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Floquet states of valley-polarized metal with one-way spin or charge transport in zigzag nanoribbons
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Two-dimensional Floquet systems consisting of irradiated valley-polarized metal are investigated. For the
corresponding static systems, we consider two graphene models of valley-polarized metal with either a staggered
sublattice or uniform intrinsic spin-orbital coupling, whose Dirac point energies are different from the intrinsic
Fermi level. If the frequency of irradiation is appropriately designed, the largest dynamical gap (first-order
dynamical gap) opens around the intrinsic Fermi level. In the presence of the irradiation, two types of edge
states appear at the zigzag edge of the semi-infinite sheet with energy within the first-order dynamical gap:
the Floquet edge states and the strongly localized edge states. In narrow zigzag nanoribbons, the Floquet edge
states are gapped out by the finite-size effect and the strongly localized edge states remain gapless. As a result,
the conducting channels of the nanoribbons consist of the strongly localized edge states. Under the first and
second model, the strongly localized edge states carry one-way spin-polarized and one-way charge current
around the intrinsic Fermi level, respectively. Thus, the narrow zigzag nanoribbons of the first and second model
have asymmetric spin and charge transmission rates, respectively. Quantum-transport calculations predict sizable
pumped currents of charge and spin, which could be controlled by the Fermi level.
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I. INTRODUCTION

Floquet theory describes the quantum states of systems
with a (temporally) periodically driven Hamiltonian, such
as optically irradiated graphene [1–3] or (temporally) peri-
odically strained graphene [4,5]. Novel types of topological
phases have been predicted to appear in dynamical systems
of two-dimensional (2D) materials of the graphene family
[6–14]. A motivation to study Floquet states in 2D materials
is to construct topologically protected edge states [15–20]
for electronic and spintronic applications. Optically irradiated
graphene, which features low-energy excitations near the K
and K′ Dirac points of the Brillouin zone of a honeycomb
lattice, has Floquet gaps of all order around energy levels
ε = 1

2 h̄�N [21], with � being the optical frequency and N
being an integer. The first-order gaps (i.e., the dynamical
gaps induced by the first-order electron-photon coupling) lie
around ε = ± 1

2 h̄� and the second-order gaps lie around ε =
0. At the edge of the semi-infinite graphene, the topological
edge states appear within the first-order and higher-order gaps.
Because the first-order gap is larger than the higher-order
gaps, we aim to engineer Floquet systems with a first-order
gap lying around the intrinsic Fermi level (ε = 0).

For graphene models with particle-hole symmetry, the
Dirac points of both valleys lie at ε = 0 so that the first-order
gap of the corresponding Floquet systems always lies around
ε = ± 1

2 h̄�. The naive idea is to move the energy level of
one Dirac point to ε = ± 1

2 h̄� such that the first-order gap
is moved to ε = 0. To maintain neutrality in the system, the
energy level of another Dirac point is moved to ε = ∓ 1

2 h̄�.
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If the pair of Dirac points lie in opposite valleys, the static
system constitutes valley-polarized metal (VPM).

This article considers two graphene models of VPM. For
the static systems, zigzag nanoribbons of the two models
host strongly localized edge states (SLESs) at the zigzag
edge whose band structures connect the two valleys. The
first model of VPM is graphene with staggered sublattice in-
trinsic spin-orbital coupling (SOC). This staggered sublattice
intrinsic SOC is found in graphene with proximity coupling
to the transition-metal dichalcogenides (TMDCs) [22–24].
The SLESs were recently proposed to be pseudohelical edge
states (PHESs) [25]. The PHESs carry one-way spin-polarized
current around ε = 0. The second model of VPM is graphene
with uniform intrinsic SOC and an appropriate staggered
sublattice on-site potential and magnetic exchange field. The
model is more conveniently realized in silicenelike 2D ma-
terials [26] because of the large SOC and tunable staggered
sublattice on-site potential. The SLESs carry one-way charge
current of around ε = 0. For both models, the bulk states in the
zigzag nanoribbons carry spin or charge current that offsets
the one-way currents of the SLESs. Thus, the quantum trans-
port of the zigzag nanoribbons is regular, i.e., the forward and
backward transmission rates are the same, and the pumped
currents of charge and spin are zero.

Under irradiation at an appropriate frequency, Floquet
systems based on the two models of VPM have a first-order
gap at around ε = 0 in the bulk band structures. The zigzag
edge of a semi-infinite sheet hosts Floquet edge states with
energy within the first-order gap. The Floquet edge states are
weakly localized at the zigzag edge. In the narrow zigzag
nanoribbons, the Floquet edge states are gapped out due to the
finite-size effect. On the other hand, the SLESs are negligibly
influenced by both the irradiation and the finite-size effect.
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Thus, the SLESs become the dominating conductive states
at around ε = 0, thus determining the quantum-transport be-
havior of the nanoribbons. As a result, the irradiated zigzag
nanoribbons of the two models have pumped current of spin
and/or charge in addition to nonzero spin conductance.

The article is organized as follows: In Sec. II, the tight-
binding model of VPM on a honeycomb lattice with a time-
dependent Hamiltonian is given, and the calculation methods
for the Floquet band structure and conductance are presented.
In Secs. III and IV, the numerical results of the Floquet state
consisting of the first and second VPM model are presented,
respectively. In Sec. IV, the conclusion is given.

II. MODEL HAMILTONIAN AND
CALCULATION METHOD

The tight-binding model on a honeycomb lattice is a gen-
eral model that describes graphene in addition to silicene and
germanene. The effect of optical irradiation is described by
time-dependent Peierls phases on nearest- and next-nearest-
neighbor hopping. The time-dependent Hamiltonian is

H = −
∑
〈i, j〉,s

γi j (t )c+
is c js + i

∑
〈〈i, j〉〉,s,s′

λi
I (t )νi j[ŝz]ss′c+

is c js′

+�
∑

i,s

ξic
+
is cis + λM

∑
i,s,s′

[ŝz]ss′c+
is cis′ , (1)

where i( j) is the index of the lattice site, s(s′) = ±1 is the
spin index, γi j (t ) = γ0 f〈i, j〉(t ) is the time-dependent nearest-
neighbor hopping energy with γ0 being the hopping parameter
and f〈i, j〉(t ) being the time-dependent function, c+

is (cis) is the
creation (annihilation) operator of the electron at the ith lattice
site with spin s, ŝz is the spin-z Pauli matrix, and νi j = ±1 rep-
resents clockwise or counterclockwise next-nearest-neighbor
hopping. The summation with indices 〈i, j〉(〈〈i, j〉〉) covers
the nearest-neighbor (next-nearest-neighbor) lattice site. γ0 is
2.8, 1.6, and 1.3 eV for graphene, silicene, and germanene,
respectively. λi

I (t ) is equal to λA
I f〈〈i, j〉〉(t ) and λB

I f〈〈i, j〉〉(t ) for
the A and B sublattice, respectively, which also includes the
time-dependent function f〈〈i, j〉〉(t ). � is the strength of the
staggered sublattice on-site potential, and ξi = ±1 represents
the A or B sublattice. In graphene, � can be induced by an
h-BN [27,28] or SiC [29] substrate; in silicene and germanene,
� is induced by a vertical static electric field Ez. Because
of the buckled structure of silicene and germanene, the A
and B sublattice planes are separated by 2l; thus, � = Ezl .
The exchange field λM is induced by proximity with a fer-
romagnetic insulator. � and λM are not time dependent. For
the corresponding static systems, the first model of VPM
has parameters λA

I = −λB
I = λI , � = 0, and λM = 0, and the

second model of VPM has parameters λA
I = λB

I = λI and � =
λM = 3

√
3λI . In addition to application to graphenelike 2D

materials, the two models can be experimentally realized in
cold atomic systems [30–32].

In the presence of a normally incident optical field with the
in-plane electric field being E = x̂Ex sin(�t ) + ŷEy sin(�t −
ϕ), the time-dependent function of the nearest-neighbor

hopping terms is given as

f〈i, j〉(t ) = exp

{
i
2π

�0

∫ r j

ri

A(r, t ) · r
}

= exp

{
i

2e

h̄�
[Exx̂ · ri j cos(�t )

+ Eyŷ · ri j cos(�t − ϕ)]

}
, (2)

where �0 is the magnetic flux quantum, ri j = r j − ri, with ri

being the location of the ith lattice site. The time-dependent
function of the intrinsic SOC f〈〈i, j〉〉(t ) has the same form.
In this article, we consider only the circular polarized optical
field with Ex = Ey = E0 and ϕ = π/2. According to Floquet
theory, the Floquet state is a time-periodic function written as
|�α (t )〉 = e−iεαt/h̄

∑+∞
m=−∞ |uα

m〉eim�t , with εα being the quasi-
energy level of the αth eigenstate and |uα

m〉 the corresponding
eigenstate in the mth Floquet replica. The Floquet states and
the corresponding quasi-energy level are the solution of the
equation

HF |�α (t )〉 = εα|�α (t )〉, (3)

where HF = H − ih̄ ∂
∂t is the Floquet Hamiltonian. The time-

dependent factor in the Hamiltonian can be expanded by the
set of time-periodic functions eim�t as

f〈i, j〉(t ) =
∞∑

m=−∞
im f m

〈i, j〉e
im�t e−imϕ , (4)

with

f m
〈i, j〉 =

∞∑
m′=−∞

Jm′

(
2eEx

h̄�
x̂ · ri j

)
Jm−m′

(
2eEy

h̄�
ŷ · ri j

)
eim′ϕ,

(5)

where Jm(x) is the mth-order first-type Bessel function of
argument x. A similar expansion is applied to f〈〈i, j〉〉(t ). In
the direct product space (Sambe space), R

⊗
T , with R

being the Hilbert space and T being the space of the time-
periodic function, the set of functions {|uα

m〉, m ∈ N} form the
time-independent basis functions of the Floquet states. In this
space, the Floquet Hamiltonian can be expressed as the time-
independent block matrix H(m1,m2 ), with m1 and m2 being the
indices of replicas. The diagonal blocks H(m,m) include three
parts: the nearest- and next-nearest-neighbor hopping terms,
whose hopping coefficients are renormalized by the factor
f 0
〈i, j〉 and f 0

〈〈i, j〉〉, respectively; the staggered sublattice on-site
potential and magnetic exchange field; and the diagonal ma-
trix mh̄�I. The nondiagonal block includes the nearest- and
next-nearest-neighbor hopping terms, whose hopping coeffi-
cients are renormalized by the factors im2−m1 f m2−m1

〈i, j〉 e−i(m2−m1 )ϕ

and im2−m1 f m2−m1
〈〈i, j〉〉 e−i(m2−m1 )ϕ , respectively. The quasi-energy

band structures of the bulk or nanoribbon version of the model
can be obtained by diagonalization of the Floquet Hamilto-
nian with appropriate Bloch periodic boundary conditions.
For the eigenstate of the αth quasi energy, the weight of
the static component (i.e., the m = 0 replica) is given as
〈uα

0 |uα
0 〉. In the numerical calculation, the Floquet index m

is truncated at a maximum value with m ∈ [−mmax, mmax].
In general, calculation with larger mmax gives more accurate
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FIG. 1. (a) Structure of the transport calculation. The leads are
within the dashed rectangle, which is not irradiated. Overlaid is
the amplitude of the optical field, E0. The function of E0 vs the y
coordinate is plotted in (b) and is a Gaussian function.

results. If the investigation focuses on the first-order gap of
the quasi-energy dispersion in the m = 0 replica, mmax = 2
gives sufficiently accurate results because all replicas with
a single-photon energy difference from the first-order gap
are included. Similarly, if the investigation focuses on the
Pth-order gap, mmax = 2P is required for sufficient accuracy.

The density of states of a semi-infinite sheet with a zigzag
edge is calculated to visualize the dispersion of SLESs and
Floquet edge states. Similar to the Floquet Hamiltonian,
the Floquet Green’s function can be expressed as a time-
independent block matrix in the Sambe space: G (m1,m2 ). The
local density of states on the ith lattice site is − 1

π
Im[G (0,0)

ii ].
The Floquet Green’s function of the primitive cells at the left
or right zigzag edge can be obtained by applying a recursive
method [33–35] to the Floquet Hamiltonian. Because the
edge states are not completely localized at the terminal
primitive cell, a backward recursive process is performed to
calculate the Floquet Green’s function of the internal primitive
cells near the zigzag edge. The numerical results show that
the SLESs are strongly localized at the terminal primitive
cell, while the Floquet edge states are weakly localized. In
our calculation, the density of states for each zigzag edge
corresponds to the summation of the local density of states
of 50 primitive cells near the terminal, given as

ρleft(right)(ε, ky) = − 1

π

∑
i∈left(right)

Im
[
G (0,0)

ii (ε, ky)
]
. (6)

In practical circumstances, the transport is measured for
a zigzag nanoribbon with a finite length that is connected to
two leads [36–39]. The structure of the transport calculation
is shown in Fig. 1(a). The scattering region is the zigzag
nanoribbon on the x-y plane with the width being 2.13 nm
and the longitudinal length (along the y axis) being 73.79 nm.
The optical irradiation is restricted to the middle part of the
scattering region. The amplitude of the optical field, E0, is
assumed to be uniform along the x axis, and the Gaussian
function along the y axis is as shown in Fig. 1(b). The leads
are not irradiated by the optical field, so both leads are static
systems, i.e., VPM. At the buffering unit cells (three unit cells
in our calculation) between the leads and the scattering region,

E0 slowly increases from zero to a small value at the tails of
the Gaussian function.

The Floquet Green’s function of the zigzag nanorib-
bon in the scattering region is calculated by the recur-
sive algorithm [33–35]. For static systems, the transmis-
sion coefficient at energy level ε from lead L to lead R
is determined by the Landauer-Büttiker formula, TLR(ε) =
Tr[�L(ε)GLR(ε)�R(ε)G†

LR(ε)], with �L(R)(ε) being the decay
width matrices of the L(R) lead and GLR(ε) being the Green’s
function between the lattice sites that attach to the L and R
leads. By contrast, for the Floquet systems, the transmission
accompanied by the m-photon process (absorption for m <

0 or emission for m > 0) has transmission rate T m
LR(ε) =

Tr[�(m,m)
L (ε)G (m,0)

LR (ε)�(0,0)
R (ε)(G (m,0)

LR )†(ε)]. The additional su-
perscript m is the index of the Floquet replicas, and G (0,m)

LR
is the mth row 0th column block of the Floquet Green’s
function. Because the leads are not irradiated, the decay width
matrices of each Floquet channel are given as �

(m,m)
L (ε) =

�L(ε + mh̄�). The total forward (backward) transmission
rate at energy ε is TLR(RL)(ε) = ∑

m T m
LR(RL)(ε) [34,39]. The

transmission rates determine the time-average total current
across the scattering region as [38]

I = 2e

h

∫
[TLR(ε) fL(ε) − TRL(ε) fR(ε)]dε , (7)

where fL(R)(ε) is the Fermi-Dirac distribution at lead L(R).
In the presence of irradiation, the forward and backward
transmission rates are different, so the current is possibly
nonzero in zero bias, i.e., fL(ε) = fR(ε). Assuming the zero-
temperature limit and linear order in the bias voltage V , the
current is approximated as

I = 2e

h

∫ εF + eV
2

−∞
TLR(ε)dε − 2e

h

∫ εF − eV
2

−∞
TRL(ε)dε

≈ G(εF )V + I p(εF ) , (8)

where εF is the Fermi level, G(ε) = (2e2/h)[TLR(ε) +
TRL(ε)]/2 is the differential conductance, and I p(εF ) =
(2e/h)

∫ εF

∞ [TLR(ε) − TRL(ε)]dε is the pumped current. Be-
cause the transmission rates depend on the spin component,
the differential conductance and the pumped current are spin
dependent, which are designated as G± and I p

±, respectively.
One can define charge and spin differential conductances as
GC = G+ + G− and GS = G+ − G−, respectively, and the
charge and spin-pumped currents as I p

C = I p
+ + I p

− and I p
S =

I p
+ − I p

−, respectively.

III. GRAPHENE WITH STAGGERED SUBLATTICE
INTRINSIC SOC

The first model of VPM is given by the Hamiltonian (1)
with parameters λA

I = −λB
I = λI , � = 0, and λM = 0. For a

realistic heterostructure of graphene on TMDCs, the model
should also include a staggered sublattice on-site potential
and Rashba SOC. The heterostructure is an insulator instead
of VPM. Engineering of the heterostructure, such as doping
or positioning in proximity to another substrate, could offset
the staggered sublattice on-site potential and Rashba SOC. We
focus on the conceptual VPM model without Rashba SOC and
with zero or small staggered sublattice on-site potential.
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A. Floquet states of the bulk

The appropriate optical frequency depends on the model
parameters and the optical parameters. If λI is much smaller
than γ0, the low-energy excitations near the K and K′ points
of the Brillouin zone can be described by the Dirac fermion
model with the Hamiltonian

H = h̄vF (τσxkx + σyky)

+ 3
√

3

2

[
λA

I (σz + σ0) + λB
I (σz − σ0)

]
τ s, (9)

where τ = ±1 stand for K or K′ valleys. Because λA
I =

−λB
I = λI , the intrinsic SOC terms become a constant poten-

tial 3
√

3λIτ s. The model has particle-hole-valley symmetry,
i.e., the static band structure is symmetric under the simulta-
neous operation of particle-hole and K-K′ valley exchanges.
For the static systems, the energy levels of the Dirac points
are 3

√
3λI sτ ; all four Dirac fermion models are gapless. The

intrinsic Fermi level cuts through all Dirac cones at finite
energy, so the model corresponds to VPM. Although the
particle-hole symmetry is broken, the band structure of each
Dirac cone is symmetric about the energy level 3

√
3λIτ s. In

the Floquet solution with E0 = 0, the band structures of the
m replicas are obtained by adding mh̄� to the static band
structures. The crossings between the band structures of all
replicas lie at energy ε = 3

√
3λIτ s + 1

2 h̄�. Therefore, the
appropriate optical frequency is h̄� = 3

√
3λI × 2. If λI is

not much smaller then γ0, the static band structures at ε = 0
significantly deviate from the Dirac fermion model such that
the band structures are no longer symmetric about the energy
level 3

√
3λIτ s. Thus, in the Floquet solution with E0 = 0,

the crossing between the band structures of all replicas is no
longer aligned at energy ε = 3

√
3λIτ s + 1

2 h̄�. The optical
frequency needs to be tuned at around h̄� = 3

√
3λI × 2 so

that the crossings between the m = 0 and m = ±1 replicas
align at ε = 0. With E0 
= 0, the first-order gaps of the quasi-
energy band structures lie around ε = 0. However, the energy
ranges of the first-order gaps in the two valleys are different
from each other, so the global first-order gap is smaller than
the first-order gap in each valley. Because the irradiation
changes the hopping parameters in the diagonal blocks of
the Floquet Hamiltonian by the factors f 0

〈i, j〉 and f 0
〈〈i, j〉〉, the

energy level of the Dirac points becomes dependent on E0. As
a result, for a given E0, the frequency needs to be further tuned
to maximize the global first-order gap.

The quasi-energy band structure of a spin-up electron in
the bulk with parameters λI = 0.06γ0 and E0 = 0.3 V/nm
is plotted in Fig. 2(a). The band structure of the spin-down
electron is obtained by mirroring the band structure of the
spin-up electron about the M point. The optical frequency is
tuned to h̄� = 3

√
3λI × 1.95 so that the first-order gaps in K

and K′ valleys lie in the same energy range. Around energy
ε = 0, multiple sidebands with small weight in the m = 0
replica (〈uα

0 |uα
0 〉 � 1) are gapless. As a result, the Floquet

systems are not insulators. Thus, the topological property is
not well defined for this Floquet system. In the additional
presence of the staggered sublattice on-site potential, the local
static gap of 2� at the two Dirac points is opened. Assuming
� = 0.15γ0, the quasi-energy band structure is plotted in

FIG. 2. The thin solid lines are the quasi-energy band structures
of the spin-up electron plotted along the K-M-K′ line in the Brillouin
zone. The color scale on top of the band structures indicates the
weight on the m = 0 replica, 〈uα

0 |uα
0 〉. The model parameters are λA

I =
−λB

I = λI = 0.06γ0 and λM = 0; � = 0 in (a), and � = 0.15γ0 in
(b). The optical parameters are E0 = 0.3 V/nm and h̄� = 3

√
3λI ×

1.95. The horizontal dashed lines indicate the energy 1
2 h̄�N . The

thick (blue) straight lines indicate the energy levels of SLESs. In
the dashed (solid) part, the difference between the energy levels of
SLESs and bulk states is smaller (larger) than h̄�. The double arrows
indicate the optical transition.

Fig. 2(b). The first-order gaps in the two valleys both lie
around ε = 0. The gap size at the K (K′) valley decreases
(increases).

B. Zigzag edge of semi-infinite sheet

For a zigzag edge of semi-infinite sheet of the irradiated
VPM, two types of edge states appear: the SLESs and Floquet
edge states. The Floquet edge states appear in only the Floquet
systems, with energy levels lying within the dynamical Flo-
quet gaps. The SLESs appear in both the static and Floquet
systems. With appropriate model parameters, the SLESs are
negligibly impacted by the irradiation. For the static system of
pristine graphene with λI = 0, the bands of the SLESs are the
zero-energy flatbands of the zigzag edge, which connects the
two valleys. The SLESs are strongly localized at the terminal
atom of one zigzag edge and weakly distributed among the
other atoms in the same sublattice. With λI 
= 0, the bands
of the SLESs become nearly linearly dispersive with nonzero
slope. For the graphene with staggered sublattice intrinsic
SOC, the SLESs are PHESs. The PHESs with the same spin at
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the left and right zigzag edge travel along the same direction.
By contrast, in the quantum spin Hall (QSH) model with
uniform intrinsic SOC [40], the SLESs (referred to as helical
edge states) with the same spin at the left and right zigzag edge
travel along the opposite directions. Because the staggered
sublattice intrinsic SOC does not induce band inversion, the
PHESs appear in only the zigzag edge and do not appear in
the armchair edge. The bulk band structures along the K-M-K′
line in the Brillouin zone (Fig. 2) correspond to the band edge
of the bulk states in the semi-infinite sheet or nanoribbon
with zigzag edge. One can plot the bands of the PHESs in
the bulk band structure (the thick blue lines in Fig. 2) and
then estimate the optical coupling strength between the bulk
states and the PHESs. If the difference between the energy
levels of the PHESs and the bulk states is more than h̄�,
the PHESs and the bulk states are negligibly coupled by
higher-order photon transitions. The PHESs that satisfy this
condition lie in the sections of the bands with solid blue
lines in Fig. 2. These sections would remain gapless in the
Floquet systems. In contrast, the sections of the bands with
dashed blue lines would be split by multiple Floquet gaps.
For the model with � = 0 in Fig. 2(a), the bands of the
PHESs around ε = 0 would remain gapless and the PHESs
would be the dominating conductive states. In contrast, for the
model with � = 0.15γ0 in Fig. 2(b), the bands of the PHESs
around ε = 0 would be split and the PHESs would not be
the dominating conductive states. Thus, a small or vanishing
staggered sublattice on-site potential is preferred. In the rest
of this section, � = 0 is assumed.

For the model with λI = 0.02γ0, h̄� = 3
√

3λI × 1.99, and
E0 = 0.1 V/nm, the density of states of the spin-up (down)
electron at the left and right zigzag edge is plotted in Figs. 3(a)
and 3(b) [(c) and (d)], respectively. The figures show the dis-
tribution of bulk states, Floquet edge states, PHESs, and side-
bands in the (ε, ky) space. The numerical results confirm that
the PHESs have linear dispersive bands with wave number
between the K and K′ points; the PHESs with spin up (down)
at both zigzag edges travel along the forward (backward)
direction. Thus, the PHESs at the two zigzag edges carry spin
currents along the same direction. The first-order gaps of the
bulk states around ε = 0 are approximately 0.1 eV. Within
the first-order gap, the Floquet helical edge states (FHESs)
appear. For the same zigzag edge and the same spin, the
FHESs in the K and K′ valleys travel along the same direction.
For the same zigzag edge and the opposite spin, the FHESs
travel along the opposite directions so that the FHESs carry
spin current along the zigzag edge. For the opposite zigzag
edge, the spin currents carried by the FHESs flow opposite
to each other. The sidebands have a small density of states
around ε = 0, which also contributes to the transport along
the zigzag edge.

C. Spin transport of the zigzag nanoribbon

In the narrow zigzag nanoribbons, the appropriate optical
frequency depends on the nanoribbon width. The band struc-
tures of the bulk states and FHESs significantly deviate from
those in the zigzag edge of the semi-infinite sheet (as shown
in Fig. 3) due to the finite-size effect. This effect mixes the
bulk states and the FHESs at the two zigzag edges, forming

FIG. 3. Density of states for the zigzag edge of the semi-infinite
sheet. ρleft (ε, ky ) and ρright (ε, ky ) of the spin-up states are plotted in
(a) and (b), respectively; those of the spin-down states are plotted
in (c) and (d), respectively. The model parameters are λA

I = −λB
I =

λI = 0.02γ0 and � = λM = 0. The optical parameters are h̄� =
3
√

3λI × 1.99 and E0 = 0.1 V/nm. The color scale is normalized
to 1.

the nanoribbon mixed states. The optical frequency needs to
be tuned again so that the first-order gaps of the nanoribbon
mixed states in the two band valleys lie in the same energy
range. On the other hand, the band structure of the PHESs with
wave numbers between the two band valleys are only mini-
mally impacted by the finite-size effect due to strong localiza-
tion at the zigzag terminal. A zigzag nanoribbon with a width
of 2.13 nm is studied as an example. For the model with λI =
0.02γ0 and E0 = 0.1 V/nm, the optical frequency is tuned
to h̄� = 3

√
3λI × 1.8. The quasi-energy band structures of

spin-up and spin-down electrons are plotted in Figs. 4(a) and
4(b), respectively. Within the energy range of the first-order
gaps, the sidebands have only a small weight on the m = 0
replica, so the PHESs become the dominating conductive
bands. The forward (backward) quantized transmission rate
of the PHESs with spin-up (down) electrons is 2, whereas the
backward (forward) transmission rate of the PHESs with spin-
up (down) electrons is 0. As a result, the zigzag nanoribbon
exhibits one-way spin-polarized transmission. Because of the
presence of the conductive sidebands, the difference between
the forward and backward transmission rate of the same spin
is slightly smaller than 2.

To confirm the one-way spin-polarized transport, quantum-
transport calculations were performed for the finite irradiated
zigzag nanoribbon with the structure shown in Fig. 1(a). The
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FIG. 4. The quasi-energy band structures of spin-up and spin-
down electrons of the zigzag nanoribbon are shown in (a) and (b),
respectively. The color scale on top of the band structures indicates
the weight on the m = 0 replica, 〈uα

0 |uα
0 〉. The width of the zigzag

nanoribbon is 2.13 nm. The model and optical parameters are the
same as in Fig. 3 except that the optical frequency is changed to
h̄� = 3

√
3λI × 1.8. The horizontal dashed lines indicate the energy

1
2 h̄�N . The forward (backward) transmission rates of the spin-up
and spin-down electrons vs energy are plotted in (c) as solid black
(dashed blue) lines in the upper and lower scale of the y axis, respec-
tively. The charge and spin differential conductances are plotted in
(d) as solid black and dashed blue lines, respectively. The charge-
and spin-pumped current are plotted in (e) and (f), respectively. The
vertical dotted lines in (c–f) indicate the energy 1

2 h̄�N .

forward (backward) transmission rate TLR(RL) versus energy
is plotted in Fig. 4(c). For better visualization, TLR(RL) of the
spin-up and spin-down electrons is plotted in the upper and
lower scale of the y axis, respectively. The spin-up TLR(RL)

is equal to the spin-down TRL(LR), so the differential conduc-
tances of the spin-up and spin-down electrons are the same.
Thus, the spin differential conductance is zero. The charge
and spin differential conductances are plotted in Fig. 4(d). The
charge differential conductance consists of multiple plateaus
with dips. The charge- and spin-pumped current are plotted
in Figs. 4(e) and 4(f), respectively. Although the charge con-
ductance is finite, the charge-pumped current is nearly zero.
The magnitude of this current monotonically increases as the
Fermi level rises. On the other hand, the spin-pumped current
is finite and its direction is controlled by the Fermi level. If
εF = 0, the spin-pumped current is small but nonzero. If εF

changes within the first-order Floquet gap, the spin-pumped
current rapidly changes. In the absence of optical irradiation,
both TLR and TRL are the same, so the spin-pumped current
vanishes. Therefore, one-way spin transport is controlled by
the presence of the optical irradiation.

The optical parameters for experimental implementation
of the Floquet system are discussed here. For a bulk or
semi-infinite sheet, we assume that the graphene is irradiated
by a normally incident Gaussian beam. If the width of the
beam waist is larger than the wavelength, the optical field
in the middle of the Gaussian beam can be idealized as a
plane wave. We designate w0 = w1λ as the width of the beam
waist, with λ = 2πc/� being the wavelength and w1 � 1.

The power of the Gaussian beam is P0 = π |E0|2w2
0

4Z0
, with Z0 =√

μ0μr

ε0εr
being the impedance of the background media. The

first-order gap can be estimated by a first-order perturbation
method as ηh̄� = evF E0

�
[16] with η < 0.5 and vF ≈ c/330.

Thus, the power of the Gaussian beam is

P0 = πc2h̄2�2w2
1η

2

Z0ev2
F

≈ (30h̄�w1η)2[W ] . (10)

For the model with parameters in Figs. 3 and 4, assuming
that w1 = 1 and η = 0.2, we have P0 ≈ 12 W. For the system
in Fig. 4, the optical field pattern has subwavelength size.
Plasmonic devices, such as a metallic tip or plasmon cavity
[41], can be used to focus the Gaussian beam into a subwave-
length field pattern. The local electric field is enhanced by the
geometry factor F . Thus, the required power of the laser beam
is reduced by a factor of

√
F .

IV. GRAPHENE WITH UNIFORM INTRINSIC SOC

The second VPM model is given by the Hamiltonian (1)
with parameters λA

I = λB
I = λI and � = λM = 3

√
3λI . This

model is more conveniently realized in the 2D staggered semi-
conductors silicene, germanene, stanene, and plumbene [42].

A. Floquet states of the bulk

The appropriate optical frequency depends on the model
parameters but not on the optical parameters. The low-energy
excitation near the K and K′ points of the Brillouin zone can
be described by the Dirac fermion model, whose Hamiltonian
is

H = h̄vF (τσxkx + σyky) + 3
√

3λIσzτ s + �σz + λMσ0s.

(11)

The model has particle-hole-valley-spin symmetry, i.e., the
static band structure is symmetric under the simultaneous
operation of particle-hole, K-K′ valley, and spin-up and spin-
down exchanges. For the static systems, the energy levels of
the Dirac points are λMs. Two Dirac fermion models (spin up
in the K′ valley and spin down in the K valley) are gapless;
the other two Dirac fermion models have a gap as large as
4λM . The intrinsic Fermi level cuts through the two gapless
Dirac cones, which have opposite spin and lie in opposite
valleys. Thus, the VPM exhibits spin-valley locking. With
sizable intrinsic SOC, the band structures at ε = 0 deviate
from the linear dispersion of the Dirac cones. In addition,
the band structure of the spin-s electron is symmetric about
the energy level λMs throughout the whole Brillouin zone. As
a result, the appropriate optical frequency is exactly h̄� =
λM × 2. In the presence of irradiation with this frequency,
the first-order gaps and all higher-order gaps of the Floquet
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quasi-energy band structures lie around ε = 0. The Floquet
systems are insulators. The quasi-energy band structures of
the Floquet system with model parameters λI = 0.06γ0 and
optical parameters E0 = 0.9 V/nm and h̄� = 2λM are plotted
in Fig. 5.

Because the Floquet systems are insulators, their topolog-
ical properties can be well defined. One can define the Chern

number Cα of the αth quasi-energy band [21,43,44] as

Cα = 1

2π

∫
BZ

d2kBα , (12)

where Bα is the Berry curvature of the αth quasi-energy band.
The integral covers the whole Brillouin zone. For the Floquet
systems, Bα is defined as

Bα (k) = −
∑
α′ 
=α

2Im〈�α (k, t )|vx|�α′ (k, t )〉〈�α′ (k, t )|vy|�α (k, t )〉
(εα − εα′ )2

, (13)

where vx(y) = ∇kx (ky )HF (k) is the velocity operator. The Berry
curvature can be evaluated at any fixed time. The truncation
of the Floquet replicas should satisfy the condition mmax >

6γ0/(h̄�), which ensures that the quasi-energy bands within
the static bandwidth 6γ0 include all relevant crossings be-
tween different replicas. For spin s, the lowest 2mmax + 1 − s
quasi-energy bands are occupied. Summation of the Chern

FIG. 5. The quasi-energy band structure of the spin-up and spin-
down electrons in (a) and (b), respectively, are plotted along the
K-M-K′ line in the Brillouin zone. The color scale on top of the
band structures indicates the weight on the m = 0 replica, 〈uα

0 |uα
0 〉.

The model parameters are λA
I = λB

I = λI = 0.06γ0 and � = λM =
3
√

3λI ; the optical parameters are E0 = 0.9 V/nm and h̄� = 2λM .
The horizontal dashed lines indicate the energy 1

2 h̄�N . The thick
(blue) straight lines indicate the energy levels of SLESs. In the
dashed (solid) part, the difference between the energy levels of
SLESs and bulk states is smaller (larger) than h̄�. The double arrows
indicate the optical transition.

numbers of all occupied bands gives the winding number
at the intrinsic Fermi level. The winding number yields the
number of Floquet edge states across the intrinsic Fermi level.
However, for the Floquet systems in Fig. 5, numerical calcula-
tion of Eq. (12) is challenging because Bα (k) has sharp peaks
at the higher-order dynamical gap. For the Floquet systems
with large optical intensity (E0 > 20 V/nm), the winding
numbers of each spin vary between −3 and 1. In some ranges
of E0, the winding numbers of the two spins are different. In
the remaining part of this article, the discussion focuses on the
Floquet systems with more realistic optical intensity, although
the corresponding winding number was not calculated.

B. Zigzag edge of semi-infinite sheet

For a zigzag edge of a semi-infinite sheet of the irradiated
VPM, the SLESs appear in both the static and Floquet sys-
tems. Similar to the analysis in Sec. III B and Fig. 2, the bands
of the SLESs are plotted in the bulk band structure in Fig. 5
as thick blue lines. For each spin, only one of the two SLESs
has a band structure that crosses the energy ε = 0. For the
model parameters in Fig. 5, the bands of SLESs around ε = 0
remain gapless in the Floquet systems. This feature is valid
for the realistic systems with smaller λI .

For the model with λI = 0.02γ0, h̄� = λM × 2, and E0 =
0.1 V/nm, the density of states of the spin-up (down) electron
at the left and right zigzag edge is plotted in Figs. 6(a) and 6(b)
[(c) and (d)], respectively. The numerical results confirm that
the bands of the two SLESs cross ε = 0. The two SLESs have
opposite spin, are localized at opposite zigzag terminals, and
travel along the same direction. The Floquet edge states with
bands within the first-order gap around ε = 0 are designated
Floquet chiral edge states (FCESs). Different from the FHESs
in the previous model, the FCESs carry charge currents at the
zigzag edge. The charge currents at the opposite zigzag edges
flow opposite to each other.

C. Charge and spin transport of the zigzag nanoribbon

In the narrow zigzag nanoribbons, the appropriate optical
frequency (h̄� = λM × 2) is not altered by the finite-size
effect because the static band structure of spin s is sym-
metric to the energy level λMs. For the zigzag nanoribbon
with a width of 2.13 nm, λI = 0.02γ0, E0 = 0.1 V/nm, and
h̄� = λM × 2, the quasi-energy band structures of the spin-up
and spin-down electrons are plotted in Figs. 7(a) and 7(b),
respectively. The dominating conductive state at around ε = 0
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FIG. 6. Density of states for the zigzag edge of the semi-infinite
sheet. ρleft (ε, ky ) and ρright (ε, ky ) for the spin-up states are plotted in
(a) and (b), respectively; those of the spin-down states are plotted in
(c) and (d), respectively. The model parameters are λA

I = λB
I = λI =

0.02γ0 and � = λM = 3
√

3λI . The optical parameters are h̄� =
λM × 2 and E0 = 0.1 V/nm. The color scale is normalized to 1.

corresponds to the SLESs that carry one-way charge current.
As a result, with the Fermi level around ε = 0, the forward
and backward quantized transmission rate is expected to be 0
and 2, respectively. The large band gaps of the spin-up and
spin-down band structures around the energy 1

2 h̄�(− 1
2 h̄�)

arise not from optical irradiation but from the finite-size effect.
The optical irradiation induces the Floquet sidebands within
these gaps.

Similar to the analysis in the previous model, the transport
of the zigzag nanoribbon with finite length and a restricted
irradiated region is calculated. The forward and backward
transmission rates versus energy are plotted in Fig. 7(c). At
ε = 0, the only conductive states are the SLESs that travel
along the backward direction, so the forward transmission
rate should be zero. However, the numerical result of the for-
ward transmission rate at ε = 0 is 0.03 because of tunneling
through the irradiated region. For the longer scattering region
with a 900-unit cell, the forward transmission rate is reduced
to 10−6. The charge and spin differential conductances are
plotted in Fig. 7(d). The differential conductances of the
spin-up and spin-down electrons are different, so the spin
differential conductance is nonzero. The plateaus of quantized
spin differential conductance at around ± 1

2 h̄� are due to the
finite-size effect rather than the optical irradiation. The dips
in these plateaus are due to the excitation of the sidebands

FIG. 7. The quasi-energy band structures of the spin-up and spin-
down electrons of the zigzag nanoribbon are plotted in (a) and (b),
respectively. The color scale on top of the band structures indicates
the weight on the m = 0 replica, 〈uα

0 |uα
0 〉. The width of the zigzag

nanoribbon is 2.13 nm. The model and optical parameters are the
same as in Fig. 6. The horizontal dashed lines indicate the energy
1
2 h̄�N . The forward (backward) transmission rates of the spin-up
and spin-down electrons vs energy are plotted in (c) as solid black
(dashed blue) lines in the upper and lower scale of the y axis, re-
spectively. The charge and spin differential conductances are plotted
in (d) as solid black and dashed blue lines, respectively. The charge
and spin-pumped current are plotted in (e) and (f), respectively. The
vertical dotted lines in (c–f) indicate the energy 1

2 h̄�N .

by the irradiation. The charge- and spin-pumped currents
are plotted in Figs. 7(e) and 7(f), respectively. Because the
first-order gaps at ε = 0 and ε = h̄�(ε = −h̄�) induce large
differences between the forward and backward transmission
rates of the spin-up and spin-down electrons, the pumped
current of each spin rapidly changes as the Fermi level sweeps
through these gaps. As the Fermi level sweeps through ε = 0,
the charge-pumped current changes rapidly and changes its
sign, while the spin-pumped current changes only gradually.
As εF = 16 meV, the charge-pumped current is zero, so the
pumped current is pure spin current.

V. CONCLUSION

In conclusion, the Floquet systems of optically irradiated
VPM consisting of 2D graphenelike materials are investi-
gated. Two graphene models of VPM are considered. For
the corresponding static systems, the SLESs of the first (sec-
ond) model carry one-way spin-polarized (one-way charge)
current. By choosing the appropriate optical frequency and
strength, the Floquet systems feature a first-order dynamical

075406-8



FLOQUET STATES OF VALLEY-POLARIZED METAL WITH … PHYSICAL REVIEW B 99, 075406 (2019)

gap around the intrinsic Fermi level, which gaps out the con-
ductive bulk states in bulk, semi-infinite sheet, and nanoribbon
configurations. At the zigzag edge of the semi-infinite sheet,
the conductive states are the SLESs, Floquet edge states,
and sidebands. In narrow zigzag nanoribbons, the conductive
states are SLESs and sidebands. The transport of the side-
bands is negligible; thus, the transport of the narrow zigzag
nanoribbons is determined almost entirely by the properties of
the SLESs. As a result, the one-way spin or charge transport
is optically induced. By sweeping the Fermi level within the

first-order gap, the direction and magnitude of charge- or
spin-pumped current can be controlled.

ACKNOWLEDGMENTS

The project is supported by the National Natural Science
Foundation of China (Grant No. 11704419), the National Ba-
sic Research Program of China (Grant No. 2013CB933601),
and the National Key Research and Development Project of
China (Grant No. 2016YFA0202000).

[1] F. J. Lopez-Rodriguez and G. G. Naumis, Phys. Rev. B 78,
201406(R) (2008).

[2] T. Oka and H. Aoki, Phys. Rev. B 79, 081406(R) (2009).
[3] S. E. Savelev and A. S. Alexandrov, Phys. Rev. B 84, 035428

(2011).
[4] P. Roman-Taboada and G. G. Naumis, Phys. Rev. B 96, 155435

(2017).
[5] P. Roman-Taboada and G. G. Naumis, Phys. Rev. B 95, 115440

(2017).
[6] J.-i. Inoue and A. Tanaka, Phys. Rev. Lett. 105, 017401 (2010).
[7] O. V. Kibis, Phys. Rev. B 81, 165433 (2010).
[8] H. L. Calvo, H. M. Pastawski, S. Roche, and L. E. F. Foa Torres,

Appl. Phys. Lett. 98, 232103 (2011).
[9] S.-T. Pi and S. Savrasov, Sci. Rep. 6, 22993 (2016).

[10] B. Mukherjee, P. Mohan, D. Sen, and K. Sengupta, Phys. Rev.
B 97, 205415 (2018).

[11] Y. Wang, Y. Liu, and B. Wang, Sci. Rep. 7, 41644 (2017).
[12] P. Ledwith, W. J. M. Kort-Kamp, and D. A. R. Dalvit,

Phys. Rev. B 97, 165426 (2018).
[13] H. Liu, J.-T. Sun, C. Cheng, Feng Liu, and S. Meng, Phys. Rev.

Lett. 120, 237403 (2018).
[14] L. Zhou and J. Gong, Phys. Rev. B 97, 245430 (2018).
[15] P. M. Perez-Piskunow, G. Usaj, C. A. Balseiro, and L. E. F. Foa

Torres, Phys. Rev. B 89, 121401(R) (2014).
[16] G. Usaj, P. M. Perez-Piskunow, L. E. F. Foa Torres, and C. A.

Balseiro, Phys. Rev. B 90, 115423 (2014).
[17] M. Claassen, C. Jia, B. Moritz, and T. P. Devereaux,

Nat. Commun. 7, 13074 (2016).
[18] M. Tahir, Q. Y. Zhang, and U. Schwingenschlogl, Sci. Rep. 6,

31821 (2016).
[19] M. Puviani, F. Manghi, and A. Bertoni, Phys. Rev. B 95, 235430

(2017).
[20] B. Hockendorf, A. Alvermann, and H. Fehske, Phys. Rev. B 97,

045140 (2018).
[21] P. M. Perez-Piskunow, L. E. F. Foa Torres, and G. Usaj,

Phys. Rev. A 91, 043625 (2015).
[22] M. Gmitra and J. Fabian, Phys. Rev. B 92, 155403 (2015).
[23] M. Gmitra, D. Kochan, P. Hogl, and J. Fabian, Phys. Rev. B 93,

155104 (2016).
[24] Z. Wang, D.-K. Ki, H. Chen, H. Berger, A. H. MacDonald, and

A. F. Morpurgo, Nat. Commun. 6, 8339 (2015).

[25] T. Frank, P. Hogl, M. Gmitra, D. Kochan, and J. Fabian,
Phys. Rev. Lett. 120, 156402 (2018).

[26] M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012).
[27] G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and

J. van den Brink, Phys. Rev. B 76, 073103 (2007).
[28] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang,

S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L.
Shepard, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).

[29] S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de
Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara,
Nat. Mater. 6, 770 (2007).

[30] N. Goldman, J. C. Budich, and P. Zoller, Nat. Phys. 12, 639
(2016).

[31] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).

[32] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and
W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).

[33] M. B. Nardelli, Phys. Rev. B 60, 7828 (1999).
[34] H. L. Calvo, P. M. Perez-Piskunow, H. M. Pastawski, S. Roche,

and L. E. F. Foa Torres, J. Phys.: Condens. Matter 25, 144202
(2013).

[35] C. H. Lewenkopf and E. R. Mucciolo, J. Comput. Electron. 12,
203 (2013).

[36] Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Phys. Rev.
Lett. 107, 216601 (2011).

[37] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler,
Phys. Rev. B 84, 235108 (2011).

[38] L. E. F. Foa Torres, P. M. Perez-Piskunow, C. A. Balseiro, and
G. Usaj, Phys. Rev. Lett. 113, 266801 (2014).

[39] L. Ying, L. Huang, and Y.-C. Lai, Phys. Rev. B 97, 144204
(2018).

[40] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801
(2005).

[41] H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 097401
(2006).

[42] A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang, and
D. Akinwande, Nat. Mater. 16, 163 (2017).

[43] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B
82, 235114 (2010).

[44] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Phys. Rev.
X 3, 031005 (2013).

075406-9

https://doi.org/10.1103/PhysRevB.78.201406
https://doi.org/10.1103/PhysRevB.78.201406
https://doi.org/10.1103/PhysRevB.78.201406
https://doi.org/10.1103/PhysRevB.78.201406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.84.035428
https://doi.org/10.1103/PhysRevB.84.035428
https://doi.org/10.1103/PhysRevB.84.035428
https://doi.org/10.1103/PhysRevB.84.035428
https://doi.org/10.1103/PhysRevB.96.155435
https://doi.org/10.1103/PhysRevB.96.155435
https://doi.org/10.1103/PhysRevB.96.155435
https://doi.org/10.1103/PhysRevB.96.155435
https://doi.org/10.1103/PhysRevB.95.115440
https://doi.org/10.1103/PhysRevB.95.115440
https://doi.org/10.1103/PhysRevB.95.115440
https://doi.org/10.1103/PhysRevB.95.115440
https://doi.org/10.1103/PhysRevLett.105.017401
https://doi.org/10.1103/PhysRevLett.105.017401
https://doi.org/10.1103/PhysRevLett.105.017401
https://doi.org/10.1103/PhysRevLett.105.017401
https://doi.org/10.1103/PhysRevB.81.165433
https://doi.org/10.1103/PhysRevB.81.165433
https://doi.org/10.1103/PhysRevB.81.165433
https://doi.org/10.1103/PhysRevB.81.165433
https://doi.org/10.1063/1.3597412
https://doi.org/10.1063/1.3597412
https://doi.org/10.1063/1.3597412
https://doi.org/10.1063/1.3597412
https://doi.org/10.1038/srep22993
https://doi.org/10.1038/srep22993
https://doi.org/10.1038/srep22993
https://doi.org/10.1038/srep22993
https://doi.org/10.1103/PhysRevB.97.205415
https://doi.org/10.1103/PhysRevB.97.205415
https://doi.org/10.1103/PhysRevB.97.205415
https://doi.org/10.1103/PhysRevB.97.205415
https://doi.org/10.1038/srep41644
https://doi.org/10.1038/srep41644
https://doi.org/10.1038/srep41644
https://doi.org/10.1038/srep41644
https://doi.org/10.1103/PhysRevB.97.165426
https://doi.org/10.1103/PhysRevB.97.165426
https://doi.org/10.1103/PhysRevB.97.165426
https://doi.org/10.1103/PhysRevB.97.165426
https://doi.org/10.1103/PhysRevLett.120.237403
https://doi.org/10.1103/PhysRevLett.120.237403
https://doi.org/10.1103/PhysRevLett.120.237403
https://doi.org/10.1103/PhysRevLett.120.237403
https://doi.org/10.1103/PhysRevB.97.245430
https://doi.org/10.1103/PhysRevB.97.245430
https://doi.org/10.1103/PhysRevB.97.245430
https://doi.org/10.1103/PhysRevB.97.245430
https://doi.org/10.1103/PhysRevB.89.121401
https://doi.org/10.1103/PhysRevB.89.121401
https://doi.org/10.1103/PhysRevB.89.121401
https://doi.org/10.1103/PhysRevB.89.121401
https://doi.org/10.1103/PhysRevB.90.115423
https://doi.org/10.1103/PhysRevB.90.115423
https://doi.org/10.1103/PhysRevB.90.115423
https://doi.org/10.1103/PhysRevB.90.115423
https://doi.org/10.1038/ncomms13074
https://doi.org/10.1038/ncomms13074
https://doi.org/10.1038/ncomms13074
https://doi.org/10.1038/ncomms13074
https://doi.org/10.1038/srep31821
https://doi.org/10.1038/srep31821
https://doi.org/10.1038/srep31821
https://doi.org/10.1038/srep31821
https://doi.org/10.1103/PhysRevB.95.235430
https://doi.org/10.1103/PhysRevB.95.235430
https://doi.org/10.1103/PhysRevB.95.235430
https://doi.org/10.1103/PhysRevB.95.235430
https://doi.org/10.1103/PhysRevB.97.045140
https://doi.org/10.1103/PhysRevB.97.045140
https://doi.org/10.1103/PhysRevB.97.045140
https://doi.org/10.1103/PhysRevB.97.045140
https://doi.org/10.1103/PhysRevA.91.043625
https://doi.org/10.1103/PhysRevA.91.043625
https://doi.org/10.1103/PhysRevA.91.043625
https://doi.org/10.1103/PhysRevA.91.043625
https://doi.org/10.1103/PhysRevB.92.155403
https://doi.org/10.1103/PhysRevB.92.155403
https://doi.org/10.1103/PhysRevB.92.155403
https://doi.org/10.1103/PhysRevB.92.155403
https://doi.org/10.1103/PhysRevB.93.155104
https://doi.org/10.1103/PhysRevB.93.155104
https://doi.org/10.1103/PhysRevB.93.155104
https://doi.org/10.1103/PhysRevB.93.155104
https://doi.org/10.1038/ncomms9339
https://doi.org/10.1038/ncomms9339
https://doi.org/10.1038/ncomms9339
https://doi.org/10.1038/ncomms9339
https://doi.org/10.1103/PhysRevLett.120.156402
https://doi.org/10.1103/PhysRevLett.120.156402
https://doi.org/10.1103/PhysRevLett.120.156402
https://doi.org/10.1103/PhysRevLett.120.156402
https://doi.org/10.1103/PhysRevLett.109.055502
https://doi.org/10.1103/PhysRevLett.109.055502
https://doi.org/10.1103/PhysRevLett.109.055502
https://doi.org/10.1103/PhysRevLett.109.055502
https://doi.org/10.1103/PhysRevB.76.073103
https://doi.org/10.1103/PhysRevB.76.073103
https://doi.org/10.1103/PhysRevB.76.073103
https://doi.org/10.1103/PhysRevB.76.073103
https://doi.org/10.1038/nnano.2010.172
https://doi.org/10.1038/nnano.2010.172
https://doi.org/10.1038/nnano.2010.172
https://doi.org/10.1038/nnano.2010.172
https://doi.org/10.1038/nmat2003
https://doi.org/10.1038/nmat2003
https://doi.org/10.1038/nmat2003
https://doi.org/10.1038/nmat2003
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/nphys3803
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevB.60.7828
https://doi.org/10.1103/PhysRevB.60.7828
https://doi.org/10.1103/PhysRevB.60.7828
https://doi.org/10.1103/PhysRevB.60.7828
https://doi.org/10.1088/0953-8984/25/14/144202
https://doi.org/10.1088/0953-8984/25/14/144202
https://doi.org/10.1088/0953-8984/25/14/144202
https://doi.org/10.1088/0953-8984/25/14/144202
https://doi.org/10.1007/s10825-013-0458-7
https://doi.org/10.1007/s10825-013-0458-7
https://doi.org/10.1007/s10825-013-0458-7
https://doi.org/10.1007/s10825-013-0458-7
https://doi.org/10.1103/PhysRevLett.107.216601
https://doi.org/10.1103/PhysRevLett.107.216601
https://doi.org/10.1103/PhysRevLett.107.216601
https://doi.org/10.1103/PhysRevLett.107.216601
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevLett.113.266801
https://doi.org/10.1103/PhysRevLett.113.266801
https://doi.org/10.1103/PhysRevLett.113.266801
https://doi.org/10.1103/PhysRevLett.113.266801
https://doi.org/10.1103/PhysRevB.97.144204
https://doi.org/10.1103/PhysRevB.97.144204
https://doi.org/10.1103/PhysRevB.97.144204
https://doi.org/10.1103/PhysRevB.97.144204
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.96.097401
https://doi.org/10.1103/PhysRevLett.96.097401
https://doi.org/10.1103/PhysRevLett.96.097401
https://doi.org/10.1103/PhysRevLett.96.097401
https://doi.org/10.1038/nmat4802
https://doi.org/10.1038/nmat4802
https://doi.org/10.1038/nmat4802
https://doi.org/10.1038/nmat4802
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005



