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Supercurrent carried by nonequilibrium quasiparticles in a multiterminal Josephson junction
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We theoretically study coherent multiple Andreev reflections in a biased three-terminal Josephson junction.
We demonstrate that the direct current flowing through the junction consists of supercurrent components when
the bias voltages are commensurate. This dissipationless current depends on the phase in the superconducting
leads and stems from the Cooper pair transfer processes induced by nonlocal Andreev reflections of the
quasiparticles originating from the superconducting leads. We identify supercurrent-enhanced lines in the
current and conductance maps of the recent measurement [PNAS 115, 6991 (2018)] on a nanowire Josephson
junction and show that the magnitude of the phase-dependent current components is proportional to the junction
transparency with the power corresponding to the component order.
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I. INTRODUCTION

Upon biasing of a superconductor-normal-superconductor
(SNS) junction the supercurrent carried by Andreev bound
states changes into quasiparticle-driven dissipative current
carried in a process of multiple Andreev reflections (MAR).
This phenomenon was first encountered in superconducting
niobium contacts [1], and later in microbridges [2,3] and
tunnel junctions [4–6]. Klapwijk et al. explained [7] that n
successive Andreev reflections of electrons and holes propa-
gating through the normal part of the junction results in charge
transfer of (n + 1)e, with n/2 Cooper pairs and a single quasi-
particle between the superconductors. As a result the current-
voltage (I-V ) characteristic of the junction is imprinted with a
subgap structure with features appearing for the bias voltages
V = 2�/ne with � the superconducting gap. The original
MAR theory of Ref. [7] was soon extended, allowing for a
description of nontransparent junctions [8], a coherent regime
[9,10]—with the prediction of appearance of dc and ac current
components—and finally, the case of several current-carrying
modes [11]. The latter allowed estimation of transmission
probabilities and the number of quantized modes of atomic-
thick break junctions [12,13]—the pincode of the structure.
Now probing of MAR features has become a standard tech-
nique for estimating the superconducting gap, evaluation of
the number and transmission probability of conducting modes
in the state-of-the-art semiconductor-superconductor hybrids
that are based on nanowires [14–18], and two-dimensional
electron gas [19].

Recent progress in fabrication of hybrid nanodevices
driven by the pursuit for creation of topological quantum
gates [20–22] has led to the creation of tunable multitermi-
nal systems based on crossed nanowires [23–26] or gated
graphene [27]. Termination of such structures by supercon-
ducting leads allows multiterminal Josephson junctions to
form that serve as superconducting beam splitters that en-
tangle Cooper pairs [28,29], allow Shapiro steps [30] to be

obtained due to voltage-induced supercurrent, and where the
transconductance due to the ac Josephson effect is quantized
in units of 4e2/h [31,32]. Extensive work on the description
of the phase dependence of Andreev bound states in multi-
terminal junctions [33–35] was done, demonstrating that the
superconducting phases can lift Kramers degeneracy [36] or
even that such junctions can be considered as an effective
topological materials themselves [37,38].

In a Josephson junction, where a central superconducting
electrode is connected with two outer superconductors solely
through two separate normal regions (Josephson bijunction),
the transport between the outer S leads is possible only via An-
dreev reflection at the central superconductor. In this geometry
the nonlocal Andreev reflections correlate four particles by the
exchange of two Cooper pairs between the superconducting
leads, which results in a quartet supercurrent [39]. Measure-
ments on such a junction realized in a recent experiment [40]
found current amplification for commensurate bias voltages
in line with the above theoretical prediction. The same ex-
periment studied transport through a three-terminal structure,
where all three superconducting leads are connected by a
common semiconducting part [40,41], extending the previous
measurement of the metallic junction of the same geometry
[42]. The experimental maps of the current in the three-
terminal nanowire device [41] reveal both lines of amplified
current due to MAR processes and lines analogous to those
obtained in the bijunction geometry, in line with the prediction
of current spikes as a counterpart of voltage-induced Shapiro
steps [30]. Despite the experimental progress, the theoretical
description of biased multiterminal Josephson junctions was
so far limited to incoherent [43] and diffusive [30] regimes or
to a single bias voltage [32,44,45], hindering the interpretation
of the experimental data.

Here we develop a theory for coherent MAR in a three-
terminal Josephson junction of arbitrary transparency whose
leads can be biased independently. Our approach accounts for
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competing processes of local and nonlocal MAR between all
the leads, which allows us to capture both MAR and super-
current features in the dc response of a multiterminal junction.
We show that when the voltages are commensurate, a phase-
dependent current may flow without a change in voltage,
reminiscent of the supercurrent. This happens despite the fact
that when all the bias voltages are unequal, the junction has no
conserved quantities and therefore every state in the junction
has a finite lifetime and dissipates energy. We show that
MAR dc current consists of a voltage-dependent, dissipative
component and a series of phase-dependent, dissipationless
contributions. As a result, the dc current maps versus the
bias voltages consist of pronounced lines of enhanced current
for commensurate voltages, as observed in the experiments
of Refs. [40,41]. We find that supercurrent components have
oscillatory dependence on the superconducting phase, with
a period and amplitude inversely proportional to the com-
ponent order. Furthermore, we present how the visibility of
the supercurrent features in the conductance maps depends on
the transparency of the normal part, which is applicable for
analysis of the transport properties of nanoscale multiterminal
devices [23,24,46].

This paper is organized in the following way. The theory
is given in the second section. Section III contains results of
the model. Discussion of the results along with the summary
is provided in Secs. IV and V, respectively.

II. THEORY

A. Calculation of the current

We consider a junction that consists of three semi-infinite
superconducting electrodes connected by a normal region
depicted schematically in Fig. 1. We assume that the first lead
is kept at voltage V1 = 0, while the second and third leads are
biased by V2 and V3 voltages, respectively.

To calculate the current running through the junction we
generalize the approach previously applied for a two-terminal
case [9] and consider quasiparticle wave functions (�L) in the
form of a linear combination of plane waves propagating in
the normal region, adjacent to the Lth superconducting lead
[see Fig. 1]:

�L =
∑
n,m

[(
AL

n,m

BL
n,m

)
eikx +

(
CL

n,m

DL
n,m

)
e−ikx

]

× e−i[E+neV2+meV3]t/h̄. (1)

The time dependence accounts for the voltage applied to the
superconducting leads, AL

n,m, CL
n,m (BL

n,m, DL
n,m), correspond

to electron (hole) amplitudes and x points in the direction
opposite to the scattering region for all three leads.

The scattering properties of the normal part of the junction
are contained within the scattering matrix S0 that is used to set
up the matching conditions for the wave functions �L. For the
electron part we have⎛

⎜⎝
AI

n,m

AII
n+1,m

AIII
n,m+1

⎞
⎟⎠ = S0

⎛
⎜⎝

CI
n,m

CII
n+1,m

CIII
n,m+1

⎞
⎟⎠, (2)

FIG. 1. Schematics of the considered device with three semi-
infinite superconducting leads (blue) and normal scattering region
(gray).

and for the hole part⎛
⎜⎝

DI
n,m

DII
n−1,m

DIII
n,m−1

⎞
⎟⎠ = S∗

0

⎛
⎜⎝

BI
n,m

BII
n−1,m

BIII
n,m−1

⎞
⎟⎠, (3)

with the shifts of the indices that account for the particles
gaining and loosing energy due to the bias voltages.

At each SN interface we account for Andreev reflection and
acquisition of the phase present at the superconducting lead;
hence (

CL
n,m

BL
n,m

)
= σL

(
an,m 0

0 an,m

)(
DL

n,m

AL
n,m

)
, (4)

where the Andreev-reflection amplitudes are given by an,m ≡
a(E + neV2 + meV3), with

a(E ) = 1

�

{
E − sgn(E )

√
E2 − �2 |E | > �

E − i
√

�2 − E2 |E | � �
, (5)

and where

σL =
(

e−iφL 0

0 eiφL

)
(6)

accounts for the phase shift at the Lth SN interface.
An electron/hole excitation in the normal part of the junc-

tion is created by incoming quasiparticles from the nearby
superconductors. We assume that there is no Fermi wave-
length difference between the normal and superconducting
parts and that the chemical potential is much higher than the
energy gap. In the superconductor for the energies exceeding
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the superconducting gap there are two modes propagating
towards the normal region [47] with the wave functions

�
qe
inc =

(
u

v

)
e−ikx, �

qh
inc =

(
v

u

)
eikx, (7)

where �
qe
inc (�qh

inc) corresponds to the quasiparti-
cle that has electronlike (holelike) character for
|E | � �. The corresponding amplitudes u, v are

[(1 +
√

1 − (�/E )2)/2]
1/2

[(1 −
√

1 − (�/E )2)/2]
1/2

,
respectively.

Assuming that the incoming quasiparticle has electronlike
character, we write the wave functions at each side of the SN
interface. At the superconducting part we have

�S (x) =
(

u

v

)
e−ikx + a

(
u

v

)
eikx + b

(
v

u

)
e−ikx, (8)

where a, b stand for the amplitudes of the reflected quasipar-
ticles. On the normal side we have

�N (x) = c

(
1

0

)
e−ikx + d

(
0

1

)
eikx. (9)

Matching the wave functions and their derivatives at the
interface between the materials (x = 0) one finds a = d = 0,
c = u2−v2

u . Taking into account the superconducting density
of states (1/

√
u2 − v2), the electronlike quasiparticle with

energy E creates an electron in the normal part with the
wave-function amplitude J =

√
u2−v2

u

√
FD(E ), with FD(E ) the

Fermi distribution that determines the filling of the electron
band. Following the same procedure, one finds that a holelike
quasiparticle creates a hole in the normal part with the same
amplitude.

The above relations allow us to write Eq. (4), including the
source terms:(

CL
n,m

BL
n,m

)
= σL

(
an,m 0

0 an,m

)(
DL

n,m

AL
n,m

)

+
(

J (E + eVL )

0

)
1√
2
δp,eδs,2κ

+
L

+
(

0

J (E − eVL )

)
1√
2
δp,hδs,2κ

−
L , (10)

where p controls the incoming quasiparticle type, s is the po-
sition of the source term, and κ±

1 = δn,0δm,0, κ±
2 = δn,±1δm,0,

κ±
3 = δn,0δm,±1 account for the shifts in the chemical potential

introduced by the bias voltage.
We calculate the electric current I in the Lth lead from

the probability current taking into account one-dimensional
density of states:

IL =
Imax∑
ı, j

IL
ı, je

(ıV2+ jV3 )eit/h̄, (11)

where

IL
ı, j = e

h̄π

∑
s=1,2,3

∑
p=e,h

∫ ∞

−∞
dE

×
Nmax∑
n,m

(
UL∗

ı+n, j+mUL
n,m − VL∗

ı+n, j+mVL
n,m

)
(12)

are Fourier components of the current. UL
n,m = (AL

n,m, BL
n,m)T

and VL
n,m = (CL

n,m, DL
n,m)T stand for vectors that consist of

electron and hole amplitudes of wave functions that carry
positive and negative current, respectively.

The integral is evaluated numerically, where at each point
of the integration we solve a system of equations built with
Eqs. (2), (3), and (10). We assume zero temperature and take
Imax = Nmax = 8 for the calculations when both voltages are
varied, which sets the limit to the convergence to voltages
larger than |eV| > �/8. Treatment of the regime with V2,V3

close to zero—with the current below the critical current—is
beyond the scope of the present work. The code used for the
calculations is available in Ref. [48].

B. Scattering matrix

We assume that the central part of the junction is a symmet-
ric beam splitter (gray region in Fig. 1) and that the normal
part of the junction is shorter than the superconducting co-
herence length. In other words, it has an energy-independent
scattering matrix:

S0 =

⎛
⎜⎝

α β β

β α β

β β α

⎞
⎟⎠, (13)

with α = −eia/(2eia − e−ia) and β = 2i sin(a)/(2eia − e−ia)
[49], where a controls the transparency of the splitter with the
transmission probability D = |β|2.

III. RESULTS

A. Current versus the bias voltages

Let us start by inspecting the dc response of the junction
due to biasing of the second and third leads. Figure 2(a)
shows the current in the first lead while Fig. 2(b) presents the
differential conductance obtained from the current map. In the
maps we include components of the current that fulfill ıeV2 +
jeV3 < 5 × 10−3 meV such the current features at commensu-
rate voltages have comparable width to those observed exper-
imentally [40,41]. We find two types of features in the con-
ductance map. One is the centrifugal lines at commensurate
voltages (ıV2 + jV3 = 0) that are distinctively sharper than
other subharmonic features that appear at (ıV2 + jV3 = 2�/e)
due to nonlocal MAR. Accordingly, we observe pronounced
lines of altered current at commensurate voltages V2 = V3 and
V2 = −V3 in the map of Fig. 2(a). Note that sole time-reversal
symmetry present in the considered system is not enough to
guarantee the symmetry of the current with respect to the
change of the sign of the voltages, as application of this
symmetry leads to different electron occupation in the leads.

We plot the current running through the first lead in the
regime V2 = V3 = V with the blue curve in Fig. 3(a). In this
regime the three-terminal junction reduces to a two-terminal
one and the current reproduces exactly the MAR response
obtained in the work of Ref. [9]. Moreover, due to symmetry
of the second and the third lead we find exactly the same
current in both equally biased leads, depicted with the green
crosses overlapping the orange curve. The magnitude of that
current is half of the current running through the first lead
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FIG. 2. (a) dc current in the first lead for D = 0.5. (b) Differential
conductance obtained from the map of (a).

and hence the current conservation law
∑

L IL = 0 is fulfilled.
Note, however, that when the voltages fulfill ıV2 + jV3 = 0,
the current consists of multiple dc components, obtained for
ı = − j in Eq. (11). We plot the individual current components
in Fig. 3(a) with dashed curves and observe that the increase of
the component order |ı|, | j| results in a decrease of the current
amplitude. Already the sixth-order component ı = − j = 6 is
nearly zero. The components of odd order are zero, as the
particles outgoing from and reaching the leads are shifted in
energy by even multiples of the bias voltages times e.

In Fig. 3(b) we present a cross section of the map of
Fig. 2(a) obtained for eV3 = 0.7�. The sharp features ap-
pearing at commensurate voltages are marked by black ver-
tical lines, while the nonlocal MAR features at (ıV2 + jV3 =
2�/e) are marked with arrows. Upon applying the phase
difference at the biased lead, the current for the commensurate
voltages changes—as explicitly seen in the peak height depen-
dence for different values of φII in Fig. 3(b). In the following
section we discuss the origin of this phenomenon.

B. Phase dependence

Let us now inspect the phase dependence of the cur-
rent carried between the second and third lead depicted in

FIG. 3. dc current (solid and dotted curves) in the leads vs
the bias energy eV with V2 = V3 = V and D = 0.5. Dashed curves
present dc components II

ı, j of the current in the first lead. GT =
e2D/π h̄. (b) Cross section of the current map of Fig. 2(a) for eV3 =
0.7�.

Fig. 4(a). We set φI = φIII = 0 and vary φII. In agreement
with the equal currents in the second and third leads of
Fig. 3(a) we see zero current for φII = 0. Upon introduction
of the phase difference, a nonzero current arises and its phase
dependence resembles the supercurrent-phase relation of a
diffusive Josephson junction [50] for all the transparencies
D considered here. Focusing on D = 0.75 we decompose the
current into the dc components. Remarkably, we see that the
component ı = j = 0 is zero [the blue curve in Fig. 4(b)], as
the voltage difference between the second and third lead is
also zero and as the modification of the amplitudes by the
superconducting phase does not contribute to the calculated
current for ı = j = 0. The subsequent components of ıth
order oscillate with the period inversely proportional to the
component order with ∼ sin(|ı/2|φII ).

A similar analysis performed for another commensurate
voltage configuration, i.e., V2 = −V3 = �/2e, also shows
that the current oscillation amplitude decreases when the
transparency is reduced [see Fig. 5(a)]. By decomposing
the current into the separate dc contributions, we see that
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FIG. 4. (a) dc current running between the second and the third
lead I II − I III for three values of the central region transparency D for
V2 = V3 = e�/2 vs the phase on the second lead. (b) Components of
the current for D = 0.75.

again the zeroth-order component is phase independent and
it corresponds to the Ohmic current that is proportional to the
voltage difference between the biased leads. The higher-order
components are phase dependent and oscillate around zero,
with a small amplitude following the same rule of the decrease
of period as the currents of Fig. 4(b). Those components then
constitute the supercurrent that is carried between commen-
surately biased leads for commensurate voltages. The small
phase offsets of the higher-order current components are the
result of phase shifts introduced by complex transmission
and reflection amplitudes in the scattering matrix when the
scattering involves nonlocal processes.

C. Quasiparticle-driven supercurrent versus the scattering
paths

To understand the origin of the supercurrent let us inspect
the quasiparticle scattering processes that stand behind one of
the higher-order components of the current running between
the second and the third lead, namely, ı = − j = 2 for V2 =
V3 = �/2e. In the first step we isolate the source terms that
initiate the majority of the current flowing between the leads.
In Fig. 6 we display the current, broken down into contribu-
tions from all possible source terms: s corresponds to the lead

FIG. 5. Same as Fig. 4 but for V2 = −V3 = e�/2.

where we include the source and p to the quasiparticle type—
see Eq. (12). We see that actually, half of the current between
equally biased leads results from an electronlike quasiparticle
incoming from the first lead. Another source term that induces
a considerable current corresponds to holelike quasiparticles
injected from the second and third lead, which are Andreev

FIG. 6. I II − I III dc current component ı = − j = 2 calculated
for different source terms (s – the source position, p – quasiparticle
type).
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FIG. 7. Probabilities of the wave-function components adjacent
to the second lead for electronlike quasiparticle as the source term at
energy −1.0001� injected from the first lead. Transparency is D =
0.75 and eV2 = eV3 = �/2. The insets on the right-hand side show
two scattering processes contributing to the second dc component
(quasiparticle-induced supercurrent) that result from an electron (red
filled circle) propagating towards the scattering region.

reflected at the first lead, forming an electron propagating
towards the scattering region as in the case of the major com-
ponent. As a result, in such a symmetric bias configuration
the current component due to the source term (s : 1, p : e)
is equal to the sum of components due to (s : 2, p : h) and
(s : 3, p : h). Similarly, the sum of the current components
due to source terms (s : 2, p : e) and (s : 3, p : e) correspond
to the current component due to (s : 1, p : h).

Next, let us trace the scattering events that happen after
the electronlike quasiparticle incomes from the first lead. We
set the injection energy just below the gap, i.e., multiply
the integrand in Eq. (12) by the Dirac δ located at E =
−1.0001�. In Fig. 7 we plot the squared absolute values
of amplitudes AII

n,m, BII
n,m,CII

n,m, DII
n,m of the wave functions

adjacent the second superconducting lead. This way we are
able to quantify the probability of finding electron and hole
components of the wave functions with a given propagation
direction at certain energies. We observe that overall the
highest probabilities correspond to the wave functions of the
electron propagating towards the scattering region (top-right
panel of Fig. 7)—with the probabilities |CII

n,m|2—and to its
time-reversed partner—a hole propagating in the opposite
direction (bottom-right panel on Fig. 7)—with probabilities
|DII

n,m|2. Focusing on the electron part, we see that the most im-
portant contributions to the current stem from wave-function
amplitudes with indexes n = 1, m = 0 and n = −1, m = 2,
which both give the wave function shifted in energy by
eV2 = eV3. The CII

n=1,m=0 coefficient is populated in a process
where an electron coming from the first lead is Andreev
reflected in the second lead, scatters back to this lead, and
finally, is Andreev reflected again—see the top inset to Fig. 7.
This process is insensitive to the phase on the second lead,
and we approximate its probability as D(1 − D). The finite
CII

n=−1,m=2 amplitude stems from a process where the electron
enters the scattering region from the first lead and propagates

FIG. 8. Critical current between second and third lead vs the
junction transparency D for eV2 = eV3 = 1.4� (a) and eV2 =
−eV3 = 1.4� (b). The open circles present the numerical results, and
the curves are analytical dependencies as described in the text.

to the third lead. Due to nonlocal Andreev reflection, the
retroreflected hole propagates to the second lead where it
is Andreev reflected again into an electron with the energy
shifted by 2eV3 − eV2 = �/2—see bottom inset to Fig. 7. As
a result we can estimate the corresponding probability as ∼D2.
The process that populates the CII

n=−3,m=4 amplitude can be
drawn analogically, only now the hole visits the second lead
two times and by that gains twice the phase shift.

According to Eqs. (12) and (11) the main dc component
of the current ı = j = 0 is obtained from the sum of the
probabilities set by the wave-function amplitudes and hence
it cannot be directly dependent on phase of the amplitudes.
On the other hand, the higher-order dc current components are
obtained as a sum of the products of wave-function amplitudes
with indexes n and m shifted by ı and j, respectively, such
ıV2 + jV3 = 0, and by that they are phase dependent. The
higher-order components result from the scattering processes
with increased number of Andreev reflection at the phase-
biased lead, resulting in a decrease of period of oscillation
in phase as seen in Fig. 4(b). This means that the supercurrent
(i.e., the higher-order components of the dc current) originates
from quasiparticles entering from the superconducting leads
but also that it involves a nonlocal Andreev reflection process
of nonequilibrium electron/holes at the biased superconductor
leads.

D. Transparency dependence

To elucidate the supercurrent dependence on the junction
transparency, we now turn our attention to the dependence
of the maximum of the supercurrent components on D. In
Fig. 8(a) with the open circles we show the critical current
Ic = max[I (φII ) − I (φIII )] for V2 = V3, while the solid curves
are estimates of the critical current inferred from the junc-
tion transparency. For ı = − j = 2 we have Ic � a1

√
D2 ×√

D(1 − D) according to the analysis of the amplitudes of the
wave functions in the second lead. For ı = − j = 4 we have
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FIG. 9. Second derivative of the current in the first lead for D = 0.25 (a), D = 0.5 (b), and D = 0.75 (c). The centrifugal lines are enhanced
by the supercurrent.

Ic � a2

√
D2 × D(1 − D)

2
, and finally, for ı = − j = 6 Ic �

a3

√
D2 × D(1 − D)

3
, with the free parameters ai chosen for

the best fit. We see that the higher-order components of the
current require more scattering events between the biased and
unbiased electrodes, so that the wave functions acquire multi-
ple gains in phase—hence the decreased oscillation period in
the current-phase relation. At the same time, the higher-order
components are more sensitive to the transparency of the nor-
mal part—resulting in the increased power of Ic dependence
on D.

We also calculate the critical current for V2 = −V3 as
a function of D and find that it follows the same rule of
increasing power in D for increasing component number [see
Fig. 8(b)]. It is important to note here that the detailed shape
of the curve—such as the presence of a local maximum—
depends on the voltage for which we obtain the curve. Nev-
ertheless, the qualitative dependence on the power of D is
independent of that choice.

Finally, let us go back to the analysis of junction response
when both bias voltages are varied. To highlight the subhar-
monic features, we now present the second derivative of the
current in the first lead versus the bias voltages for low trans-
parency [Fig. 9(a)], average transparency [Fig. 9(b)], and high
transparency [Fig. 9(c)]. Comparing the maps, we observe a
distinct change in the visibility of both the nonlocal MAR
lines and centrifugal supercurrent-enhanced lines. Making the
system more transparent results in smoothing out the nonlocal
MAR features and significant amplification of the visibility of
the current consisting of multiple dc components. The latter
results from the presence of higher-order dc components that
require many sequential scattering events through the junction
and are favored in transparent junctions. On the other hand,
the usual MAR contribution to the map lacks higher-order
components and hence resembles the usual MAR response to
the transparency—the lower the transparency, the sharper the
features.

IV. DISCUSSION

The conductance map obtained within this work shows
a similar subharmonic gap pattern as the map of Fig. 1 of
Ref. [43]. Here, however, we are able to recover the full spec-

trum of the features—in particular, with those at commensu-
rate voltages—missing in the modeling of Ref. [43] due to
incoherent nature of the transport. On the other hand, the ob-
tained supercurrent features are compatible with the voltage-
induced Shapiro steps that were demonstrated for a diffusive
Josephson junction with a superconducting tunnel probe [30].
By that we are able to recover the full spectrum of features as
found in the experiment on the nanowire Josephson junction.

The maps of the second derivative of the current Fig. 9
obtained within the presented model exhibit the features com-
patible with those in the experimental maps of Ref. [41] [see
Fig. 4 and S6 therein]. Specifically, we obtain a subharmonic
MAR structure but most importantly, also the rapid amplifica-
tion of the current for the commensurate voltages, which in the
experimental paper was attributed to the supercurrent driven
by Andreev bound states in the junction. Here, however we see
that all the states in the junction have a finite lifetime due to
unequal bias voltages. The current amplification appears due
the higher-order dc current components in which the Cooper
pairs are transported between commensurately biased leads by
nonequilibrium electrons and holes through MAR processes.
When the bias voltages are detuned from the commensu-
rate condition ıV2 + jV3 	= 0, the higher-order components
become rapidly oscillating and drop out of the sum for the
current Eq. (11), resulting in a change in the dc current.

V. SUMMARY

We studied coherent multiple Andreev reflections in a
multiterminal Josephson junction with two bias voltages. We
analyzed maps of the current running through the junction
and identified pronounced lines of enhanced current compat-
ible with those measured in the recent experiment [40,41].
This enhancement is the result of multiple dc components
contributing to the current for commensurate bias voltages.
We found that the principal dc component of the current is
voltage dependent and corresponds to the dissipative current,
while the higher-order ones are nondissipative and depend
on the time-independent phase applied to the superconduct-
ing leads. This happens despite the absence of bound states
that may carry dissipationless current. We explained that the
latter components result from nonlocal Andreev reflections
of nonequilibrium particles propagating through the junction.
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We found that the dc current component order n determines
both the periodicity of the current/phase relation with the
period 4π/n and the magnitude of the supercurrent with
the main trend given by ∼Dn. Finally, we identified the
transparency dependence of the enhanced current and MAR
lines in current maps and point out the open systems as the
preferable one for observation of the supercurrent-enhanced
lines.
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