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We report on nonequilibrium properties of graphene probed by superconducting tunnel spectroscopy. A
hexagonal boron nitride (hBN) tunnel barrier in combination with a superconducting Pb contact is used to
extract the local energy distribution function of the quasiparticles in graphene samples in different transport
regimes. In the cases where the energy distribution function resembles a Fermi-Dirac distribution, the local
electron temperature can directly be accessed. This allows us to study the cooling mechanisms of hot electrons
in graphene. In the case of long samples (device length L much larger than the electron-phonon scattering length
L.-pn), cooling through acoustic phonons is dominant. We find a crossover from the dirty limit with a power law 7
at low temperature to the clean limit at higher temperatures with a power law 7* and a deformation potential of
13.3 eV. For shorter samples, where L is smaller than /., but larger than the electron-electron scattering length
lee, the well-known cooling through electron out-diffusion is found. Interestingly, we find strong indications
of an enhanced Lorenz number in graphene. We also find evidence of a non-Fermi-Dirac distribution function,
which is a result of noninteracting quasiparticles in very short samples.
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I. MOTIVATION/INTRODUCTION

Graphene is particularly interesting for nonequilibrium
transport studies, since its 2D nature results in deviations
from the heavily studied 3D bulk case. Since optical phonon
energies are quite large in graphene [1], they can be neglected
at low temperatures, and acoustic phonon cooling can lead
to different regimes depending on phonon wavelength and
electron mean free path [2,3]. Moreover, due to the low
density of states reduced screening can alter the strength of
electron cooling [4]. Finally, special nonequilibrium regimes
can appear like the supercollision regime [5-8] or the Dirac
fluid regime [9].

In general, different temperature profiles and distribution
functions arise depending on the sample size and the scat-
tering mechanisms involved [10]. Usually the sample is con-
nected to two normal metal contacts (N1 and N2) that can be
biased to different electrochemical potentials. Such a bias U
will lead to Joule heating, that heats the electron system. This
can lead to nonuniform temperature distributions and in some
cases the electronic distribution function even deviates from
a Fermi-Dirac distribution. If only elastic scattering among
charge carries happens (device length L and device width W
are much shorter than the electron-electron scattering length
le-. and electron-phonon scattering length [._,p), the distribu-
tion function will take the form of a double-step function as
shown in Fig. 1(a, left). Here we assume that the electrodes
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are ideal reservoirs that absorb all incoming quasiparticles and
emit quasiparticles with an energy distribution given by their
own Fermi-Dirac distribution [11]. If the device is larger, such
that le.e < L, W < [, electron-electron scattering leads to
Joule heating dissipated only into the electron system. This
regime is also called hot electron regime and the correspond-
ing energy distribution function inside the graphene is shown
in Fig. 1(a, middle). The energy distribution function is well
described by a Fermi-Dirac distribution with an effective elec-
tron temperature that depends on the position in x direction
(local thermal equilibrium), with a maximum in temperature
in the middle of the sample [see Fig. 1(b)]. In very long
graphene channels, where L > [.,n, most of the Joule power is
dissipated to the lattice through phonon emission. This leads
to a constant electron temperature along the channel with a
Fermi-Dirac distribution function of the quasiparticles, see
Figs. 1(a, right) and 1(c). Here, the electron-phonon coupling
in graphene is the bottleneck in cooling to the substrate since
the acoustic phonons in graphene are very well coupled to the
Si0, substrate [12].

Noise measurements have proven to be quite powerful to
access the electronic temperature of nanostructures [13—15]
and in particular of graphene [6,8,16—18]. In certain regimes,
the electronic temperature can also be obtained from super-
current [19] and from quantum Hall measurements [20]. A
different and more direct approach is to study the nonequi-
librium energy distribution function itself, which can be done
using superconducting tunnel spectroscopy [21]. This method
was introduced by Pothier et al. on metallic nanowires [22]
and was also used to study carbon nanotubes [23].

©2019 American Physical Society
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FIG. 1. (a) Nonequilibrium distribution functions. (Left) The dis-
tribution function in the absence of inelastic scattering, where energy
relaxation only occurs in the reservoirs. (Middle) The distribution
function in the case of strong quasiparticle scattering where local
thermal equilibrium is achieved, but phonon scattering is negligible.
(Right) In the case of very strong phonon scattering, the quasiparti-
cles thermalize with the phonons and a constant temperature along
the channel is found. (b) Temperature profile in the hot electron
regime. 7T,(x) is obtained by numerically solving the heat transfer
equation (3). The dimensions of device A are used and the effect
of increasing electron-phonon coupling is shown. (c) Temperature
profile in the phonon cooled regime. The dimensions of device C
are used for two different electron phonon coupling strength. The
effect of the hot electron out-diffusion is only seen close to the
contacts where the red solid line deviates from the dashed purple line
that neglects cooling through electron out-diffusion. The reservoir
temperature is assumed to be 100 mK for both cases.

In this paper, we use this latter method to study the
nonequilibrium distribution function in graphene under dif-
ferent biases and for different sample geometries. We use
hexagonal boron nitride as a tunnel barrier and Pb as a large
gap superconductor to increase our spectroscopic range. Our
results are compared with simple heat equation models con-
taining both electron and phonon cooling. For short samples,
we find that the distribution functions are well described by
a Fermi-Dirac distribution with effective temperatures that
are in agreement with the expectations for the hot electron
regime, however, with an increased effective Lorenz number.
For larger samples, phonon cooling dominates and a crossover
from the clean to the dirty limit as a function of heating power
is observed. We extract the value of the electron-phonon
coupling for both regimes.
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FIG. 2. Device and working principle of superconducting tunnel
spectroscopy. (a) False color scanning electron micrograph of a
typical sample. The superconducting Pd/Pb/In electrode is labeled
by S and the normal Cr/Au contacts are labeled with N1 and N2,
respectively. The scale bar is 1 um. (b) Cross-section of a typical
device with the measurement setup indicated. The working principle
of superconducting tunnel spectroscopy with the energy diagrams
show in (c) and the resulting differential conductance in (d). Current
can only flow if the bias Vsp across the tunnel junction is larger than
A/e case (1), otherwise it is suppressed due to the gapped DoS,
case (2).

The paper is organized as follows. We present our thermal
model in Sec. II that can describe all experimental cases. Our
measurements and extraction methods are shown in Sec. III.
Section IV A describes our results in the hot electron regime,
whereas Sec. IV B discusses the results in the phonon cooled
regime. Section IV C shows evidence of a double-step distri-
bution function, which is followed by a general conclusion in
Sec. V.

II. THERMAL MODEL

If a local temperature can be defined (hot electron and
phonon cooled regime), thermal transport can be described by
the continuity equation for heat, which relates the difference
of the change of energy density over time and the gradient of
the heat current to the local sources and sinks:

0T, (x, 1) 0 (KBTe(x,t)

PMEp ™5, ox ax

) =P~ Py (1)

where py =7.6 x 1077 kgm™2 is the mass density of
graphene, ¢, is the specific heat capacity, T,(x, ) is the local
electron temperature, « is the heat conductivity, P is the Joule
heating power per unit area, and Py, is the phonon cooling

. 9T (x, .
power per unit area. In steady state, % = 0, and using the

Joule heating P = U?/R and the device dimensions W and L
as defined in Fig. 2(a), one arrives at
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where the Joule heating on the left side is balanced by
cooling through electron diffusion (first term on the right)
and cooling through electron-phonon coupling (second term
on the right). Here, U is the bias applied across the device
resistance R and Ty is the phonon temperature. Furthermore,
the electron cooling is connected to the electrical conduc-
tivity through the Wiedemann-Franz law [10,24] xwg(x) =

LoT.(x)L/(WR), where Lo = %% is the Lorenz number. The
electron-phonon cooling can be parametrized through the
coupling constant %, and the exponent §, which can depend
on temperature and device properties [3]. If the explicit form
of the Wiedemann-Franz law is plugged into Eq. (2), one
arrives at the following relation:

PTx) 1 v RW (T — 7)
= - — T (T(x)° —
a2 T.xo)| LLy | LLy 0

IT,(x)\
- ( ) , 3)
ox
which can be used to numerically solve for 7, (x).

In the absence of phonon cooling (X, — 0), the above
equation has the simple solution

2
n<x)=\/To2+%<1—%)Z—o, )

where the temperature at the electrodes T,(x = 0) = T,(x =
L) =Ty is used as a boundary condition. The local electron
temperature is shown in Fig. 1(b).

On the other hand if electron cooling is negligible (e.g.,
very large thermal contact resistance or superconducting con-
tact materials that suppress cooling through electron diffu-
sion), the electron temperature is position independent and
given by

T, y_v T 5

L (x) = RLWZep 0- (5)
In this case, there will be a discontinuity of the temperature
across the contact to the graphene, see Fig. 1(c). In a simple
case where 7p — 0 K and assuming 6 = 4 (clean limit, see
below), the transition between electron cooling and phonon
cooling happens at a bias voltage Uy, = Lo//4RLW %, [25].
For typical devices with dimensions on the order of microme-
ters, device resistance of kilohms and an electron-phonon cou-
pling of around 30 mW K~* m~2 [18] the crossover voltage is
on the order of millivolts.

Phonon cooling at low temperature is dominated by acous-
tic phonons since optical phonon energies are on the order
of 100 meV [26]. In the limit of T, > Ty, the cooling power
takes the approximate form of P ~ £ T, that allows to extract
the power & and electron-phonon coupling X easily. Here
we would also like to note that we work well below the
Bloch-Griineisen temperature Tgg = 2sfi/mn/kg, where s =
2 x 10*m s~! is the speed of sound in graphene, n is the
carrier density and kp is Boltzmann’s constant. For a reason-
able doping of n ~ 1 x 10712 cm~2, Tig is estimated to be
around 50 K. At temperatures below Tpg the phase-space of

electron-phonon scattering is greatly reduced and only small
angle scattering is possible [27].

The electron-phonon coupling can strongly be modified by
electronic disorder if the wavelength of the thermal phonons
becomes comparable to (or longer than) the electronic mean
free path [3]. This condition results in two regimes (even
below Tpg); the clean limit where the mean free path is
much longer than the phonon wavelength and the dirty limit
where the mean free path is much shorter than the phonon
wavelength.

In the clean limit and assuming a weak screening, the total
cooling power due to electron-phonon interaction is given as

(3]
_ m’D?|Ep |k}

P(T,, Ty) =AS (T -TY), ¥, =—""T—""8
0 1( ¢ 0) ! 15th5v%s3

(6)
Here, D is the deformation potential that characterizes the
strength of the electron-phonon coupling, and the other sym-
bols are defined above. In contrast to that, the cooling power
due to the electron-phonon interaction in the dirty limit is [3]

2¢(3)D?|Er|kj

P(T,, Ty) = AS,(T? — TY), o B
( e 0) 2( e 0) ﬂszh4U?;~SZImfp

X = (N
Here, ¢ (n) is the Riemann zeta function with ¢ (3) &~ 1.2. The
crossover between these two regimes is characterized by T, at
which the cooling power of the clean and dirty limit is equal.
This temperature is given by

T, — 3(1%{(3). ®)

v kBlm fp

Graphene samples on SiO, substrates generally show a mean
free path of the order of 30 nm, which leads to a crossover
temperature 7, ~ 1 K. Experimentally, the different cooling
regimes can be accessed by varying the electron temperature
and the heating power (e.g., Joule heating) applied to the elec-
tronic system. Having introduced a thermal model describing
a graphene channel driven out of equilibrium, we now proceed
to the methods and our results that show clear evidence for all
these regimes introduced above.

III. METHODS
A. Sample fabrication

A false color micrograph of a typical device is shown
in Fig. 2(a) with a cross-section in Fig. 2(b). It consists
of a graphene channel of length L and width W, which is
connected to two normal contacts N1 and N2 that act as ideal
reservoirs: all incoming quasiparticles are absorbed and the
emitted quasiparticles obey a Fermi-Dirac distribution of the
respective reservoir. In the middle of the graphene channel, a
superconducting electrode S is tunnel coupled to the graphene.
We employ chemical vapour deposited (CVD) single or two
layer hBN films as tunnel barriers, covering the full sample.

Here, we used CVD graphene grown in-house following
the recipe described in Ref. [28]. After the transfer from
the growth substrate to a Si/SiO, wafer, the graphene was
structured by e-beam lithography and reactive ion etching into
the desired shape. The CVD hBN layer was transferred after a
thermal annealing in forming gas. Commercial hBN obtained
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TABLE I. Overview of all devices. L and W are specified in
Fig. 2, A7 denotes the area of the tunnel contact and RrA7 specifies
the tunnel resistance area product of the tunnel contact. Here we
differentiate between commercially available CVD hBN (comm.)
obtained from Graphene Supermarket [29] and self-grown CVD hBN
(collab.) [30].

L(uw) W RrAr (Qum?) Ar (um?) hBN source

A 34 2 90 x 10° 0.7 two-layer, comm.
B 13 4 470 x 10° 1.4 one-layer, collab.
C 100 6 <40 x 10° 2.1 two-layer, collab.
D 25 1 1.8 x 10° 0.35  two-layer, comm.

from Graphene Supermarket [29] was used for devices A and
D, whereas hBN from the Hofmann group [30] was used for
devices B and C. In the case of devices A and D, a two layer
CVD hBN was used (sequential transfer of two single-layer
hBN). Single-layer hBN was used for devices B and C. An
overview of all devices can be found in Table I. In a next step,
the normal contacts were fabricated. Quasi-1-dimensional
Cr/Au (10 nm/50 nm) side contacts were achieved by a short
plasma etching before the metal deposition. The CHF3; based
plasma removed the hBN, as well as partially the graphene.
It turned out that these quasi-one-dimensional side contacts
are less reproducible than the one-dimensional contacts to
“bulk” hBN/Gr/hBN vdW heterostructures. A significant in-
crease in the number of working contacts was achieved by
redeveloping the PMMA mask after the CHF; plasma. We
attribute this to the fact that the overlap of the metal with
the graphene channel is increased in this case. In a last step,
the superconducting electrode was deposited. Here, we used
an optimized three-layer structure consisting of 5-nm Pd as
a wetting layer, 110 nm of Pb and 20 nm of In as a capping
layer [31]. The Pd sticking layer was used to avoid oxidation
at the hBN/Pb interface [32] and the In capping layer was used
to prevent oxidation from the top. Pb was chosen since its
large superconducting gap allows thermometry up to several
kelvins.

All measurements shown in here were carried out in a
dilution fridge at low temperatures of ~50 mK. The electrical
measurement scheme is shown in Fig. 2(b). For the measure-
ment of the differential conductance a standard low-frequency
lock-in technique was used. The source-drain voltage consists
of a dc and an ac part, which are Vsp and V,., respectively.
Both voltages were applied by shifting the ground potential
of the I-V converter hooked up to the S contact, whereas the
heating voltage was directly applied on contact N1, while N2
was grounded. Very low ac excitation voltages on the order
of kgT /e have been used in order to maximize the energy
resolution. The carrier density was tuned by applying Vg on
the doped Si substrate.

B. Working principle of superconducting tunnel spectroscopy

To obtain the distribution function and the effective temper-
ature during nonequilibrium conditions we have measured the
tunneling conductance from the superconducting electrode,
while the channel was driven out of equilibrium via a large
bias. Here we summarize shortly how the distribution function

and the effective temperature was obtained. Further details can
be found in Appendix C.

The differential conductance of a superconductor
(S)/insulator (I)/graphene (gr) junction is given by [10,21]

aryvy 1 (% dng(E — eV)
i R e
X (fs(E = eV) — fa(E)), €))

where Ry is the tunnel junction resistance, n,(E) is the su-
perconducting density of states (DoS) with an energy gap of
A, ng(E) is the DoS of graphene, and f(E) and fg (E) are
the energy distribution functions in the superconductor and
in the graphene, respectively [10]. An energy diagram of the
tunneling process is shown in Fig. 2(c) next to the differential
conductance, see Fig. 2(d).

The energy distribution function in graphene fy.(E) can be
obtained by a deconvolution of the measured d//dV using
Eq. (9). In order to do so, ng, n,, and f; need to be known.
The density of states of the graphene ng (E) can be assumed
constant for small biases on the meV scale for the large
dopings we will use. If kg7 < A, then the energy distribution
function in the superconductor is well described by the Heavy-
side function ®(E — ¢V) instead of a Fermi-Dirac distribution
F(E — eV). In addition, if the energy distribution function in
graphene is a Heavyside function (i.e., a very cold Fermi gas),
then the dI/dV is directly proportional to the DoS (n;) of the
superconductor. Therefore the dI/dV measured at the lowest
temperature with zero heating bias U directly resembles #;
that can be used for the numerical deconvolution.

Figure 3(a) shows the differential conductance measured
from the superconductor to the graphene with N1 and N2
grounded (U = 0 V) as a function of the spectroscopy bias
Vsp and back gate voltage Vag. A clear superconducting gap
is observed. Since there are some resonances tuned by both
Vg and Vsp, an averaging over 5 V in Vg is performed
that is shown on the right. These resonances most probably
originate from universal conductance fluctuations (UCFs). As
stated above, this measurement resembles the DoS of the
superconductor. A zoom in of the same measurement is shown
in Fig. 3(c). It is obvious that this DoS cannot be described by
a standard BCS or a Dynes DoS [33,34] as expected for a
superconductor. The deviation might be due to the averaging
that is needed to get rid of the fluctuations present in (a). This
averaging then leads to a much broader peak at the gap edge
than predicted by a BCS or a Dynes density of states [33,34].
We, therefore, use the lowest temperature and zero heating
bias U measurement as the DoS of the superconductor.

The presence of a finite heating bias U across the graphene
channel [applied between N1 and N2, see Fig. 2(b)] drives
the electronic system out of equilibrium. Fig. 3(b) shows
the tunneling differential conductance at several values of
heating bias U. Two main changes can be observed: First,
the superconducting gap smears out and second, the position
of the superconducting gap shifts in Vgp. The smearing can
be explained by a higher electron temperature and the shift
in bias is just due to the linear voltage drop of U along
the graphene channel that shifts the electrochemical potential
below the superconductor by eU/2.
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FIG. 3. Extraction of the distribution function. (a) The differential conductance measured through the superconducting electrode to the
graphene as a function of gate voltage Vg and bias across the hBN tunnel barrier Vsp. A pronounced superconducting gap of the Pd/Pb/In
electrode is clearly observed. In addition some resonances tuned by Vg and Vsp are visible outside of the gap, which are attributed to UCFs. In
order to remove those resonances, an averaging over 5 V in Vp¢ is performed and the average is shown on the right. All subsequent differential
conductance traces are averaged over 5 V around the indicated gate voltage. (b) The differential conductance for different values of U applied
across the graphene flake to drive it out of equilibrium. A clear broadening of the gap due to heating is observed, while the position of the
gap shifts by roughly U/2. (c) By using the lowest T and U = 0V measurement as the density of states (DoS) of the superconductor, the
differential conductance at U # 0V can be used to numerically deconvolve the energy distribution function. (d) The numerically extracted
energy distribution functions from the three traces shown in (b). They all resemble a Fermi-Dirac distribution and therefore the electron

temperature and the electrochemical potential can be extracted.

Figure 3(c) shows the DoS of the superconductor and
the tunneling differential conductance at U = 1.4 mV. In a
numerical deconvolution, the energy distribution function of
the graphene at finite heating bias U can be extracted. To do
so, a reasonable guess of the energy distribution function is
assumed and according to Eq. (9) the resulting tunneling dif-
ferential conductance is calculated. The calculated differential
conductance is then compared to the measurement and based
on the differences, the guess of the energy distribution func-
tion is adjusted. This procedure is repeated until it matches the
measured dI/dV, see Fig. 3(c). Details about this numerical
deconvolution can be found in Appendix C.

The corresponding energy distribution functions to the
differential conductance measurements in Fig. 3(b) are shown
in Fig. 3(d). In this case (device B), the energy distribu-
tion functions resemble a Fermi-Dirac distribution, which is
parametrized by the electron temperature 7, and the electro-
chemical potential . These two parameters were extracted by
fitting a Fermi-Dirac distribution function to the numerically
extracted energy distribution functions.

We have verified the method by measuring the tunneling
differential conductance at different bath temperatures. The
extracted distribution functions were fitted with a Fermi-Dirac
function and the extracted temperatures were compared with
the bath temperature. We obtained reasonable agreement at
higher temperatures, whereas below 100 mK the extraction
was limited by the fact that the used DoS was measured at
a similar temperature. Therefore the DoS already contains
a small temperature broadening. This broadening becomes
relevant at such low temperatures but can be fully neglected

a higher temperatures. Since the electronic temperatures in-
vestigated will be larger than 100 mK this will not limit our
resolution. These measurements and a detailed discussion are
given in Appendix B.

IV. RESULTS

A. Hot electron regime

Figure 4(a) shows the tunneling differential conductance
for several values of heating bias U for device A. An increased
U leads to a smearing of the sharp superconducting gap and
the middle of the gap is shifted by U/2 since the tunnel
probe is located in the middle of the sample. The extracted
electron temperature is shown in Fig. 4(b) as a function of
heating bias U for several values of back gate voltage V.
It can be seen that T, depends linearly on U, as expected for
the hot-electron regime (for T >> Tp). The inset in (b) shows
the gate dependence of the graphene conductance measured
from N1 to N2. While the graphene resistance is tuned by
roughly a factor of two (by changing the charge carrier density
by ~7 x 10'> cm~2), the resulting electron temperature is
independent of the graphene resistance and charge carrier
concentration.

Using Eq. (4), the electron temperature profile can be
calculated analytically and the expected 7, at the location of
the superconducting probe electrode is shown as solid black
line in Fig. 4(b). We note here, that this line is not a fit, and
does not contain any free parameters. However all extracted
values for T, fall below the expected value. We will come back
to the discussion of this deviation below.
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FIG. 4. [(a) and (b)] Device A in the hot electron regime. (a)
The differential conductance measured through the superconducting
electrode to the graphene for different values of heating bias U at a
gate voltage of —7.5V. (b) The extracted electron temperature from
fitting a Fermi-Dirac distribution to the numerically extracted dis-
tribution function. The electron temperature increases nearly linear
with applied bias as expected for a dominating cooling mechanism
due to electron out-diffusion. The cooling mechanism is independent
of gate voltage. The inset shows the two-terminal conductance
through the graphene from N1 to N2 as a function of gate voltage
Vig. (c) Device B in the hot electron regime. The extracted electron
temperature for two different gate voltages is shown. The extracted
temperature deviates significantly from a linear dependence at higher
bias, which is attributed to an additional cooling by phonons on top
of the increased Lorenz number. The inset shows the two-terminal
conductance through the graphene from N1 to N2 as a function of
gate voltage Vig.

Similar results have been obtained for device B, which
are shown in Fig. 4(c). The extracted electron temperatures
of device B are also independent of the gate voltage. Here,
the graphene resistance changes by a factor of three while
changing the charge carrier density by ~7 x 10'> cm™2. This
again confirms the negligible role of electrical contact resis-
tance. Here, the dependence of the temperature on heating
bias U can be divided into two qualitatively different regimes.
For U < 1 mV, a linear dependence similar to device A is
observed. Again, the extracted values for 7, are smaller than

calculated by Eq. (4) (solid black line). For U > 1 mV, the
extracted electron temperature is much lower than expected
and becomes sublinear. This change in dependence could be
explained by the onset of electron-phonon cooling, which
reduces the electron temperature below the expected value.

Now we discuss the possible reasons for the reduced
temperature compared to the expectations based on the hot
electron regime. If a large contact resistance would be present,
a substantial part of the heating bias would drop on that
and a bias smaller than U would drive the graphene out of
equilibrium. The ratio of the voltage dropping on the graphene
and on the contact resistance would depend on the gate voltage
as the graphene resistance is gate-tunable. Therefore different
temperatures for the same U would be expected for different
gate voltages. However, the measurements show that neither
the electrical contact nor the charge carrier density plays a
significant role and we therefore rule out a significant contact
resistance.

Second, a finite contact resistance between the graphene
and the normal metal reservoirs could lead to a thermal
contact resistance as well. The presence of a thermal contact
resistance would lead to a larger electron temperatures in the
graphene as the cooling would be less efficient. Similar argu-
ments hold for reservoirs that are at an elevated temperature.
Both effects would lead to higher electron temperatures and
are therefore ruled out.

In principle, cooling through the superconducting electrode
could also occur. However, first, the contact resistance is on
the order of 100 K2, which is roughly 100 times larger than
the total device resistance. Therefore, only a correction on the
order of 1% can be expected. Second, the reduced density of
states in the superconductor at the Fermi energy efficiently
suppresses cooling through electron out diffusion [16,19].

In the hot electron regime, 7,(x) is described by a pseu-
doparabolic profile. Obviously a superconducting electrode
with finite width will not only probe the highest temperature in
the middle, but will also probe lower temperatures off-center.
In order to estimate this, the width of the superconducting
electrode (<400 nm) has to be compared to the device length
(3.4 um for device A and 1.3 um for device B). Even though
the width of the superconducting electrode is a considerable
fraction of the device length for device B, its influence is
estimated to be smaller than 1.6%, therefore, this effect is
too small to explain the deviation from the expected electron
temperature.

Obviously, cooling through phonons lowers the electron
temperature. In order to account for that the heat diffu-
sion equation (3) was solved numerically using the electron-
phonon coupling extracted for large samples (see next sec-
tion). The resulting curves are shown by the two solid purple
lines in Fig. 4. The two lines originate from the largest and
smallest device resistance as this influences the total cooling
power through the phonons. The influence for U < 1mV is
marginal and cannot account for the observed deviation. In
contrast the correction is significant for U > 1 mV for device
B and can be as large as 0.8 K for a device resistance of 5.2 k<2
at U = 2mV. However, the total cooling power through the
phonons depends on the device resistance, which is another
argument to rule out the phonon cooling as the main origin of
the reduced 7, (at small biases) in the first place.
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As a last explanation for the reduced 7, at low bias
voltages, we propose an increased Lorenz number, which
increases the cooling through electron out-diffusion. Even

though the Lorenz number £y = ”;li’z’ is supposed to be a
universal constant, different values have been reported for dif-
ferent materials [35] so far. In order to explain our results, the
Lorenz number needs to be increased by 24%-—48%. This is
shown by the solid blue lines in Figs. 4(b) and 4(c). For device
A, we can reproduce the measured electron temperatures by
increasing Ly by 24%, whereas for device B, and increase by
48% is needed.

Previous reports on single-layer graphene have also re-
ported an increased Lorenz number between 1.26L, and
1.34L, [16]. It is theoretically predicted that electron-electron
interactions might modify the Lorenz number in graphene
[4,35,36]. It was shown theoretically that in the limit Er <
kT the system becomes quantum critical and interactions
between massless electrons and massless holes increase the
Lorenz number [4,36]. However, our samples are clearly not
in this regime as kT < Ef for all temperatures and densities
achieved in these experiments. For impurity limited samples,
as ours, a modification of the Lorenz number is also expected,
but only if screening is weak [4], which means that the
electron-electron interactions are not fully screened.

B. Phonon cooling

Sample C has a large area with a length of 100 um,
which promotes phonon cooling over electron out-diffusion.
Therefore it is suitable to study the cooling through electron
phonon coupling, as the cooling by electron out-diffusion
is greatly reduced and a flat temperature profile results, see
Fig. 1(c).

The differential conductance traces for device C are shown
in Fig. 5(a) for different values of heating bias U. All
measurements were performed at a high doping of —5.6 x
10~'2 cm~2. The Joule heating power is shown as a function
of the extracted T, in Fig. 5(b). As seen from Eq. (2) the
cooling power through the acoustic phonons is described
as P = AZJep(Tg‘S — TO‘S), with the total area A, the electron-
phonon coupling X,, the electron temperature 7, and the
phonon temperature 7p. In the dirty limit, a power law of 3
is expected, whereas it is 4 at higher temperatures in the clean
limit.

Since both axes in Fig. 5(b) are in the logarithmic scale, all
data points should fall on a line if a single exponent would de-
scribe the data over the full temperature range. This is clearly
not the case. We also note, that the finite base temperature
does not affect this. Whereas the lower temperature points
(T < 1K) can be fitted with an exponent § = 3 (dirty limit),
the points above 2 K are rather described with an exponent
8 = 4 (clean limit). This is expected as the dirty limit is more
relevant at lower temperatures, which was shown in previous
measurements on single-layer graphene [19].

We have used Eq. (6) for the high-temperature range and
and Eq. (7) for the low-temperature range to simultaneously
fit the deformation potential D. In doing so, we extract
D = 13.3 eV. The fits are shown in solid black lines within
the fitting range. The extrapolation of the two regimes al-
lows us to extract the crossover temperature at which the
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FIG. 5. Device C in the phonon cooled regime. (a) The normal-
ized differential conductance measured through the superconducting
electrode to the graphene for different values of heating bias U.
The inset shows the two-terminal conductance through the graphene
from N1 to N2 as a function of density. (b) Log-log plot of the
calculated Joule heating power vs the extracted electron temperature
from fitting a Fermi-Dirac distribution to the numerically extracted
energy distribution function. Linear fits with exponent 3 and 4 to
the low- and high-temperature parts, respectively, are shown with
solid black lines. The dashed lines are guide to the eye showing the
transition between the dirty and clean limits around 2 K.

electron-phonon cooling changes from the dirty to the clean
limit. This results in a crossover temperature on the order of
2 K. A crude estimation of the crossover from the dirty to the
clean limit by Eq. (8) yields a crossover temperature of around
1 K using a mean free path of ~30 nm extracted from the
gate dependence of the graphene resistance. This value agrees
well with the measurement. Similar values for the deformation
potential were obtained for a density of —3.4 x 10712 cm™2.

Our extracted value for the deformation potential is within
the wide range of literature values that range from 2-
70 eV [6,16,18,25,37]. It agrees well with the most reported
values around 15 eV, which are in agreement with theoretical
predictions ranging from 5-13 eV [38—40].

C. Hint of double step function

The tunneling differential conductance of Device D is
shown in Fig. 6(a). This device developed a shoulder in
the conductance peaks at the superconducting gap edges
at moderate biasing U ~ 0.5 mV. This shoulder is a first
indication of a double step energy distribution function as
described in Sec. I for noninteracting quasiparticles. The cor-
responding numerically extracted distribution functions are
shown in Fig. 6(b), and the calculated differential conductance
based on these distribution functions reproduce the measured
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FIG. 6. Hint of a double step function in device D. (a) The differ-
ential conductance measured through the superconducting electrode
to the graphene for different values of U. Clear shoulders develop
for 0.5 and 0.7mV, marked by arrow. The numerically extracted
distribution functions are shown in (b). A hint of a double step with
a plateau around 0.5 is visible.

differential conductance very well (thin solid black lines), see
Fig. 6(a). Hints of a plateau are visible at 0.5 in the energy
distribution functions. However, at larger biases, the energy
distribution functions start to smear out due to self heating of
the electrons.

There are three limitations present in this data set. First,
the differential conductance was only measured within a bias
window of £3mV, that complicates the numerical extrac-
tion. Ideally, the differential conductance is measured over
a bias range that is much larger than the superconducting
gap. Far away from the superconducting gap the differential
conductance approaches a constant value that is the normal
state conductance. If the differential conductance approaches
a constant, it can be numerically extended to any bias value
that is optimal for the numerical deconvolution. However,
this is not the case here and therefore the deconvolution was
performed on a limited bias range. In addition, the measured
differential conductance contains some wiggles due to UCF,
that were not fully average out (not enough averaging over
back gate voltage). The presence of this relatively sharp
features that even change with applied bias are a further com-
plication for an accurate extraction of the energy distribution
function. A last complication is the additional resonance fea-
ture observed within the gap at U ~ 0.5 mV. The exact origin
of this is unknown but it might originate from the proximity
induced superconducting gap in the Pd layer that was used
as a sticking layer. This is a further feature that introduces
some complications in the numerical deconvolution and even
worse, it might change with bias as well. It was observed
that it disappears with increasing temperature and that it is
fully absent at 1 K (not shown). Nevertheless, a hint of an
additional plateau at 0.5 is observed that is characteristic of
noninteracting quasiparticles.

V. CONCLUSION

In conclusion, superconducting tunnel spectroscopy was
successfully used to locally extract the energy distribution
function in graphene driven out of equilibrium. In the cases
where the extracted energy distribution function resembled a
simple Fermi-Dirac distribution the local electron temperature

was extracted. The dependence of the electron temperature
on heating bias or Joule heating power, respectively, revealed
a hot electron regime and a phonon cooled regime. The
former regime is dominated by electron out-diffusion that is
well described by the Wiedemann-Franz law, however with a
modified Lorenz number. The increased Lorenz number most
probably originates from not fully screened electron-electron
interactions. The latter regime is dominated by phonon cool-
ing. In this case, the electron-phonon coupling in the graphene
is the bottleneck in cooling hot electrons and we can there-
fore extract its strength parametrized by the deformation
potential D.

We have also investigated another sample, sample D, for
which we observe signatures of a double-step distribution
function originating from noninteracting quasiparticles in the
graphene. We believe that a clear double-step distribution
function could be observed in samples made from exfoliated
graphene encapsulated in exfoliated hBN crystals.

The method presented here can also be used to obtain the
density of states if the channel material is kept at equilib-
rium with a well known distribution function. This has been
proven especially powerful for the study of Andreev bound
states in carbon nanotubes [41] or graphene [42]. Therefore
this method could be useful to study band modifications
(e.g., graphene minibands or proximity spin-orbit coupling
in graphene/TMDC systems) by local measurements of the
density of states.
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APPENDIX A: DISCUSSION ON THE SAMPLE
GEOMETRY AND FINITE WIDTH OF THE CHANNEL

Compared to previous studies with Cu nanowires [22] or
CNT [23], we use two-dimensional graphene as the channel
material. We would like to note that the 2D-nature of the
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device does not influence the predicted temperature profiles
derived for a 1D case in the beginning of the manuscript. It
is important to note that the sample is translational invariant
along the width since the contacts and the channel are as-
sumed to be homogeneous in the direction perpendicular to
the transport.

APPENDIX B: TEMPERATURE DEPENDENCE
OF THE TUNNELING CURVES FOR ELEVATED
BATH TEMPERATURES

In order to test the ability of the method presented above
to extract the electron temperature, the tunneling differential
conductances was measured at different bath temperatures,
which is shown in Fig. 7(a). An increased bath temperature
results in a smearing of the feature in the differential conduc-
tance resulting from the superconducting gap. The electron
temperature extracted from fitting a Fermi-Dirac distribution
to the numerically extracted distribution function is shown in
Fig. 7(b) against the bath temperature measured on the cold
finger of the dilution fridge.

A clear linear relation between the bath temperature and
the electron temperature is obtained. The electron temper-
ature starts to saturate at low bath temperature and does
not decrease further. The negligible change in the tunnel
conductance between 23 and 98 mK indicates a lower bound
of ~100 mK for the electron temperature. It is well known that
the electron temperature decouples from the bath temperature
if the electrical leads in the fridge are not well thermalized
and filtered against high frequency electromagnetic radiation.
Even though our setups are equipped with RF filters at room
temperature and low temperature, a deviation of the electron
temperature can still occur.

In addition to the above mentioned deviation at low bath
temperature, we face another limitation at low electron tem-
perature. The differential conductance measurement at the
base temperature that is used as the DoS of the superconductor
contains a finite broadening due to the nonzero electron tem-
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FIG. 7. Temperature dependence of device A. (a) The differential
conductance measured through the superconducting electrode to the
graphene for different fridge temperatures with U = 0V. (b) The
electron temperature 7, extracted from fitting a Fermi-Dirac distri-
bution to the numerically extracted distribution function is shown as
a function of the fridge temperature Tcg. The black line is guide to
the eye with slope one, whereas the blue dashed line is a linear guide
to the eye through the data points.

perature of this measurement. Therefore the extracted temper-
atures close to the base temperature will be underestimated.
This effect is negligible at larger temperatures (=1K) and will
therefore not affect the measurements presented in the main
part.

Even though there is a linear relation between 7, and
Tcr, the electron temperature 7, is always a bit above
Tcr. This could have the following origin. The sample and
the thermometer at the cold finger are not exactly at the same
position. Furthermore, the thermal coupling of the sample to
the cold finger is usually not as good as the one of the
thermometer. These two setup related issues would both lead
to T, = Tcr.

APPENDIX C: DECONVOLUTION PROCESS

This section describes the numerical procedure that was
used to extract the energy distribution function from the mea-
sured differential conductance in more detail. The tunneling
current through a superconductor-insulator-graphene (S/I/Gr)
can be written as follows:

+00
(V) o f dEny(E — eV)ng (E)[fu(E) — fs(E — eV)].
(CD)

The two density of states (7, ng) and the two energy distri-
bution functions (f;, for) determine the current. For small bias
values eV on the meV scale, the energy dependence of the
graphene density of states can be neglected and assumed to be
constant. Therefore Eq. (C1) can be rewritten

+00
I(V)ocf dEny(E — eV) fu(E)

oo

+00
—/ dEny(E —eV) fy(E — eV), (C2)

oo
where the first integral describes the convolution of the en-
ergy distribution function of the graphene fy (E) with the
superconducting density of states ny(E — eV) and the sec-
ond integral describes an offset current. The offset current
is independent of the bias V and therefore the differential
conductance can be written in the following final form:

dIi(V) /+°° Ean(E —eV

T d ) fgr(E)-

C3
dv . dE ©3)

According to Eq. (C3), if w is known, then one can use

the measured % to extract the energy distribution function
in graphene fy(E) by a deconvolution. There are several
ways to perform such a deconvolution: (1) direct deconvolu-
tion using built-in algorithms in MATLAB, PYTHON, etc., (2)
Fourier transformation and a simple division, or (3) gradient
method, where the distribution function is calculated in many
iterations such that the calculated differential conductance fits
the measured data. The first and the second method have the
drawback of numerical limitations (basically the differential
conductance would need to be measured over the whole
energy range (—oo to +00) with very high accuracy. Since this
is not possible, we chose to use the third method: the gradient
method, as previously used in similar experiments on copper
wires [22].
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The idea behind the gradient method is to start with a
reasonable guess of the distribution function and then to
calculate the differential conductance based on the guessed
distribution function and the known density of states of the
superconductor. In our analysis, the starting distribution func-
tion was a Fermi-Dirac distribution with a guessed electron
temperature. The calculated differential conductance is then
compared to the measured data and the x? is calculated as

defined here:
calc 2
> . (C4)

Now a new distribution function is calculated point by
point by adding a small change which is related to the dif-
ference of the guessed and measured differential conductance
in the following way:

exp dI
S av

dl
X2:Z<W

Vv

d Xiz
dfi(E)

Jir1(Ex) = fi(Ep) + A (C5)

E=E;

Here, A is a small number («1) and % is the gradient of X,’z

with respect to the distribution function evaluated at energy
E} (occupation factor at energy Ej) at iteration step i. This
assures that the distribution function is changed such that the
difference between the measured and guessed differential con-
ductance is minimized in the fastest way. Explicitly written,
Eq. (C5) reads

dng(E —eV)

dE

exp B dI(V) ]calc (C6)
av |. E:Ek'

1

frn(B) = B+ 1) {
Vv

<dI(V)
X [
dv

The distribution function is updated at every energy Ej; with a
small change, which is a sum over the whole voltage range
of the derivative of the density of states multiplied with
the deviation of the guessed distribution function from the
measured distribution function. In this way, the “nonlocal”
effect of of the convolution in Eq. (C3) is reproduced.
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