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Direction-dependent giant optical conductivity in two-dimensional semi-Dirac materials
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We show that the gap parameter in semi-Dirac material induces a large degree of sensitivity for interband
optical conductivity with respect to the polarization direction. The optical conductivity reveals an abruptly large
value at a certain frequency for light along a particular polarization direction while it is significantly suppressed
along the direction orthogonal to the former. The direction-dependent optical conductivity may, in turn, be used to
uniquely predict the dispersive nature of the two-dimensional semi-Dirac materials, in addition to other possible
applications in the field of transparent conductors.
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I. INTRODUCTION

Low-energy excitations with massless Dirac particle be-
havior are characteristics of some illustrious two-dimensional
(2D) and quasi-2D materials such as graphene [1,2], silicene
[3], MoS2 [4–6], and 8-Pmmn borophene [7], to name a
few. The massless Dirac particles have a low-energy band
dispersion, which is linear in all k-space directions (also
known as the Dirac cone), with particle and hole states lying
respectively above and below a nodal point called the Dirac
node. The Dirac cone in the dispersion spectrum controls
the various low-energy properties such as specific heat [8],
suppression of backscattering [9,10], transport properties such
as optical conductivity [11], and magnetic field responses of
such 2D materials.

Recently, a distinct class of 2D Dirac materials called
semi-Dirac (SD) materials has been discovered in materials
or systems such as TiO2/V2O3 nanostructure [12], dielectric
photonic systems [13], and hexagonal lattices in the presence
of a magnetic field [14]. SD material has a unique low-energy
dispersion, which is quadratic in a given direction and linear
in the orthogonal direction with respect to the former. The
band anisotropy in SD materials was found to be stable
against weak short-range interaction while there is a direct
Dirac-semimetal to band insulator transition for stronger in-
teraction [15]. The low-energy Hamiltonian that features the
anisotropic band dispersion in SD materials goes as [16,17]

H0 = g(k) · σ, (1)

where g(k) ≡ (αk2
x − δ0, vky) with α, δ0 and v being the

inverse of quasiparticle mass along the x direction, the system
gap parameter and Dirac quaisparticle velocity along the y
direction, respectively and σ ≡ (σx, σy) are the 2 × 2 Pauli
matrices. The term type-I SD for the above Hamiltonian was
coined by Huang et al. [18], which differs from another type-II
SD Hamiltonian since the latter also described the emergence
of Chern insulating states in the supercrystal (TiO2)5/(VO2)3
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[18]. In this paper, we refer only to the type-I SD Hamiltonian.
The eigensystem of H0 are Eλ(k) = λ

√
g2

y + g2
x and

ψλ
k (r) = eik·r√

2
(1, λi −igx+gy√

g2
y+g2

x
)
T
, respectively, where λ = +/−

denotes the conduction/valence band and T the transpose.
The energy separation between the valence and conduction
bands is �k = ε+(k) − ε−(k) = 2

√
g2

y + g2
x .

Significance of the gap parameter: The gap parameter in
the Hamiltonian given in Eq. (1), can be (i) δ0 = 0, which
represents the gapless spectrum; (ii) δ0 < 0, which gives a
trivial insulating phase with a nonzero energy gap; and (iii)
δ0 > 0, which gives the 2D SD gapless states that uniquely
possess two nodal points exactly at (±k0, 0), with k0 =√

δ0/α (Fig. 1). The gapless states with δ0 > 0, are stable
against short-range fermion-fermion interaction or impurities
[19]. The electron and hole states are degenerated at the two
nodal points and separated by a gap �k elsewhere. There
are also theoretical predictions of photoinduced topological
phase transition and gap opening at the two nodal points at
high momentum of the radiation [20,21]. The plot of band
dispersion with respect to Eq. (1), with the gap parameter set
to δ0 > 0 is shown in Fig. 1(a).

The investigation of optical conductivity in SD materials
should lead to some interesting physics by virtues of their
unique low-energy spectrum. To understand the direct in-
terband optical conductivity, we plot the different constant
Fermi energy contours in Fig. 1(b), with the condition δ0 > 0.
The vertical green arrows/lines in Figs. 1(a) and 1(b) depict
the possible particle-hole direct transitions with conserved
momentum vector. One can easily identify the avalanches
of k states available for particle-hole transitions in between
particle states with energy E+ and hole states with energy E−,
[E± = E±(k = 0)] [part (iii) of Fig. 1(b)]. This will result
in an abruptly large interband joint density of states (JDOS)
when the frequency of light corresponds to the difference in
energy �k=0 = E+ − E− [Fig. 1(c)]. �k=0 entirely depends
on the gap parameter.

The abruptly large interband JDOS explained above dic-
tates the giant interband optical conductivity at h̄ω = �k=0.
Such giant optical conductivity was also discovered in three-
dimensional topological Dirac semimetals [22,23], where the
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FIG. 1. (a). Plot of the band dispersion for SD materials. The Fermi contour is shown by red curves. The arrows show the transitions across
the particle and hole state with allowed transitions (green color) and disallowed transitions (black color). The length of the arrow indicates
the light frequency. (b) Plots depicting the different available interband transitions across the three different constant energy contours which
indicate the three possibilities of the magnitude of h̄ω. The Van Hove singularity occurs when h̄ω = �k=0 which leads to maximum joint
density of states at this frequency as shown in (c) and indicated by point (iii).

electron-hole transition across the Fermi arc contours lead
to the very large optical response. We investigate the optical
conductivity of SD materials by considering the x- and y-
polarized light, separately. The main finding of this paper
is centered around the giant interband optical conductivity
which interestingly is present only along the y direction
while being significantly suppressed along the x direction.
Immediately, this suggests that such materials should show
a relatively high degree of direction-dependent optical trans-
parency. It is even more interesting that in one particular direc-
tion, at a particular light frequency, the optical transmission is
almost blocked.

II. OPTICAL CONDUCTIVITY

We consider SD materials subjected to zero-momentum
electric field E ∼ ν̂E0eiωt (ν̂ = x̂, ŷ) with oscillation fre-
quency ω. The total charge optical conductivity tensor is
given by the relation 
νξ (ω) = δνξσD(ω) + σνξ (ω), σD(ω) =
σd/(1 − iωτ ) is the dynamic Drude conductivity due to the
intraband transitions, with σd being the static Drude conduc-
tivity, and σνξ (ω) is the complex optical conductivity due to
interband transitions between particle and hole states. The
real part of the complex optical conductivity is directly tied
to the absorption of the incident photon energy. It is one
of the important tools for extracting the shape and nature
of the material’s band dispersion. The optical conductivity
has been extensively studied in various 2D-Dirac materi-
als, from graphene [24–26], silicene [27–29], MoS2 [30,31],
WSe2[32,33], and 8-Pmmn borophene [10] to the surface
states of topological insulators [34–36].

Interband optical conductivity. Within the framework of
linear-response theory, the Kubo formula for the optical con-

ductivity tensor σνξ (ω) is given by

σνξ (ω) = i
e2

ω

1

(2π )2

∫
dkT

∑
n

Tr〈v̂νĜ(k, ωn)v̂ξ

× Ĝ(k, ωn + ωl )〉iωl →ω+iδ. (2)

Here T is the temperature and ωl = (2l + 1)πT and ωn =
2nπT are the fermionic and bosonic Matsubara frequencies,
respectively, with n and l being integers.

In general, we will consider the effect of perturbation that
opens up a gap at the two nodal points. Thus the total Hamilto-
nian is H = H0 + δH , where δH = m0σz. The Chern number
for this effective Hamiltonian is C = ∫

dk �(k), where the
Berry curvature �(k),

�(k) = g
2|g|3 ·

(
∂g
∂kx

× ∂g
∂ky

)
= 2αvm0kx(

g2
x + g2

y + m2
0

)3/2 , (3)

being asymmetric since �(kx, ky) = −�(−kx,−ky ) (Fig. 2)
would lead to the Chern number being zero. Thus the SD
states described by Eq. (1) have a trivial topology with Chern
number C = 0 [20], hence one can predict the transverse
conductivity to be zero.

The corresponding equilibrium Green’s function for the
modeled Hamiltonian of SD material in Eq. (1) is

Ĝ(k, ω) = 1

2

∑
λ

[σ0 + λF · σ]Gλ(k, ω), (4)

where σ0 is the unit 2 × 2 matrix, σ ≡ (σx, σy, σz ) are the
x, y, and z components of Pauli’s matrix, and the vector
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FIG. 2. Asymmetric Berry curvature of SD Hamiltonian with the
perturbation δH = m0σz.

F ≡ (Fx,Fy,Fz ) is given by

(Fx,Fy,Fz ) =
(
αk2

x − δ0, vky, m0
)

√
(vky)2 + m2

0 + (
αk2

x − δ0
)2

, (5)

with Gλ(k, ω) = [ih̄ω + μ − Eλ(k)]−1. With the above
Green’s function in Eq. (4), the following quantity,
Tr〈v̂yĜ(k, ωn)v̂yĜ(k, ωn + ωl )〉, is obtained as

Tr〈v̂yĜ(k, ωn)v̂yĜ(k, ωn + ωl )〉

= 2

(
v

h̄

)2 ∑
λ,λ′

[
1 − λλ′(F2

x − F2
y + F2

z

)]
× Gλ(k, ωn)Gλ′ (k, ωl + ωn).

Using the Matsubara frequency summation identity

T
∑

n

[
1

ih̄ωn + μ − Eλ

1

ih̄(ωl + ωn) + μ − Eλ′

]

=
{

f (Eλ )− f (Eλ′ )
ih̄ωl −Eλ′ +Eλ

, if λ 	= λ′

0, otherwise,
(6)

with f (E ) = 1/{exp[β(E − μ)] + 1} being the fermi Dirac
distribution function, μ the chemical potential, and β =
1/kBT , one can write

T
∑

n

Tr〈v̂yĜ(k, ωn)v̂yĜ(k, ωl + ωn)〉

= 2

(
v

h̄

)2 ∑
λ,λ′

[
1 − λλ′(Fx2 − F2

y + F2
z

)]

× fλ(k) − fλ′ (k)

ih̄ωl − Eλ′ (k) + Eλ(k)
.

For simplicity, we denoted fλ(k) ≡ f [Eλ(k)]. Using the result
of the above equation in Eq. (2), we have

σyy(ω) = e2

i2π2ω

(
v

h̄

)2 ∫
dk

[
1 − λλ′(F2

x − F2
y + F2

z

)]

× fλ(k) − fλ′ (k)

ih̄ωl − Eλ′ (k) + Eλ(k)

∣∣∣∣
iωl →ω+iδ

. (7)

The real part of the optical conductivity which is directly
tied to the absorptive part is then given by

Re [σyy(ω)] = e2

2π2ω

v2

h̄2

∑
λ,λ′

∫
dk

[
1 − λλ′(F2

x − F2
y + F2

z

)]
× [ fλ(k) − fλ′ (k)]

× Im

[
1

h̄ω + iδ − Eλ′ (k) + Eλ(k)

]
. (8)

Using the identity, Im[ 1
h̄ω+iδ−Eλ′ (k)+Eλ(k) ] = −πδ[h̄ω −

Eλ′ (k) + Eλ(k)], the above equation is simplified to

Re [σyy(ω)] = e2

2πω

(
v

h̄

)2 ∑
λ,λ′

∫
dk[ fλ(k) − fλ′ (k)]

× [
1 − λλ′(F2

x − F2
y + F2

z

)]
× δ[h̄ω − Eλ′ (k) + Eλ(k)]. (9)

Before we proceed further, Eq. (6) clearly shows that there can
only be interband contributions to σνν . The summation over λ

and λ′ leaves us with one of the terms that involves δ[h̄ω −
E−(k) + E+(k)]. For evaluating Re [σyy(ω)], we don’t con-
sider this particular term since it contradicts the conservation
of energy. Therefore finally, we have the expression of σyy as
follows:

Re [σyy(ω)] = e2

2πω

(
v

h̄

)2 ∫
dk

[
1 + F2

x − F2
y + F2

z

]
× [ f−(k) − f+(k)] δ(h̄ω − �k ). (10)

Similarly, the real part of the xx component of the optical
conductivity can be obtained as

Re [σxx(ω)] = 2e2

πω

(
α

h̄

)2 ∫
dk(k cos θ )2

× [
1 − F2

x + F2
y + F2

z

]
× [ f−(k) − f+(k)] δ(h̄ω − �k ). (11)

Here θ = tan−1(ky/kx ) is the azimuthal angle. In our calcula-
tion, the effect of impurities is being ignored. It is thus valid
in the ballistic regime, which has been reached in the case of
2D materials such as high-mobility suspended or encapsulated
graphene [37–39].

Drude conductivity. In order to obtain the total optical
conductivity in the entire frequency range, we calculate the
static Drude conductivity that dominates in the frequency limit
(ω → 0). In the framework of Boltzmann equation, the Drude
conductivity is written as

σ d
νν = − 1

(2π )2

∫
dk|vkν |2 ∂ f (E (k))

∂ E (k)
, (12)

where vkν = 〈ψk| ∂H
∂kν

|ψk〉 is the band velocity along the ν

direction. In the low-temperature limit, one can approximate
− ∂ f (E (k))

∂ E (k) = δ[E (k) − μ] for evaluating σ d
νν .

III. RESULTS AND ANALYSIS

For our numerical analysis, we have taken the system
parameters for typical SD material according to Ref. [20] and

075415-3



ALESTIN MAWRIE AND BHASKARAN MURALIDHARAN PHYSICAL REVIEW B 99, 075415 (2019)

FIG. 3. Plots of the real part of σxx (ω) and σyy(ω) for gapless system (a),(b) and gapped system (c),(d) with the corresponding JDOS in
(e) (for gapless system) and (f) (for gapped system). As shown in legend of (e), solid black curve, dashed blue, and dotted red curve correspond
to μ = 0, μ = 1 meV, and μ = 8 meV, respectively for all plots.

the references therein. The various parameters are taken as
α = 7.5 meV nm2, v = 65 meV nm, and δ0 = 10 meV. The
SOC induced effective mass that opens up a gap, m0 = 1 meV,
and scattering time, τ = 0.04 ps, are taken for illustration
purposes. First, we analyze the interband contribution to the
optical conductivity given in Eqs. (10) and (11). Without the
loss of generality, we will discuss the behavior of optical
conductivity for the case when the perturbation δH = m0σz is
included. Here, the gap between the valence and conduction
bands at the two Dirac points (kx, ky ) = (±k0, 0) is 2m0

and �k=0 = E+ − E− = 2
√

m2
0 + δ2

0 at k = 0, where E± =
E±(k = 0) = ±

√
m2

0 + δ2
0 . The limit of m0 → 0 will yield its

behavior for a gapless SD state. The plots of the total optical
conductivity for both the gapped and gapless SD systems
at three different chemical potentials is given in Fig. 3. We
consider only the lightly doped system, where the chemical
potential is always chosen such that μ < �k=0. The interband
optical conductivity spectrum originates at h̄ω = 2μ. For
the frequency where h̄ω < 2μ and h̄ω < 2m0, all interband
transitions are Pauli blocked [black arrows in Fig. 1(a)].
In the regime h̄ω > 2μ, there is a smooth variation of its
xx component. However, we find that the yy component of
optical conductivity interestingly acquires a giant value when
the frequency of light h̄ω = �k=0. For proper understanding
of such features, we again refer to Figs. 1(b) and 1(c). In
Fig. 1(b), we show a general representation of the various
possible direct interband transitions with the same k-vector
magnitude across three different constant energy levels. The
maximum available k states occur when h̄ω = �k=0 [part (iii)
of Fig. 1(b)]. This anomaly results in a giant optical conduc-
tivity at h̄ω = �k=0 as seen in Figs. 3 and 4. The frequency
that excites the giant optical conductivity is independent of
the chemical potential as shown by the horizontal yellowish
line in Figs. 4(a) and 4(b). The giant optical conductivity σyy

implies a huge absorption rate for y-polarized light of fre-
quency h̄ω = �k=0. Note that the effect of impurities should
lead to indirect interband transitions that can slightly suppress
the giant optical conductivity.

A physical insight of the large degree of anisotropy in
the optical conductivity also lies in the fact that it has a
velocity dependent term [|〈+|vν |−〉|2 that can be simplified
from Eq. (2)] that takes a quasiparticle from the hole to the
particle state or vice versa,

〈−|vν |+〉(k) =
⎧⎨
⎩

−i2αvkxky/
√

g2
x + g2

y if ν = x

iv(αk2
x − δ0)/

√
g2

x + g2
y if ν = y

. (13)

The above term, with the JDOS, is then integrated over the en-
ergy contour at h̄ω = �k. In the limit of k → 0 (where there
is a maximum accumulation of states), the term |〈+|vy|−〉|2 =
v2 whereas the other velocity term vanishes.

The JDOS [Figs. 1(c), 3(e), 3(f) and 4(c)], which is directly
related to the interband optical conductivity, provides an intu-

FIG. 4. Gradient plot of yy components of conductivity (in units
of e2/h̄) for (a) m0 = 1 meV, (b) m0 = 0 meV, and (c) JDOS.
The giant optical conductivity is only excited by frequency h̄ω =√

m2
0 + δ2

0 .
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itive way to understand the giant conductivity at h̄ω = �k=0.
The expression of JDOS is

D(ω) = − 1

4π

∑
ξ

∫
dθ [ f+(kω,ζ (θ )) − f−(kω,ζ (θ ))]

× δ[k − kω,ζ (θ )]

| ∂
∂k (h̄ω − �k )|kω,ζ (θ )

, (14)

where kω,ζ (θ ) are the solutions of the equation h̄ω = �k,

kω,ζ (θ ) = sec θ√
2

√
2δ0

α
− v2

α2
tan2 θ ± κ2, (15)

with κ2 =
√

(h̄ω)2−4m2
0

α2 − v2

α2 (4 δ0
α

tan θ − v2

α2 tan4 θ ) and the
subscript ζ goes for ± in Eq. (15), which shows that there
could be two values of kω(θ ), say kω,1 for “+” and kω,2

for “−.” It is easy to see from Fig. 1(c), that we have both
solutions kω,1 and kω,2 only for h̄ω < �k=0, while there is
only one possible kω,1 value for h̄ω > �k=0.

In Fig. 4(c), separating the regimes I and II is the line
h̄ω = 2μ, with h̄ω >= 2m0. Below this line is region I which
includes the parts with all the Pauli blocked interband transi-
tions [indicated by black arrows in Fig. 1(a)], which thus leads
to zero JDOS in this region and ultimately zero interband
optical conductivity. The JDOS is finite in regimes II and
III. Separating regimes II and III is a yellowish horizontal
line with h̄ω = �k=0. This line corresponds to the giant
optical conductivity which is independent of the chemical
potential. This anomaly in the JDOS arises from the Van Hove
singularity which, as indicated in the above discussion, is due
to the maximum accumulation of states at k = 0.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have presented detailed theoretical stud-
ies of the optical conductivity of 2D semi-Dirac materials. As

an influence of the gap parameter δ0, we found that the optical
response is highly sensitive to the direction of polarization of
light. For light polarized in the direction where the dispersion
is linear, our results predict a giant interband optical conduc-
tivity when the frequency corresponds to the electron-hole
states energy separation at k = 0, while on the other hand,
the interband optical conductivity is significantly suppressed
when light is polarized along the direction orthogonal with
respect to the former. Also, the frequency that excites this
giant optical conductivity is found to be independent of the
chemical potential for the lightly doped semi-Dirac system.
The high degree of anisotropy of optical conductivity suggests
that the SD materials can be a potential candidate of a unique
transparent conductor with a given transparency along one
direction while bearing a very high absorption rate along the
orthogonal direction. Also, the direction dependency of this
giant interband optical conductivity can be presented as a
tool that can be uniquely used to probe the dispersive nature
of 2D semi-Dirac materials. To wind up this paper, we also
proposed the possibility of extracting some interesting physics
that may coexist along with the giant optical conductivity in
supercrystal (TiO2)5/(VO2)3 which shows Chern insulating
states, where the band dispersion is governed by a “type-II”
semi-Dirac dispersion.
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