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In this comparative study we benchmark a recently developed nonadiabatic exchange-correlation potential
within time-dependent density-functional theory (TDDFT) [Phys. Rev. Lett. 120, 157701 (2018)] by (a)
validating the transient dynamics using a numerically exact density-matrix renormalization-group approach as
well as by (b) comparing the RC time, a typical linear-response quantity, to up to second-order perturbation
theory results. As a test bed we use the dynamics of the single-impurity Anderson model. These benchmarks
show that the nonadiabatic potential yields quantitatively accurate results for the transient dynamics for
temperatures of the order of the hybridization strength, while the TDDFT RC times quantitatively agree with
those from second-order perturbation theory for temperatures which are large compared to the hybridization
strength. Both results are particularly intriguing given the relatively low numerical cost of a TDDFT calculation.
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I. INTRODUCTION

Nowadays, nonequilibrium quantum many-body physics is
at the vanguard of contemporary condensed matter physics.
The interest in nonequilibrium phenomena has been stim-
ulated by the ability to conduct controlled experiments, in
which external parameters can be influenced with great pre-
cision. Several of the first realizations of setups with un-
precedented control opportunities were using quantum dots
to confine the electrons [1]. Describing quantum-dot exper-
iments out of equilibrium from a theoretical side has hence
become a vital field of research. The simplest description of a
quantum dot harboring a single energy level employs the so-
called Anderson impurity model [2], in which a single spinful
degree of freedom is coupled to a Fermi-liquid reservoir of
particles [see Fig. 1(a)]. The Anderson impurity model out of
equilibrium is the subject of a plethora of theoretical investiga-
tions using different tools such as perturbative approaches [3],
numerical [4] or density-matrix renormalization-group calcu-
lations [5], machine learning Ansätze [6], quantum Monte
Carlo simulations [7–9], hierarchical quantum master equa-
tions [10,11], or time-dependent density-functional theory
[12], to name a few. Each of these approaches has its merits as
well as shortcomings: Some of them are numerically exact,
but difficult to apply to multi-quantum-dot geometries or
more complicated couplings (such as spin-orbit coupling),
while others employ approximations but tend to generalize
more easily.

In order to develop accurate methods for treating more
elaborate quantum-dot setups, the approximative approaches
require a thorough benchmarking with exact results when
possible. This is an important step to establish the range
of validity and applicability of the different (and often

complementary) methods [13]. In Ref. [12] the authors
conduct such a comparison between time-dependent density-
functional theory (TDDFT) and the time-dependent density-
matrix renormalization group (td-DMRG) (and perturbative
methods). The Hartree-exchange-correlation (HXC) potential
entering these TDDFT calculations was approximated using
an adiabatic local-density approximation, which was moti-
vated from Bethe Ansatz insights obtained for the Hubbard
model [14,15]. It was shown that this approximation accu-
rately describes the electron density on the quantum dot but
steady-state currents are overestimated. The authors conjec-
tured that improvements require the potential to be nonlocal
in space and time [12,16].

Recently, in order to improve the performance of TDDFT, a
nonadiabatic (i.e., time-nonlocal) approximation for the HXC
potential of the single-impurity Anderson model was derived
by exploiting analogies to quantum transport theory (see
Ref. [17]). The derivation is based on a first-order perturbative
treatment in the tunnel coupling between the impurity and
the reservoir and uses a Markov approximation for the time
propagation in the rate-equation approach. It was shown that
the resulting nonadiabatic HXC potential improves over its
adiabatic counterpart [18] and yields the correct exponential
decay of the density after a quench in the gate voltage [see
Fig. 1(b)] [19]. Importantly, directly after the quench, the
decay of the density in the TDDFT description deviates sig-
nificantly from the one obtained with the rate equation. This
difference was attributed to the Markov approximation being
made in the rate equation while the TDDFT time propagation
did not suffer from this additional approximation. However,
in TDDFT one propagates the Kohn-Sham system with an
approximate HXC potential. Hence, it is not clear which
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FIG. 1. (a) Sketch of the single-impurity Anderson model at
finite temperature T . The single energy level ε(t ) with on-site
interaction U is tunnel coupled to an electron reservoir with tunnel-
coupling strength �. The indicated step-pulse gate voltage suddenly
shifts the level position at the time t = 0. (b) Dynamics after a sudden
energy-level shift from ε(t < 0) = 10� to ε(t > 0) = −6�, with
T = 2� and U = 16� (figure adapted from Ref. [17]). Shown are
TDDFT density evolutions calculated with the nonadiabatic HXC
potential from Ref. [17] (long dashed), its adiabatic counterpart [18]
(short dashed), and without HXC potential (dashed-dotted lines). The
solid line presents a rate-equation result.

of the two methods describes the short-to-intermediate time
behavior more accurately.

In the present paper, we benchmark the TDDFT descrip-
tion of this transient dynamics to numerically exact time-
dependent DMRG results. While DMRG does provide numer-
ically exact results, it is a low-entanglement method scaling
exponentially in the amount of entanglement in the system
under scrutiny. In typical quench scenarios, entanglement
buildup is linear in simulation time and, as a consequence,
numerical resources are exhausted in an exponential fashion.
Depending on the prefactor of entanglement growth, this
restricts accessible timescales to short-to-intermediate ones.
For more complex quantum-dot geometries the overall scaling
of numerical cost becomes even worse. In summary, DMRG
is the perfect tool for benchmarking the short-to-intermediate
time behavior of the nonadiabatic approximation in TDDFT
such that we can then address more complex systems within
TDDFT with confidence.

As a second test, we compare RC times [20] calculated
from linear-response TDDFT with those from first- and
second-order perturbative treatments in the tunnel coupling
[21]. We use this comparison to demonstrate the conceptual
difference between perturbation theory on the one hand, and
TDDFT employing a HXC potential extracted from perturba-
tive treatments on the other hand. While the HXC potential
considered here was derived using only the first order in the
tunnel coupling, higher orders can enter due to the exact time
propagation of the Kohn-Sham system.

Finally, we note that pushing the boundaries of methods
available to describe the dynamics of the Anderson impurity
model is relevant also beyond the description of quantum-dot
dynamics in experiments. Solutions or high-quality approxi-
mations to the quantum-impurity problem out of equilibrium
are also urgently needed as impurity solvers in dynamical
mean-field theories (DMFTs) and its variances [7], which are

nowadays at the frontier of strongly correlated condensed mat-
ter research. Especially treating more complicated quantum-
dot geometries and spin-orbit coupling is a subject of re-
cently increasing research attention. Furthermore, obtaining a
deeper understanding of nonequilibrium physics in general,
and specifically the transient response to external changes
of quantum dots and beyond, is also crucial to efficiently
harvest the promises made by the blossoming field of quantum
technologies [22].

The paper is structured as follows: In Sec. II we introduce
the Anderson impurity model that is used for all the calcula-
tions and present the two methods, time-dependent density-
functional theory and density-matrix renormalization-group
theory. We discuss the results for the transient dynamics that
were obtained with these methods in Sec. III, where we also
present the comparison of the RC times from TDDFT linear
response with those from first- and second-order perturbation
theory. We conclude our work in Sec. IV.

II. MODEL AND METHODS

A. Model

As a test bed to benchmark the performance of a recently
proposed nonadiabatic HXC potential [17], we consider a
single-impurity Anderson model at finite temperature, as de-
picted in Fig. 1(a).The Hamiltonian is given by

H (t ) =
∑

σ

ε(t )d†
σ dσ + Ud†

↑d↑d†
↓d↓

+
∑

k,σ

εkc†
kσ

ckσ +
∑

k,σ

(γ ckσ d†
σ + H.c.), (1)

where the first, second, and third term describe the isolated
impurity, the reservoir, and the reservoir-impurity coupling,
respectively. The operators d (†)

σ annihilate (create) an electron
with spin σ on the impurity site while c(†)

kσ
denotes the annihi-

lation (creation) operator for an electron in quasimomentum
state k and spin state σ in the reservoir. We neglect the k
dependence of the reservoir-dot coupling, i.e., γk = γ , for
simplicity. The Coulomb repulsion of the electrons on the
impurity site is described by the parameter U while the
electrons inside the reservoir are treated as noninteracting.
The reservoir itself is in thermal equilibrium described by a
chemical potential μ, which is set to zero, and temperature T .
Since we are not interested in the details of the reservoir, we
employ the wideband limit, i.e., we assume that the density
of reservoir states ν0 is a constant. This leads to an energy-
independent coupling strength, � = 2π |γ |2ν0, between the
reservoir and the single-impurity site.

We consider two different time-dependent driving schemes
for the energy level ε(t ): a quench protocol, where ε(t ) =
ε(t < 0)�(−t ) + ε(t > 0)�(t ) is rapidly changed from
ε(t < 0) to ε(t > 0) at time t = 0 by applying a gate volt-
age, and a low-amplitude harmonic oscillation, ε(t ) = ε̄ +
A sin(ωt ), around a mean value ε̄.

B. Time-dependent density-functional theory

In TDDFT, the interacting system defined in Eq. (1) is sim-
ulated by an auxiliary noninteracting—Kohn-Sham (KS)—

075417-2



DYNAMICS OF THE ANDERSON IMPURITY MODEL: … PHYSICAL REVIEW B 99, 075417 (2019)

system, which has the same electron density as the interacting
system. The identical densities are achieved owing to the
Hartree (H) and the exchange-correlation (XC) potentials in
the KS system, which model electrostatic and all further
interaction effects. Along the lines of Ref. [17], we define the
KS Hamiltonian for the interacting single-impurity Anderson
model of Eq. (1) by

HKS(t ) =
∑

σ

[ε(t ) + εHXC[n](t )]d†
σ dσ

+
∑

k,σ

εkc†
kσ

ckσ +
∑

k,σ

(γ ckσ d†
σ + H.c.), (2)

where εHXC[n](t ) denotes the Hartree and XC contributions.
We assume this HXC potential to be a functional of the
electron density n on the impurity site. We also neglect XC
contributions inside the reservoir, which are known to become
relevant for a two-reservoir setup not considered here [23,24].

A modeling similar to Eq. (2) has been used in previous
TDDFT studies of the Anderson impurity model, e.g., fo-
cusing on the Coulomb blockade [16,25], strong correlation
[18], or attractive interaction [26]. In all these works adiabatic
potentials were employed for the HXC contribution.

Reference [17] derives a nonadiabatic approximation for
the HXC potential of the single-impurity Anderson model
by using a reverse-engineering procedure based on pertur-
bation theory in the tunnel coupling in combination with
a Markov approximation. The result, which we write as
εM

HXC(n(t ), ṅ(t ))(t ), turns out to only depend on the electron
density on the impurity site and its first time derivative at time
t . It reads

εM
HXC(n(t ), ṅ(t ))(t ) = T log{C(n(t ), ṅ(t ))}, (3)

with

C(n, ṅ) = 2eU/T [ṅ + �(n − 2)]

ṅ + eU/T [ṅ + 2�(n − 1)] −
√

{ṅ + eU/T [ṅ + 2�(n − 1)]}2 − 4eU/T [(ṅ + �n)2 − 2�(ṅ + �n)]
. (4)

A key property of this HXC potential is a smeared-out step at
half filling, which becomes a dynamical step for nonzero ṅ(t ).
Both are demonstrated in Fig. 2 for different temperatures,
where a lower temperature leads to a sharper potential step
[18,25]. Note that the underlying perturbative expansion [3]
is justified in the weak-coupling/high-temperature regime,
where �/T � 1. In this paper, we show that—as long as this
constraint is satisfied—TDDFT with the nonadiabatic HXC
potential εM

HXC results in a highly accurate description of the
electron dynamics of the single-impurity Anderson model.

In our so-called ensemble TDDFT simulations we prop-
agate the state of the KS system in sufficiently small time
steps, and we include a large but finite number of states for
the reservoir (see Ref. [17] for technical details). Initially,
we begin with a KS system in thermal equilibrium, and we
take into account a time-dependent energy level ε(t ), which is
driven either by a step pulse (Sec. III A) or a low-amplitude
harmonic drive (Sec. III B), switched on at time t = 0. During
the time propagation, the value of εM

HXC in the KS Hamiltonian

0
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16
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εM H
X
C
/
Γ

density n

FIG. 2. Nonadiabatic HXC potential εM
HXC(n, ṅ) of Eq. (3) for

ṅ/� = 0, 1 (black and red) and temperatures T/� = 4, 2, 1 (solid,
long-dashed, and short-dashed lines). Red lines show the dynamical
step appearing for ṅ �= 0 [17].

changes continuously, based on the evolving electron density.
Notably, since the KS system is noninteracting, the numer-
ical cost of these calculations scales linearly in simulation
time, which provides an (in general) exponential speed-up
compared to numerically exact methods such as, e.g., the
density-matrix renormalization-group calculations which we
introduce in Sec. II C.

Note that, although it is straightforward from a technical
point of view to address more complicated quantum-dot ge-
ometries or couplings than the ones considered in this paper,
one has to keep in mind that the HXC potential of Ref. [17]
was derived using the single-impurity Anderson model. More
complicated geometries might call for a modification of this
derivation, e.g., in order to include energy-dependent cou-
plings between the quantum dot and the reservoir.

C. Time-dependent density-matrix renormalization group

In many situations, including nonequilibrium setups, inter-
acting one-dimensional systems can be described efficiently
using DMRG techniques [27,28]. The model described in
Eq. (1) can be mapped onto a one-dimensional linear chain,
if we choose to rewrite the structureless reservoir as a nearest-
neighbor hopping tight-binding chain, described by hopping
amplitude th. The resulting reservoir dispersion relation εk =
−2th cos(k) does not render a structureless reservoir density of
states in general, which is integral to compare to the TDDFT
results directly. However, if we choose th large enough, such
that the bandwidth D = 4th is much larger than any other
energy scale of the system, then the system is effectively in the
wideband limit characterized solely by an energy-independent
hybridization � = 2|γ |2/th. Unfortunately, the large th limit
is numerically undesirable, because as a consequence of the
strong hopping, excitations propagate through the reservoir
quickly. As our DMRG (in this nontranslation invariant case)
is set up for finite systems, information on the finiteness of
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FIG. 3. Comparison of TDDFT densities calculated using εM
HXC

(lines) with DMRG data (symbols). The quantum dot is subject to
a quench of the dot’s energy level with ε(t < 0) = 10� and ε(t >

0) = −6�. Top to bottom lines/symbols show different interaction
strengths, with U/� = 0, 4, 8, 16, and (a)–(c) different temperatures.

the system is imprinted on the dynamics of the impurity on
increasingly smaller timescales as th is increased. A balance
must be struck such that the results are converged with respect
to both the wideband limit as well as system size [29]. We
checked this convergence by comparing results for different
ratios of th/γ and reservoir sizes N . We found that choosing
th/γ = 0.05 and N = 200 yields converged results and thus
used these values for all the DMRG calculations presented
here.

To simulate the quench dynamics we employ a two-
step procedure. First, we prepare the finite-temperature equi-
librium state of Eq. (1) for H (t < 0) with μ = 0 and a
given temperature T using the technique of purification (see
Sec. 7 of Ref. [28]). We then employ a real-time evolution
algorithm propagating the system with respect to the changed
Hamiltonian H (t > 0) [30]. In this paper, we use a fourth-
order Suzuki-Trotter decomposition with th
t = 0.02, which
is small enough to give converged results. The numerical
cost of this method scales in an exponential fashion with the
entanglement in the system. The control parameter encoding
the entanglement growth (and hence the numerical cost) is the
so-called bond dimension. In our simulations the bond dimen-
sion is dynamically increased during the real-time evolution,
such that we obtain numerically exact results. During the sim-
ulation the bond dimension generically grows exponentially
with simulation time. As a consequence the calculation can
only be carried out until the exponential growth exhausts the
numerical resources available and no further progress can be
made.

III. RESULTS

A. Transient dynamics with TDDFT and DMRG

In this section we present the results of a systematic
benchmark of the nonadiabatic HXC potential put forward in
Ref. [17] by comparing time-dependent quantum-dot electron
densities to numerically exact DMRG data.

Figure 3 summarizes results for a quench of the quantum-
dot energy level from a large positive to a negative value,
where ε(t < 0) = 10� and ε(t > 0) = −6�. From left to
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t Γ
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FIG. 4. Comparison of TDDFT densities calculated using εM
HXC

(lines) with DMRG data (symbols) for a quench of the dot’s energy
level with ε(t < 0) = −U/2 and ε(t > 0) = U/2. Top to bottom
lines/symbols show different interaction strengths, with U/� =
4, 8, 16, and (a)–(c) different temperatures.

right the different panels show results for decreasing reservoir
temperatures, T = 4�, 2�, and 1�. Different curves in the
same panel indicate different interaction strengths U . The
TDDFT results are indicated by solid lines, while the DMRG
results are shown as symbols. Increasing the interaction from
U/� = 0 (gray lines and symbols) to finite and strong values,
the effects of interactions are clearly discernible for all curves
shown. The filling of the initially almost empty quantum dot
during the time evolution is hampered by the interaction, on
timescales which are not small compared to 1/�. The TDDFT
results agree very well with the numerically exact results ob-
tained using DMRG up to temperatures as low as T = 2� [see
Figs. 3(a) and 3(b)]. These results also justify, a posteriori,
neglecting the XC effects in the reservoir. For even lower
temperatures [see Fig. 3(c)], quantitative deviations are found
at times large enough such that the interaction influences the
quantum dot’s dynamics. The discrepancy between TDDFT
and DMRG is largest when the interaction strength is such
that the KS energy level after the quench is close to the
Fermi energy of the reservoir. We note that the qualitative
behavior is in agreement for all interaction strengths and
temperatures. We also emphasize once more that, particularly
in the beginning of the time evolution, the TDDFT data differ
from rate-equation results even in the limit of weak tunneling,
as pointed out in Fig. 1(b) [17].

As a second example we consider a quench protocol
starting from a half-filled quantum dot and quenching up the
energy level, such that charge is dumped into the reservoir.
The initially half-filled dot is prepared by choosing ε(t <

0) = −U/2. The energy level is then quenched to ε(t > 0) =
U/2. Since the strength of the quench is measured in units
of U , the noninteracting curve corresponds to performing no
quench at all and is thus omitted in the following. From the
comparison of the TDDFT and the DMRG data shown in
Fig. 4 we conclude a similar picture as found above. As long
as the temperature is high enough, the agreement between
the two methods is very convincing. Here, we find again that
the agreement starts to deteriorate as we approach T = 2�,
with the deviations increasing with interaction strength and
propagation time. Again, the deviations are of quantitative not
qualitative nature.
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From our results we summarize that the nonadiabatic
HXC potential put forward in Ref. [17] can be very useful
to describe the transient dynamics of the single-impurity
Anderson model, in contrast to TDDFT approaches using
adiabatic approximations [18,31], which fail at this task. The
regime of quantitative validity, as expected, is restricted to
temperature regions which are of the order of �. This prohibits
access to the strongly correlated Kondo regime of pure spin
fluctuations, but nevertheless leaves a large parameter space,
where this potential can be applied. This finding is in line with
other studies showing that the charge response (at higher T )
of quantum-impurity problems is easier to access compared
to the the spin response of the system [10,11]. The numer-
ical efficiency of the TDDFT calculations—computational
cost scales only linearly instead of exponentially in simula-
tion time—allows one to access systems and timescales be-
yond state-of-the-art DMRG simulations, including intriguing
questions about more complex multidot configurations [17].

Additionally, we point out the success of steady-state
density-functional theory (i-DFT) [31–33] to describe strong
correlation in the single-impurity Anderson model, which
shows that DFT with an accurate XC approximation can be
applied even in the Kondo regime. We anticipate that an ap-
proximation which combines properties of both the potential
of Ref. [31] and the nonadiabatic potential of Ref. [17] opens
up a path towards TDDFT simulations of the dynamics in the
Anderson impurity model at low temperatures [34].

B. RC times with TDDFT and perturbation theory

TDDFT also provides the proper framework to extract
linear-response observables from an equilibrium DFT calcu-
lation. The HXC potential thereby enters in terms of the HXC
kernel. This kernel is calculated from the HXC potential by
a functional derivative with respect to the density, which is
evaluated at the equilibrium density. In this section, we present
a second benchmark of the nonadiabatic HXC potential de-
rived in Ref. [17], focusing on the linear-response dynamics
of our system. We compare the derived TDDFT data with
perturbation theory in the tunnel coupling in first as well as in
second order (see, e.g., Refs. [3,21,35–37]). This comparison
highlights the conceptual difference between a perturbation
theory description on one hand, and, on the other hand, a
TDDFT calculation which employs a HXC potential obtained
in perturbation theory.

We investigate a small-amplitude harmonic drive of the
energy level ε(t ) = ε̄ + A sin(ωt ), around a mean value ε̄, and
we calculate the finite-frequency admittance G(ω) = ∂I (ω)

∂ε(ω) |eq
.

Here and in the following, we use the subscript “eq” for all
quantities which are evaluated with respect to the equilibrium
(A = 0) state. As pointed out by Büttiker et al. [20], it is
instructive to compare the low-frequency part of this admit-
tance to the admittance of a RC circuit, which is the classical
analog of the system sketched in Fig. 1(a). The low-frequency
expansion,

G(ω) ≈ −iωC + ω2C2R, (5)

defines a charge-relaxation resistance R and an electrochemi-
cal capacitance C for the single-impurity Anderson model. In
our benchmark, we compare RC times, τRC = RC, obtained in

1
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1.8

−32 −16 0 16
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−32 −16 0 16
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(τ
R
C

Γ
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ε̄/Γ
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ε̄/Γ

(b)

FIG. 5. Inverse RC times for two temperatures: (a) T = 5� and
(b) T = 2�. Shown are the RC times calculated in TDDFT using
the HXC kernels f M

HXC (solid lines) and f ad
HXC = f M

HXC|
ω=0 (dashed

lines), as well as the RC times derived in first-order and second-order
perturbation theory in the tunnel coupling (open and solid symbols).
See also Ref. [21]. The interaction strength is set to U = 16�.

TDDFT, with results from second-order perturbation theory in
the tunnel-coupling strength [21].

In order to calculate RC times in TDDFT, we apply
TDDFT linear-response theory. This leads to a Dyson equa-
tion for the admittance,

G(ω) = GKS(ω) + GKS(ω)
f M
HXC(neq, ω)

iω
G(ω), (6)

with GKS(ω) = ∂I (ω)
∂εKS(ω) |eq

denoting the admittance in the KS

system. The HXC kernel derived from the nonadiabatic HXC
potential of Ref. [17] is here written as [38]

f M
HXC(neq, ω) = f (0)

HXC(neq ) − iω f (1)
HXC(neq ), (7)

with neq being the equilibrium density on the impurity

site, and where we abbreviate f (0)
HXC(neq ) = ∂εM

HXC(n,ṅ)
∂n |

eq
and

f (1)
HXC(neq ) = ∂εM

HXC(n,ṅ)
∂ ṅ |

eq
. The equilibrium density is ob-

tained by self-consistently solving the density expression
neq = �

π

∫ ∞
−∞

f (E )
(ε̄+εHXC[neq]−E )2+�2/4

dE , with the Fermi function

f (E ) = 1/(1 + eE/T ). Finally, we insert a low-frequency ex-
pansion of GKS(ω) in Eq. (6) and compare the result with
Eq. (5). We find that R and C are connected to the respective
values RKS and CKS of the auxiliary KS system by

R = RKS + f (1)
HXC(neq ), (8)

C = CKS

1 + CKS f (0)
HXC(neq )

. (9)

Note that the finite-frequency admittance GKS(ω) and thus
RKS and CKS are calculated exactly for the noninteracting KS
system [39].

In Fig. 5 we present RC times calculated in TDDFT (lines)
for two different temperatures as indicated. Let us first focus
on Fig. 5(a), where a higher temperature is applied (T = 5�).
The TDDFT result based on f M

HXC is plotted as the solid line,
and it is compared to first-order as well as second-order per-
turbation theory results (open and solid symbols) [21]. We ob-
serve that the first-order result shows strong deviations com-
pared to the TDDFT data, while the second-order perturbative
data agree much better with the TDDFT result over a large
range of working points ε̄. This is particularly interesting,
considering that the underlying HXC potential εM

HXC is derived

075417-5



NIKLAS DITTMANN, NICOLE HELBIG, AND DANTE M. KENNES PHYSICAL REVIEW B 99, 075417 (2019)

using a first-order perturbative expansion in the reservoir-dot
coupling. The reason why the TDDFT data, nevertheless,
can match second-order perturbation theory results is that no
perturbation theory expansion is employed to solve the KS
auxiliary system. Only interaction effects are modeled with a
HXC potential motivated from a first-order perturbation the-
ory, while the time evolution in the noninteracting KS system
includes all orders in the tunnel coupling. Consequently, devi-
ations between the TDDFT and the second-order perturbation
theory data are visible in regions where the interaction plays
a more dominant role in the dynamics. In Fig. 5(a), we find
that this is the case for working points close to electron-hole
symmetry, ε̄ ≈ −U

2 . As a further comparison, we also show
RC times calculated with the adiabatic HXC potential which
is related to εM

HXC (and which is obtained by setting ṅ to zero
in the expression for εM

HXC). These additional data are shown
as the dashed line. We find that, when the impurity is close to
zero or double occupation, ε̄ � 0 or ε̄ � −U , the adiabatic
description suffices, since the interaction plays a subdominant
role in these regions. In contrast, the RC times are strongly
overestimated when the system reaches single occupation.

A similar calculation performed at a lower temperature,
T = 2�, is presented in Fig. 5(b). Here, the impact of second-
order tunneling on the dynamics is more pronounced. In
Fig. 5(b), the limitation of εM

HXC is evident: The potential leads
to an overfitting of the TDDFT data (solid line) with the first-
order perturbation theory result (open symbols), in particular,
close to the electron-hole symmetric point [see also the center
of Fig. 5(a)]. This result agrees with our findings in Sec. III A,
namely, that εM

HXC is limited to TDDFT calculations at high
temperatures and weak coupling, �/T � 1. To also reach
lower temperatures, further research is necessary in order
to find modifications of this HXC potential which correctly
account for interaction effects in this regime.

IV. CONCLUSION

We performed a comparative study in which we bench-
marked the validity range of the TDDFT approach based on
a nonadiabatic HXC potential put forward in Ref. [17] by
comparing to (a) a numerically exact DMRG-based approach
as well as (b) results obtained approximately from second-
order perturbation theory. In both cases, we found that the
accuracy of the nonadiabatic potential is better than expected
from its derivation.

By comparing to DMRG we found that the dynamics of
a single-impurity Anderson model is accurately described by
the proposed nonadiabatic TDDFT approach in the regime of
sufficiently high temperature. Therefore, it provides access to

the dynamics in this parameter regime by a method that is (at
least in general cases) exponentially faster than competitive
numerically exact approaches. In other words, the TDDFT
calculation does not suffer from the Markov approximation
which was made in the derivation of the approximate po-
tential, due to the time propagation of the KS system being
numerically exact. However, the low-temperature regime of
strongly correlated Kondo physics seems to be off limits to
this specific approximation. This agrees with other studies,
which demonstrate the relative ease with which the charge
response (at higher T ) of quantum-impurity problems can be
addressed with approximate methods, compared to the spin
response of the system [10,11].

In an additional comparison between TDDFT and per-
turbation theory up to second order, we found a significant
increase in agreement between both methods as the second
order is included in the perturbation theory. This shows that
our TDDFT approach includes important processes of second-
order tunneling, although the employed HXC potential was
motivated from a first-order calculation. Again, the added
accuracy can be ascribed to the exact time propagation of the
KS system.

The systematic benchmark of nonadiabatic HXC potentials
in TDDFT calculations is the first step along the route to many
pressing issues. The reservoir coupled to the single-impurity
model imprints relaxation onto the dot degrees of freedom.
Including incoherent relaxation processes from scattering in
conventional TDDFT simulations proves difficult so far. One
way to proxy this relaxation process could be via explicit
(and phenomenological) coupling to particle reservoirs as
described in this paper. Furthermore, impurity problems as
studied here have gained tremendous attention in condensed
matter physics, also because of the role they play in dynamical
mean-field theory (DMFT). Within the DMFT approach, a
(e.g., time-dependent) solution of an impurity problem is
required as an input. So far, methods which are able to tackle
complicated multiorbital impurities and/or spin-orbit coupling
are scarce but urgently needed. Future studies should thus
address the issue of multiorbital impurity problems from a
TDDFT perspective using nonadiabatic HXC potentials.
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