanolett.7b01488
https://doi.org/10.1021/acs.nanolett.7b01488
https://doi.org/10.1021/acsphotonics.6b00570
https://doi.org/10.1021/acsphotonics.6b00570
https://doi.org/10.1021/acsphotonics.6b00570
https://doi.org/10.1021/acsphotonics.6b00570
https://doi.org/10.1039/C7TC00650K
https://doi.org/10.1039/C7TC00650K
https://doi.org/10.1039/C7TC00650K
https://doi.org/10.1039/C7TC00650K
https://doi.org/10.1021/acsphotonics.6b00036
https://doi.org/10.1021/acsphotonics.6b00036
https://doi.org/10.1021/acsphotonics.6b00036
https://doi.org/10.1021/acsphotonics.6b00036
https://doi.org/10.1021/nl400636z
https://doi.org/10.1021/nl400636z
https://doi.org/10.1021/nl400636z
https://doi.org/10.1021/nl400636z
https://doi.org/10.1021/acs.nanolett.7b01940
https://doi.org/10.1021/acs.nanolett.7b01940
https://doi.org/10.1021/acs.nanolett.7b01940
https://doi.org/10.1021/acs.nanolett.7b01940
https://doi.org/10.1088/1367-2630/14/9/093044
https://doi.org/10.1088/1367-2630/14/9/093044
https://doi.org/10.1088/1367-2630/14/9/093044
https://doi.org/10.1088/1367-2630/14/9/093044
https://doi.org/10.1002/andp.19083300302
https://doi.org/10.1002/andp.19083300302
https://doi.org/10.1002/andp.19083300302
https://doi.org/10.1002/andp.19083300302
https://doi.org/10.1109/22.339756
https://doi.org/10.1109/22.339756
https://doi.org/10.1109/22.339756
https://doi.org/10.1109/22.339756
https://doi.org/10.1364/JOSAA.11.003251
https://doi.org/10.1364/JOSAA.11.003251
https://doi.org/10.1364/JOSAA.11.003251
https://doi.org/10.1364/JOSAA.11.003251
https://doi.org/10.2478/s11534-011-0079-3
https://doi.org/10.2478/s11534-011-0079-3
https://doi.org/10.2478/s11534-011-0079-3
https://doi.org/10.2478/s11534-011-0079-3
https://doi.org/10.1103/PhysRevLett.120.113902
https://doi.org/10.1103/PhysRevLett.120.113902
https://doi.org/10.1103/PhysRevLett.120.113902
https://doi.org/10.1103/PhysRevLett.120.113902
https://doi.org/10.1021/acs.jpcc.8b03485
https://doi.org/10.1021/acs.jpcc.8b03485
https://doi.org/10.1021/acs.jpcc.8b03485
https://doi.org/10.1021/acs.jpcc.8b03485


SECOND-HARMONIC GENERATION IN MIE-RESONANT … PHYSICAL REVIEW B 99, 075425 (2019)

multiresonant plasmonic nanoantennas for enhanced second
harmonic generation, Nat. Nanotechnol. 10, 412 (2015).

[37] K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin,
Enhanced second-harmonic generation from double resonant
plasmonic antennae, Opt. Exp. 20, 12860 (2012).

[38] K. Yang, J. Butet, C. Yan, G. D. Bernasconi, and O. J. Martin,
Enhancement mechanisms of the second harmonic generation
from double resonant aluminum nanostructures, ACS Photonics
4, 1522 (2017).

[39] T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, Beam
engineering for selective and enhanced coupling to multipolar
resonances, Phys. Rev. B 92, 241110 (2015).

[40] E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L.
Xu, M. Rahmani, K. Zangeneh K., A. Lamprianidis, A. E.
Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S.
Kivshar, Selective third-harmonic generation by structured light
in mie-resonant nanoparticles, ACS Photonics 5, 728 (2018).

[41] L. D. Landau and E. M. Lifshitz, Chapter XII - the theory
of symmetry, Quantum Mechanics, 3rd ed. (Pergamon, 1977),
pp. 354–395.

[42] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory.
Application to the Physics of Condensed Matter (Springer,
Berlin, Heidelberg, 2008).

[43] V. M. Agranovich and V. Ginzburg, Crystal optics with spatial
dispersion, and excitons, Vol. 42 (Springer, Berlin, Heidelberg,
2013).

[44] A. G. F. de Beer and S. Roke, Nonlinear Mie theory for
second-harmonic and sum-frequency scattering, Phys. Rev. B
79, 155420 (2009).

[45] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonsky,
Quantum Theory of Angular Momentum: Irreducible Tensors,
Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols
(World Scientific, Singapore, 1988).

[46] Z. Huayong, H. Yiping, and H. Guoxia, Expansion of the
electromagnetic fields of a shaped beam in terms of cylindrical
vector wave functions, J. Opt. Soc. Am. B 24, 1383 (2007).

[47] S. Stein, Addition theorems for spherical wave functions, Q.
Appl. Math. 19, 15 (1961).

[48] Z. Huayong and H. Yiping, Addition theorem for the spherical
vector wave functions and its application to the beam shape
coefficients, J. Opt. Soc. Am. B 25, 255 (2008).

[49] R. W. James, New tensor spherical harmonics, for application
to the partial differential equations of mathematical physics,
Philos. Trans. R. Soc., A 281, 195 (1976).

[50] G. Aubert, An alternative to Wigner d-matrices for rotating real
spherical harmonics, AIP Advances 3, 062121 (2013).

[51] E. Ivchenko and G. Pikus, Crystal Symmetry. In: Superlattices
and Other Heterostructures., Vol. 110 (Springer Series in Solid-
State Sciences, Springer, Berlin, Heidelberg, 1995).

[52] Y.-L. Geng, X.-B. Wu, L.-W. Li, and B.-R. Guan, Mie scattering
by a uniaxial anisotropic sphere, Phys. Rev. E 70, 056609
(2004).

[53] B. Stout, M. Nevière, and E. Popov, Mie scattering by an
anisotropic object. part i. homogeneous sphere, J. Opt. Soc. Am.
A 23, 1111 (2006).

[54] C. Wong, Y. Y. Teng, J. Ashok, and P. Varaprasad, Bar-
ium titanate (batio3), in Handbook of Optical Constants of
Solids, edited by E. D. Palik (Academic Press, Boston, 1998),
pp. 789–803.

[55] S. Wemple, M. Didomenico, and I. Camlibel, Dielectric and
optical properties of melt-grown batio3, J. Phys. Chem. Solids
29, 1797 (1968).

[56] H. Chen, W. Zhang, Z. Wang, and N. Ming, The scattering
properties of anisotropic dielectric spheres on electromagnetic
waves, J. Phys.: Condens. Matter 16, 165 (2003).

[57] K. Frizyuk, Second harmonic generation in dielectric nanopar-
ticles with different symmetries, arXiv:1812.02988.

[58] B. Stout, M. Nevière, and E. Popov, Mie scattering by an
anisotropic object. Part II. Arbitrary-shaped object: differential
theory, J. Opt. Soc. Am. A 23, 1124 (2006).

[59] S. H. Dong and R. Lemus, The overlap integral of three associ-
ated Legendre polynomials, Appl. Math. Lett. 15, 541 (2002).

[60] S. Hayami, M. Yatsushiro, Y. Yanagi, and H. Kusunose, Classi-
fication of atomic-scale multipoles under crystallographic point
groups and application to linear response tensors, Phys. Rev. B
98, 165110 (2018).

075425-15

https://doi.org/10.1038/nnano.2015.69
https://doi.org/10.1038/nnano.2015.69
https://doi.org/10.1038/nnano.2015.69
https://doi.org/10.1038/nnano.2015.69
https://doi.org/10.1364/OE.20.012860
https://doi.org/10.1364/OE.20.012860
https://doi.org/10.1364/OE.20.012860
https://doi.org/10.1364/OE.20.012860
https://doi.org/10.1021/acsphotonics.7b00288
https://doi.org/10.1021/acsphotonics.7b00288
https://doi.org/10.1021/acsphotonics.7b00288
https://doi.org/10.1021/acsphotonics.7b00288
https://doi.org/10.1103/PhysRevB.92.241110
https://doi.org/10.1103/PhysRevB.92.241110
https://doi.org/10.1103/PhysRevB.92.241110
https://doi.org/10.1103/PhysRevB.92.241110
https://doi.org/10.1021/acsphotonics.7b01277
https://doi.org/10.1021/acsphotonics.7b01277
https://doi.org/10.1021/acsphotonics.7b01277
https://doi.org/10.1021/acsphotonics.7b01277
https://doi.org/10.1103/PhysRevB.79.155420
https://doi.org/10.1103/PhysRevB.79.155420
https://doi.org/10.1103/PhysRevB.79.155420
https://doi.org/10.1103/PhysRevB.79.155420
https://doi.org/10.1364/JOSAB.24.001383
https://doi.org/10.1364/JOSAB.24.001383
https://doi.org/10.1364/JOSAB.24.001383
https://doi.org/10.1364/JOSAB.24.001383
https://doi.org/10.1090/qam/120407
https://doi.org/10.1090/qam/120407
https://doi.org/10.1090/qam/120407
https://doi.org/10.1090/qam/120407
https://doi.org/10.1364/JOSAB.25.000255
https://doi.org/10.1364/JOSAB.25.000255
https://doi.org/10.1364/JOSAB.25.000255
https://doi.org/10.1364/JOSAB.25.000255
https://doi.org/10.1098/rsta.1976.0025
https://doi.org/10.1098/rsta.1976.0025
https://doi.org/10.1098/rsta.1976.0025
https://doi.org/10.1098/rsta.1976.0025
https://doi.org/10.1063/1.4811853
https://doi.org/10.1063/1.4811853
https://doi.org/10.1063/1.4811853
https://doi.org/10.1063/1.4811853
https://doi.org/10.1103/PhysRevE.70.056609
https://doi.org/10.1103/PhysRevE.70.056609
https://doi.org/10.1103/PhysRevE.70.056609
https://doi.org/10.1103/PhysRevE.70.056609
https://doi.org/10.1364/JOSAA.23.001111
https://doi.org/10.1364/JOSAA.23.001111
https://doi.org/10.1364/JOSAA.23.001111
https://doi.org/10.1364/JOSAA.23.001111
https://doi.org/10.1016/0022-3697(68)90164-9
https://doi.org/10.1016/0022-3697(68)90164-9
https://doi.org/10.1016/0022-3697(68)90164-9
https://doi.org/10.1016/0022-3697(68)90164-9
https://doi.org/10.1088/0953-8984/16/1/016
https://doi.org/10.1088/0953-8984/16/1/016
https://doi.org/10.1088/0953-8984/16/1/016
https://doi.org/10.1088/0953-8984/16/1/016
http://arxiv.org/abs/arXiv:1812.02988
https://doi.org/10.1364/JOSAA.23.001124
https://doi.org/10.1364/JOSAA.23.001124
https://doi.org/10.1364/JOSAA.23.001124
https://doi.org/10.1364/JOSAA.23.001124
https://doi.org/10.1016/S0893-9659(02)80004-0
https://doi.org/10.1016/S0893-9659(02)80004-0
https://doi.org/10.1016/S0893-9659(02)80004-0
https://doi.org/10.1016/S0893-9659(02)80004-0
https://doi.org/10.1103/PhysRevB.98.165110
https://doi.org/10.1103/PhysRevB.98.165110
https://doi.org/10.1103/PhysRevB.98.165110
https://doi.org/10.1103/PhysRevB.98.165110

