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The electrical transport of p-type monolayer MoS2 from acoustic phonon scattering at low temperature (T <

100 K) is theoretically analyzed. The formalism of conductivity is systemically derived through the standard
Green’s functions technique (a full quantum-mechanical treatment) by taking into account the realistic band
structure of MoS2. It is found that the main contribution to resistivity is from piezoelectric scattering in the
transverse direction. Analogous to graphene, the conductivity exhibits a transition from σ ∼ T −4 temperature
dependence in the Bloch-Grüneisen temperature regime to weaker σ ∼ T −1 dependence at high temperature. It
is remarkable that we observe the derivation of Matthiessen’s rule in the presence of both disorder scattering and
phonon scattering due to the abrupt variation of phonon-induced transport scattering rates.
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I. INTRODUCTION

Monolayer MoS2 and other transition-metal dichalco-
genides (TMDCs) represent a new class of two-dimensional
materials, intrinsically behaving as semiconductors. Unlike
graphene, inversion symmetry is broken in TMDCs, and they
exhibit strong spin-orbit coupling (SOC) in the valence band,
which leads to a series of spin- and valley-related anomalous
transport phenomena for p-type TMDCs, such as the spin Hall
effect [1], valley Hall effect [1,2], and spin- and valley-related
anomalous Nernst effect [3]. The strong SOC and coupling
of the spin and valley degrees of freedom in the valence
band offer a great chance for spintronics and valleytronics.
At present, experiments exploring the spin and valley effect
in MoS2 are usually conducted below 100 K [2,4]. Thus, p-
type electrical conductivity of TMDCs at finite temperature is
highly desired for fundamental understanding of valleytronics
and spintronics in these materials.

Unlike the extensive studies on the electrical transport
in n-type MoS2 both experimentally [5–7] and theoretically
[8–11], few works study the conductivity of p-type MoS2. In
our work, p-type MoS2 means that the Fermi level can be
tuned into the valence band by a gate voltage. Recently, an
electrolytic gate technique [12] was employed in graphene,
and high electron (hole) density can be obtained. Impurity
and acoustic phonon scattering dominate the scattering at
temperature below 100 K, while the optical phonon scattering
is usually not activated [11]. Moreover, the impurity scat-
tering can be diminished by dielectric engineering [12]. The
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conductivity determined by acoustic phonon scattering there-
fore gives rise to an upper limit of conductivity at low
temperature.

In this work, we theoretically study the electrical transport
in p-type MoS2 by considering the acoustic phonon scattering.
We start from a realistic phonon model derived from the band
structure of MoS2 rather than a simplified model so that we
can have results closer to possible experiments. We derive
a formalism for conductivity of p-type MoS2 by using the
standard Green’s function [13–15] based on the Kubo formula
at low temperature. The current-vertex correction within the
first Born approximation (FBA) is taken into account through
the self-consistent process.

II. THEORETICAL DERIVATION

In the presence of the electron-phonon interaction, the
effective Hamiltonian of MoS2 valley τK is given by

Ĥ =
∑
τk

�+
τkĤ0

τk�τk +
∑

qι

ωqιa
+
qιaqι

+
∑

kq,ιττ ′
�+

τk+qĝιτk+q,τ ′k�τ ′k(aqι + a+
−qι), (1)

where �+
τk = (c+

τk,c,↑, c+
τk,v,↑, c+

τk,c,↓c+
τk,v,↓) is the fermion op-

erator, c+
τk,c,sz

(c+
τk,v,sz

) indicates the creation operators of
one electron with momentum k in the conduction (valence)
band with spin sz = ±1 at valley τK , τ = ±1 represent the
valley indices, a+

qι is the creation operator of one phonon with
momentum q in the ι branch of the phonon, ωq,ι refers to
the corresponding frequency, ĝιτk+q,τ ′k is the electron-phonon

matrix element, and Ĥ0
τk is the noninteracting effective
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FIG. 1. Schematic of the energy band at valley K (−K). Dashed
and solid curves indicate the spin-up and spin-down bands, respec-
tively. Ef is the Fermi energy.

Hamiltonian around valley τK and is determined by [1]

Ĥ0
τk = at (τkxσ̂x + kyσ̂y) + �

2
σ̂z + λτ

2
(σ̂z − 1)ŝz

=
(

Ĥ0
↑τk 0

0 Ĥ0
↓τk

)
, (2)

with Ĥ0
szτk = �

′

2 σ̂z + szλτ

2 σ̂I + atτkxσ̂x + atkyσ̂y, where 2λ is
the spin splitting at the top of the valence band caused by
the SOC, σ̂ denotes the Pauli matrices for the two basis
functions of the energy bands, a is the lattice constant, t is
the hopping integral, � is the energy gap, �′ = � − λ is the
spin-dependent band gap, and ŝz represents the Pauli matrix
for spin. The energy eigenvalues are

εn0τ sz (k) = sz
λτ

2
+ n0

√
(kat )2 +

(
� − szλτ

2

)2

, (3)

where n0 = ±1 is the band index. The corresponding band
structures are schematically shown for the two valleys in
Figs. 1(a) and 1(b). The spin- and valley-coupled band struc-
tures are clearly identified.

We here concentrate on the electron-phonon scattering
with the acoustic modes at low temperature (T < 100 K,
100kB ≈ 8.617 meV) containing both deformation potential
(DP) and piezoelectric (PE) scattering. Kaasbjerg et al. [10]
showed that the acoustic phonons exist below energy less
than 30 meV, while the optical phonons can be excited at
35–60 meV. Moreover, they showed that, in the tempera-
ture regime with which we are concerned (<100 K), the
scatterings from the intervalley acoustic phonons and optical
phonons are strongly suppressed and can be neglected [10]. In
addition, due to the strong spin-valley coupling in the valence
band, the intervalley scattering is suppressed for the p-type
MoS2 in the absence of atomic-scale magnetic scatters [1].
For simplicity, we assume the acoustic phonon interactions
for the electron and hole are identical. Therefore, the coupling
strength ĝιτk+q,τ ′k behaves as

ĝιτk+q,τ ′k ≈ ĝιτq,τ ′ =
√

h̄

2ρAωqι
M ι

τqδτ,τ ′ Î, (4)

where A is the area of the sample, ρ is the atomic mass
density per area, h̄ is Planck’s constant, and M ι

τq is the

coupling matrix element for the given valley, τK , which is
assumed to be independent of the k vector of the carriers [10].
To get Eq. (4), the electron-phonon coupling for intravalley
scattering processes is approximated by the electron-phonon
coupling at the bottom of the valleys, i.e., |k| = 0, with the
momentum located at K,K ′. The matrix elements for τ = −1
(namely, −K) are related through the time-reversal symmetry
as M ι

τ=−1,q = M ι
τ=1,−q. Thus, we will show only the coupling

matrix elements M ι
τ=1,q of the K valley explicitly, and the

coupling matrix elements from the −K valley can be deduced
by the time-reversal symmetry. Therefore, it is expressed as
M ι

q in the following.
For acoustic phonon scattering, in the long-wavelength

limit [11], both frequency wq,ι and the coupling matrix
element of the transverse-acoustic (TA) and longitudinal-
acoustic (LA) modes are linear in q, i.e.,

wq,ι = cι|q|, ∣∣M ι
q

∣∣ = (�DP
ι + �PE

ι

)|q|, (5)

where cι is the sound velocity, �DP
ι is the acoustic deformation

potential, �PE
ι = 1√

2
( e11e

ε0
) is the effective isotropic piezo-

electric coupling strength, e11 is the piezoelectric constant,
and ε0 indicates the vacuum permeability. The noninteracting
Green’s function of MoS2, in the Matsubara space, is

Ĝ0
τ (k, iωn) = [

(iωn + μ)Î4 − Ĥ0
τk

]−1

=
(

Ĝ0
↑τ (k, iωn) 0

0 Ĝ0
↓τ (k, iωn)

)
, (6)

where iωn is the Matsubara frequency for fermions and
Ĝ0

szτ
(k, iωn) is the spin-dependent noninteracting Green’s

function and is given by Ĝ0
szτ

(k, iωn) = [(iωn + μ)σ̂I −
Ĥ0

szτk]−1. We can expand the sz-spin-dependent Green’s

function in the Pauli matrix basis, namely, Ĝ0
szτ

(k, iωn) =∑
j=I,x,y,z Ĝ0

szτ, j (k, iωn)σ̂ j , where Ĝ0
szτ,I (k, iωn) = Ĝ0

szτ,+
(Eszτ , iωn), Ĝ0

szτ,x(k, iωn)=γoff(Eszτ )Ĝ0
szτ,−(Eszτ , iωn)τ cosφ,

Ĝ0
szτ,y(k, iωn) = γoff(Eszτ )Ĝ0

szτ,−(Eszτ , iωn) sin φ, and Ĝ0
szτ,z

(k, iωn) = γz(Eszτ )Ĝ0
szτ,−(Eszτ , iωn), with Ĝ0

szτ,±(Eszτ , iωn) =
1
2 [g0

szτ,+(Eszτ , iωn) ± g0
szτ,−(Eszτ , iωn)], where

g0
szτ,±

(
Eszτ , iωn

) = 1

iωn + μ − szτλ

2 ∓ Eszτ

, (7)

γoff(Eszτ ) = ε1/Eszτ , and γz(Eszτ ) = �′/2Eszτ . We denote
ε1 = atk and Eszτ =

√
(atk)2 + (�′/2)2. The intrinsically p

doped MoS2 is concerned with |μ| 	 ωmax (ωmax = 2cιh̄kF

is the allowed exchanged phonon energies induced by the
acoustic phonon scattering, and the constraint can be ful-
filled in MoS2 since vF 	 cι), μ < 0, and the electronic
states restricted to the Fermi surface: szτλ/2 − Eszτ ≈ μ and
ε1 ≈

√
(szτλ/2 − μ)2 − (�′/2)2. In this case, γoff(Eszτ ) is

written as γ off
szτ

≈
√

1 − (�′)2/(2μ − szτλ)2, and γz(Eszτ ) is
reexpressed as γ z

szτ
≈ �′/(szτλ − 2μ).

To determine the electrical transport properties, the full
Green’s function Ĝτ (k, iωn) is evaluated through Dyson’s
equation,

Ĝτ (k, iωn)−1 = Ĝ0
τ (k, iωn)−1 − �̂1BA

τ (k, iωn), (8)
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(a)
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(b)

FIG. 2. (a) Illustration of first Born approximation for the self-
energy. The single straight solid line represents the noninteraction
Green’s function, and the wavy line is the phonon propagator. (b) Di-
agrammatic representation of the current-current response function
�xx . The double straight line indicates the full Green’s function, and
the open circle is the velocity vertex v̂x . (c) The particle renormalized
current vertex vF�̂x with phonon insertions.

where �̂1BA
τ (k, iωn) is the self-energy determined through the

FBA [Fig. 2(a)] and has the following form:

�1BA
τ (k, iωn) = −1

βA

∑
ipn,k′ι

∣∣ĝιk−k′
∣∣2D0

ι (k − k′, ipn − iωn)

× Ĝ0
τ (k′, ipn), (9)

where ipn are Matsubara frequencies for fermions,
D0

ι (q, iqn) = 1
iqn−ωq,ι

− 1
iqn+ωq,ι

is the free-equilibrium-phonon
Green’s function, where iqn is the Matsubara frequency
for bosons. Owing to the spin independence of the
electron-phonon coupling ĝιk−k′ and the free-phonon Green’s
function, the self-energy �1BA

τ (k, iωn) is also diagonal in
spin space. Replacing the free Green’s function Ĝ0

τ by the
spin-dependent Green’s function Ĝ0

szτ
in Eq. (9), one can

obtain the formula of spin-dependent self-energy, which can
be further decomposed into the Pauli matrix as

�̂1BA
szτ

(k, iωn) =
∑

j=I,x,y,z

�1BA
szτ, j (k, iωn)σ̂ j, (10)

where �1BA
szτ, j=I,z(k, iωn) = �1BA

szτ, j=I,z(Eszτ , iωn), �1BA
szτ,x

(k, iωn) = τ�1BA
szτ,off(Eszτ , φ, iωn) cosφ, and �1BA

szτ,y(k, iωn) =
�1BA

szτ,off(Eszτ , φ, iωn) sin φ. The relevant electron momenta are
here restricted to the Fermi surface, i.e., k ≈ kF [εszτ (k) = μ],
so that the self-energy depends only on the angular part of
the k vector, giving �1BA

szτ, j (Eszτ , φ, iωn) → �1BA
szτ, j (φ, iωn).

The sum over k′ can be split into its energy and
angular integrals:

∑
k′ → ∫ π

−π

dφ
2π

∫
dεNszτ (ε) [here,

ε = szτλ

2 −
√

(atk)2 + (�′/2)2], where Nszτ (ε) = A
2π

|ε−szτλ/2|
a2t2

is the density of states for spin sz and valley τ . It is noted that
Nszτ (ε) = 0 when the energy ε lies in the gap. Thus, we have

�1BA
szτ, j (φ, iωn) = −1

β

∑
ι,iωm

∫ 2π

0

dφ′

2π
γ j (φ

′)G0,loc
szτ, j (iωm)

×
∫

d�
2�α2Fι(φ − φ′,�)

�2 − (iωn − iωm)2
, (11)

where β = 1/kBT ; γ j=I,z(φ′) = 1; γx(φ′) = τ cosφ′;
γy(φ′) = sin φ′; G0,loc

szτ, j (iωm) indicates the local (k-averaged)

Green’s function, G0,loc
szτ,I

(iωm) ≈ Nszτ (μ)
∫

dEszτG0
szτ,+

(Eszτ , iωm) and G0,loc
szτ, j=x,y,z(iωm) ≈ Nszτ (μ)

∫
dEszτG0

szτ,−
(Eszτ , iωm); and α2Fι(φ − φ′,�) is the Eliashberg function
introduced via α2Fι(k − k′,�) = |gιk−k′ |2δ(� − ωk−k′,ι).
Decomposing Eq. (11) in the spherical harmonics basis (see
Appendix A), one can get the diagonal and off-diagonal
components of the self-energy in Eq. (11) as

�1BA
szτ,I (iωn)= 1

β

∑
m,ι

∫
d�

2�α2Fι,0(�)

�2 − (iωn − iωm)2
G0,loc

szτ,+, (12)

�1BA
szτ,z(iωn)= γ z

szτ

β

∑
m,ι

∫
d�

2�α2Fι,0(�)

�2−(iωn−iωm)2
G0,loc

szτ,−, (13)

�1BA
szτ,off(iωn)= γ off

szτ

β

∑
m,ι

∫
d�

2�α2Fι,1(�)

�2−(iωn−iωm)2
G0,loc

szτ,−, (14)

where G0,loc
szτ,± = G0,loc

szτ,±(iωm) and α2Fι,v are the projection
of the Eliashberg function α2Fι(φ) on the spherical Har-
monics with v = 0,±1,±2, . . . . The retarded self-energy
�1BA

szτ, j=0,off,z(ω + iη) can easily be obtained by taking the
analytical continuation (iωn → ω + iη with η → 0+) of
Eqs. (12)–(14) on the real-frequency axis using standard tech-
niques. According to the imaginary part of the retarded self-
energy, we thus define the frequency-dependent scattering rate
�

j=0,off,z
szτ (ω) = −Im�1BA

szτ, j=0,off,z(ω + iη). The scattering rates
are given (see also Appendix B) by

�I
szτ

(ω) = K0
szτ

(ω), �off(z)
szτ

(ω) = −γ off(z)
szτ

K1(0)
szτ

(ω), (15)

with Kv
szτ

(ω) =∑ι K ι,v
szτ

(ω),

K ι,v
szτ

(ω) = πNszτ

2
(μ)

∑
j=±1

∫
d�α2Fι,v (�)

× [nB(ω) + nF(� + jω)]�(ξ ), (16)

where ξ = −μ − ω − j� − �−2szτλ

2 , �(ξ ) is a step function,
and nB (nF) is the Fermi (Bose) distribution function. For the
states at the Fermi energy, which involve only the lower band
(μ < 0), the total quasiparticle scattering rate can be defined
as

�pq
szτ

(ω) = �0
szτ

(ω) − [γ off
szτ

�off
szτ

(ω) + γ z
szτ

�z
szτ

(ω)
]

=
∑
ι

{[
1 +(γ z

szτ

)2]
K ι,0

szτ
(ω)+(γ off

szτ

)2
K ι,1

szτ
(ω)
}
. (17)

With the help of the Dyson equation in Eq. (8) and some
careful derivations described in Appendix A, one can deter-
mine the full retarded Green’s function taking into account the
acoustic electron-phonon interaction in the analogous form of
the noninteracting Matsubara Green’s function matrix, with
iωn → ω + iη and replacing the undressed Green’s function
in Eq. (7) by

gszτ,±
(
Eszτ , ω + iη

) = 1

ω + μ − szτλ

2 ∓ Eszτ + i�pq
szτ

. (18)

Taking the conjugate to the retarded Green’s function, the ad-
vanced Green’s function Ĝ(Eszτ , ω − iη) can be determined.
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According to the Kubo formalism, the imaginary-time
current-current correlation function �11

j, j′ is defined as

�11
j, j′ (τt ) = 1

V
〈Tτ Jj (τt )Jj′ (0)〉, (19)

where Jj (τt ) =∑k �+
k (τt )υ j�k(τt ) is the j component of

the particle current; υ j is the j component of the velocity,
which is given by h̄�vk = at (τ σ̂x�ekx ⊗ ŝI + σ̂y�eky ⊗ ŝI ); and τt

indicates the imaginary time. In terms of the definition of
Jj (τt ) and the conserving approximation consistent with the
FBA of the single-particle Green’s function, �11

xx [Fig. 2(b)]
in the frequency space can be obtained as

�11
xx (iωn) = a2t2

Aβ h̄2

∑
kszτ,iωm

Tr
[
τ σ̂xĜszτ (k, iωm)

× �̂x
szτ

(k, iωm, iωn+iωm)Ĝszτ(k, iωn+iωm)
]

= 1

β

∑
iωm

Pxx(iωm, iωn + iωm), (20)

where the dimensionless vertex function �̂x
szτ

can be evaluated
within the self-consistent ladder approximation [Fig. 2(c)]

�̂x
szτ

(k, n, n + m) = τ σ̂x + 1

Aβ

∑
k′,l,ι

[|ĝk−k′,ι|2D0
ι

× (k − k′, n − l )Ĝszτ (k′, l )�̂x
szτ

× (k′, l, l + m)Ĝszτ (k′, l + m)
]
. (21)

For simplicity, l, n,m are used to represent iωl , iωn, iωm,
respectively. Considering only low-energy scattering caused
by electron-phonon interaction and the analogous approxi-
mation in self-energy, for the vertex function, one can have
|k| ≈ kF and retain only the angular dependence, namely,
�̂x

szτ
(k, iω1, iω2) ≈ �̂x

szτ
(φ, iω1, iω2). In addition, the vertex

function can be decomposed in the basis of the Pauli matrices
as

�̂x
szτ

(φ, iω1, iω2) =
∑

j=I,x,y,z

yszτ, j (φ, iω1, iω2)σ̂ j . (22)

With the properties of Pauli matrices, we have

yszτ, j (φ, iω1, iω2) = 1
4 Tr
{
σ̂ j, �̂

x
szτ

(φ, iω1, iω2)
}
. (23)

Expanding yszτ, j (φ, iω1, iω2) in terms of the spherical
harmonics components, yszτ, j (φ, iω1, iω2) =∑v yszτ, j

(iω1, iω2)eivφ . After a series of careful derivations described
in Appendix C, the longitudinal conductivity can be written
as

σxx = e2a2t2

h̄A

∑
szτ

∫ ∞

−∞

dω′

2π

(
−dnF(ω′)

dω′

)
τ
{
yAR,tot

szτ
(ω′, ω′)

× bAR
szτ

(ω′, ω′) − Re
[
yRR,tot

szτ
(ω′, ω′)bRR

szτ
(ω′, ω′)

]}
, (24)

where bXY
szτ

(ω′, ω′) = Nszτ (μ)
∫

dEszτGX
szτ,+GY

szτ,+ and
bAR

szτ
(ω′, ω′) ≈ Nszτ (μ)/4�pq

szτ (ω′), X and Y represent
retarded (R) or advanced (A), and yXY,tot

szτ
(ω′, ω′) =∑

v j cv
j y

v,XY
szτ, j (ω′, ω′), where yv,XY

szτ, j (ω′, ω′) is the analytic

continuation of yv
szτ, j (iω1, iω2), with yv,RR

szτ, j (ω′, ω′) =

yv
szτ, j (ω

′ + iη, ω′ + iη) and yv,AR
szτ, j (ω′, ω′) = yv

szτ, j (ω
′ − iη,

ω′ + iη). The coefficients cv
j are numerical coefficients which

arise from the angular average over φ and are given in
Eq. (C20). yRR,tot

szτ
(ω′, ω′) can be determined via the Ward

identity [13] (see Appendix C) as

yRR,tot
szτ

(ω′, ω′) = τ
(
χoff

szτ

)2(
1 − i

�off
szτ

(ω′)

h̄vFkF

)
. (25)

Here, yAR,tot
szτ

(ω′, ω′) can be solved through a single self-
consistent equation with the solution (see Appendix C)

yv,AR
szτ,I

(ω′) = Kv
szτ

(ω′)

2�pq
szτ (ω′)

∑
jβ

hβ
j yv+β,AR

szτ, j (ω′),

yv,AR
szτ,x (ω′) = δv,0 + Kv

szτ
(ω′)

2�pq
szτ (ω′)

∑
jβ

cβj yv+β,AR
szτ, j (ω′),

yv,AR
szτ,y (ω′) = Kv

szτ
(ω′)

2�pq
szτ (ω′)

∑
jβ

dβ
j yv+β,AR

szτ, j (ω′),

yv,AR
szτ,z (ω′) = Kv

szτ
(ω′)

2�pq
szτ (ω′)

∑
jβ

f βj yv+β,AR
szτ, j (ω′), (26)

where the expansion coefficients are given in Eq. (C20).
By exploiting the symmetric/antisymmetric properties
of v → −v of the I, x, y, and z components, it can
be found that there are only four nonzero independent
components: y1,AR

szτ,I
(ω′), y1,AR

szτ,z (ω′), y0,AR
szτ,x (ω′), and y2,AR

szτ,x (ω′)
with the relations y2,AR

szτ,x (ω′) = y−2,AR
szτ,x (ω′) = iτy2,AR

szτ,y (ω′) =
−iτy−2,AR

szτ,y (ω′), y1,AR
szτ,I

(ω′) = y−1,AR
szτ,I

(ω′), and y1,AR
szτ,z (ω′) =

y−1,AR
szτ,z (ω′). Putting these relations into Eq. (26) and the

definition of yAR,tot
szτ

(ω′, ω′) yields

yAR,tot
szτ

(ω′) = 2τ
(
χoff

szτ

)2
�

pq
szτ (ω′)

�tr
szτ

(ω′)
, (27)

where the energy-dependent transport scattering rate
�tr

szτ
(ω′) =∑ι �

tr,ι
szτ

(ω′) is given by

�tr,ι
szτ

(ω′) = (
γ off

szτ

)−2{[
2
(
γ off

szτ

)2]
K ι,0

szτ
(ω′)−2

(
γ z

szτ

)2
K ι,1

szτ
(ω′)

− (γ off
szτ

)2
K ι,2

szτ
(ω′)

}
. (28)

Substituting Eq. (27) into Eq. (24) and neglecting the insignif-
icant second term [13], the conductivity is now simplified as

σtot = e2a2t2

h̄A

∑
szτ

∫ ∞

−∞

dω′

2π

(−dnF(ω′)
dω′

)
Nszτ (μ)∑
ι �

tr,ι
szτ (ω′)

. (29)

III. RESULTS AND DISCUSSION

�tr,ι
szτ

= �tr,ι
szτ

(ω′ = 0) depends on temperature for different
values of szτ and phonon modes, as shown in Figs. 3(a) and
3(b). In the low-temperature regime T � TBG, where TBG =
2h̄vιkF/kB is the Bloch-Grüneisen temperature [11,12,16],
the transport scattering rates behave as �tr,ι

szτ
≈ T 4 (refer to

Appendix A). In the limit of high temperature, T 	 TBG, the
transport scattering rate �tr

szτ
, as expected, varies linearly with

T . In this temperature regime, the number of phonons linearly
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FIG. 3. The transport scattering rates �(ω′) are calculated as a
function of temperature for different values of (a) szτ , (b) phonon
modes, and (c) energy ω′. The energy ω′ in (a) and (c) is taken at
0 eV. szτ = 1 is fixed in (b) and (c). The phonon mode in (a) and
(c) is chosen to be the transverse mode of acoustic deformation. (d)
The temperature dependence of the resistivity of MoS2. Here, Ef =
−1.1 eV, and all material parameters are given in Table I.

depends on temperature (nB ≈ kBT /h̄ω), leading to the linear
temperature dependence of K ι,v

szτ
(ω) = 2Nszτ (μ)ζvIιkBT/h̄cι in

Eq. (28), where the coefficient ζv is given in Eq. (A11). We
observe that the impact of transverse modes on the trans-
port scattering rate is stronger than those of the longitudinal
modes, and the transverse mode due to the effective isotropic
piezoelectric interaction is dominant [Fig. 3(b)]. Therefore,
the low-temperature resistivity (1/σtotal) for pure p-type MoS2

is mainly contributed by the transverse piezoelectric scattering
[Fig. 3(d)]. The piezoelectric coupling to acoustic phonons
results from the lack of an inversion center of the MoS2

crystal.
Figure 3(c) shows the variation of the transport scattering

rate �tr
szτ

(ω′) with temperature at different ω′. Two limits
can be observed. At low-temperature limit, the transport
scattering rates show a T 4 dependence, while they exhibit a
linear T dependence at the high-temperature limit. This gives
rise to a transition from a low-temperature Bloch-Grüneisen
regime resistivity ρ ∼ T 4 behavior to a weaker ρ ∼ T at high
temperature. It is also seen that the transport scattering rate
is sensitively energy dependent. With increasing ω′, it rises
faster and more abruptly at low temperature, while it tends to
a saturation value at high temperature for larger ω′.

The effect of disorder manifests itself through a phe-
nomenological method [13,17] in which the imaginary part
of the self-energy, i.e., �i = h̄/τi (where τi is the average
lifetime of the quasiparticle), is introduced into the full
Matsubara Green’s function [Eq. (18)], namely, �pq(ω′) →
�pq(ω′) + �i. This replacement can provide us the correct and
qualitative results for the impurity scattering. The impurity-
induced resistivity ρi in the absence of phonon scattering
is independent of the temperature, as expected (see Fig. 4).
However, the total resistivity ρtotal = 1/σtotal induced by both
phonons and impurities at low temperature is no longer T 4

dependent; σtotal is given in Eq. (30), in which the effects
of the acoustic phonon scattering and impurity scattering are
taken into account already. It is observed from Fig. 4 that ρtotal

FIG. 4. The deviations from Matthiessen’s rule. Here, ρi and
ρall-ph are the resistivities induced by impurities and phonons,
respectively. The subscript “all” in ρall-ph indicates that all four
phonon modes (DP_LA, PE_LA, DP_TA, and PE_TA) are included.
(b) The ratio of the deviation in the resistivity to ρi as a function
of temperature for different impurity scattering rates �i = 0.2 and
0.02 eV, where �ρ = ρtotal − (ρall-ph + ρi ). In (a), �i = 0.02 eV.
Here, Ef = −1.1 eV, and all material parameters are given in Table I.

is not equal to ρi + ρall-ph, which means that Matthiessen’s
rule (MR) is not fulfilled. The deviation from Matthiessen’s
rule has been studied systematically for alloys experimentally
[18,19] and theoretically [19–21]. Here, the deviation from
MR may be attributed to the abrupt variation of the phonon-
induced transport scattering rate �tr,ι

szτ
(ω′) [Fig. 3(c)] for ω′

towards the vicinity of the zero point, i.e., ω′ = 0 (namely,
the Fermi level). At low temperature, the ratio of deviation
in the resistivity (�ρ/ρi ) is close to zero, while it rises
quickly and abruptly with persistently increasing temperature
but gradually grows slower at high temperature [Fig. 4(b)].
This behavior of deviation in the resistivity is essentially
consistent with that of �tr,ι

szτ
(ω′)|ω′=7.5kBT,5kBT,... − �tr,ι

szτ
(0) ver-

sus T [Fig. 3(c)], indicating that the deviation might result
from the variation of the phonon-induced transport scattering
rate towards energy ω′. The ratio �ρ/ρi is suppressed with
increasing scattering strength [see �i = 0.2 eV in Fig. 4(b)],
which is consistent with previous studies of the Cu-Au alloy
[19]. The temperature at which the deviation appears in MoS2

is lower than that in graphene (refer to the third paper in
Ref. [16]). This might be due to the lower Bloch-Grüneisen
temperature in MoS2-type materials, which is about 11

√
n for

the transverse acoustic phonon, where n is the carrier density,
and 18

√
n for the longitudinal acoustic phonon [11]; it is

higher in graphene, i.e., 54
√

n. Another reason might be the
sensitive dependence of the deviation on the disorder level that
is different from that of graphene.

Analogous to the derivation of Eq. (29), the total longitudi-
nal conductivity including the phonon and impurity scattering
now has the form

σtotal ≈ − (eat )2

h̄V

∑
szτ

∫ ∞

−∞

dω′

2π

n′
F Nszτ (μ)∑

ι �
tr,ι
szτ (ω′) + �i

, (30)

where n′
F = ( dnF(ω′ )

dω′ ) develops a peak at ω′ = 0 and is es-
sentially zero when the energy is beyond the range of
[−10kBT, 10kBT ]. The functions �tr,ι

szτ
(ω′) vary rapidly in this

region. Thus, the denominator in the last term of Eq. (30),
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i.e.,
∑

ι �
tr,ι
szτ

(ω′) + �i, cannot be taken out of the integration.
The total resistivity ρtotal thus cannot be divided into two in-
dependent parts (namely, 1/σall-ph and 1/σi). Even for almost
constant �tr,ι

szτ
(ω′), the equality 1/σtotal = 1/σall-ph + 1/σi is

not satisfied owing to the summation on spins.

IV. CONCLUSION

In summary, we studied the electrical behavior of p-type
MoS2 constrained by acoustic phonon scattering at low tem-
perature through the standard Feynman diagram technique
based on the MoS2-specified electron-phonon interaction. We
found that the main contribution to resistivity is the piezo-
electric scattering of the transverse mode of phonons. The
resistivity exhibits a ρ ∼ T 4 temperature dependence in the
Bloch-Grüneisen temperature regime and a weaker ρ ∼ T
dependence at relatively high temperature. It is remarkable
that we observe the derivation of Matthiessen’s rule when
further considering the disorder scattering owing to the abrupt
variation of the phonon-induced transport scattering rate.
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APPENDIX A: SPHERICAL HARMONICS EXPANSION

The spherical harmonics expansion ψν (φ) is defined as

ψv (φ) = eivφ, v = 0,±1,±2, . . . . (A1)

Any generic angle-dependent function S(φ) can be decom-
posed on this basis as

S(φ) =
∑

v

Svψv (φ), Sv =
∫ 2π

0

dφ

2π
S(φ)ψ∗

v (φ). (A2)

The angle-dependent component of Eq. (11) can be written in
the form

Cn′ (φ) =
∫ 2π

0

dφ′

2π
A(φ − φ′)B(φ′)ein′φ′

. (A3)

The Harmonic component Cv of function C(φ) is

Cv =
∫ 2π

0

dφ

2π
e−ivφ

∫ 2π

0

dφ′

2π
A(φ − φ′)B(φ′)ein′φ′

=
∫ 2π

0

∫ 2π

0

dφ

2π

dφ′

2π
ein′φ′

e−ivφ
∑
n,m

Anein(φ−φ′ )Bmeimφ′

=
∑
n,m

∫ 2π

0

dφ

2π
e−i(v−n)φ

∫ 2π

0

dφ′

2π
ei(n′+m−n)φ′

AnBm

=
∑

m

δm,v−n′AvBm. (A4)

To obtain Eq. (A4), we have used the property∫ 2π
0

dφ
2π ψ

∗
v (φ) = δv,0.

The explicit expressions for the harmonic components of
the Eliashberg function α2Fι,v (ω) and K ι,v

szτ
(ω) coefficient will

be derived. The momentum-dependent Eliashberg function is
defined as

α2Fι(k − k′,�) = ∣∣gιk−k′
∣∣2δ(� − ωk−k′,ι), (A5)

where gιq = gιτq,τ is given in Eq. (4). As mentioned in the
main text, electron momenta are constrained on the Fermi sur-
face: |k| ≈ |k′| ≈ kF, giving |q| = 2kF sin[(φ − φ′)/2]. The
Eliashberg function thus depends on only the exchange angle
φ − φ′, namely,

α2Fι(φ − φ′,�) = 2IιkF sin

[
φ − φ′

2

]

× δ

[
� − ωmax sin

(
φ − φ′

2

)]
, (A6)

where Iι = h̄�2
ι /(2ρAcι). Hence,

α2Fι,v (ω) = 2IιkF

∫ 2π

0

d (φ − φ′)
2π

sin

(
φ − φ′

2

)

× eiv(φ−φ′ )δ

[
� − ωmax sin

(
φ − φ′

2

)]

= 2IιkF

∫ π

0

dθ

π
sin θe2ivθ δ(� − ωmax sin θ ). (A7)

To obtain the second line, we have made the variable trans-
formation, i.e., (φ − φ′)/2 → θ . The δ function has two so-
lutions for θ ∈ [0, π ]: one for θ = y� and another for θ =
π − y� with y� = arcsin �

ωmax
. Therefore, we reach

α2Fι,v (ω) = 2IιkF

∫ π

0

dθ

π
sin θe2ivθ 1

|ωmax cos θ |
× [δ(θ − y�) + δ(θ − π + y�)]

= 2Iι
π h̄cι

�θ (ωmax − �) cos(2vy�)√
ω2

max − �2
, (A8)

where we used the relations sin(y�) = sin(π − y�) = �
ωmax

and | cos y�| = | cos(π − y�)| =
√

1 − �2

ω2
max

. ωmax = 2h̄cιkF

is the highest exchanged phonon energy [14]. Owing to
cos (−2vy�) = cos (2vy�), we have α2Fι,−v (ω) = α2Fι,v (ω).
Substituting Eq. (A8) into Eq. (16), we have

K ι,v
szτ

(ω) = Nszτ (μ)Iι
h̄cι

∑
j

∫ ωmax

0

θ (ξ )�d�√
ω2

max − �2

× cos

(
2v arcsin

�

ωmax

)
[nB(�) + nF(� + jω)],

(A9)

where ξ = −μ − ω − j� − (� − 2szτλ)/2. In the relatively
high temperature limit kBT 	 ωmax, the following result oc-
curs: nB(�) ≈ kBT/h̄� 	 1, giving rise to

K ι,v
szτ

(ω) ≈ 2Nszτ (μ)ζvIι
h̄cι

kBT, (A10)
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where

ζv =
∫ ωmax

0

θ (ξ )d�

h̄
√
ω2

max − �2
cos

(
2v arcsin

�

ωmax

)
. (A11)

We will study the property of K ι,v
szτ

(0) at the low-temperature
limit T � ωmax. When modulating the Fermi energy in the
regime where the Fermi energy is sufficiently below the top
of the valence band, i.e., −μ − (� − 2szτλ)/2 > ωmax, the
highest exchanged phonon energy ωmax caused by the acoustic
phonon scattering in MoS2 is smaller than 30 meV [10], and
the step function θ (ξ ) will be identically equal to 1. Let x =
β� in Eq. (A9); we have

K ι,v
szτ

(0) = 2Nszτ (μ)Iι
h̄cι

1

ωmaxβ2

∫ βωmax

0

xdx√
1 − (x/βωmax)2

× cos

(
2v arcsin

x

βωmax

)
[nB(x) + nF(x)].

(A12)

In the limit of low temperature T � ωmax, only the leading
terms in powers of y/βωmax in the integrand will be retained,
and the upper limit of integration can be expanded to infinity,
i.e., βωmax → ∞, giving rise to

K ι,v
szτ

(0) = 2Nszτ (μ)Iι
h̄cι

k2
BT 2

ωmax

(
b1 + b3

1 − 4v2

2

k2
BT 2

ω2
max

)
,

(A13)

where bn = ∫∞
0 dxxn[nB(x) + fB(x)], with the solutions b1 =

π2/4 and b3 = π4/8. Substituting Eq. (A13) into the expres-
sion for �tr,ι

szτ
(0) [Eq. (28)], the transport scattering rate �tr,ι

szτ
at

ω′ = 0 is found,

�tr,ι
szτ

(0) = 2Nszτ (μ)Iιπ4

8h̄cι

4 + 4
(
γ off

szτ

)2
(
γ off

szτ

)2 k4
BT 4

ω3
max

. (A14)

To obtain the above equation, we have applied the relation
(γ off

szτ
)2 + (γ z

szτ
)2 = 1.

APPENDIX B: THE SCATTERING RATE � j
szτ

(ω) AND FULL

RETARDED GREEN’S FUNCTION MATRIX Ĝszτ (k, iωn)

The Matsubara sums that have to be evaluated in Eqs. (12)–
(14) can all be written in the form

A±(iωn) = 1

β

∑
iωm

2�

�2 − (iωn − iωm)2
G0,loc

szτ,±(iωm). (B1)

The sum over fermionic frequencies iωm in Eq. (B1) can be
converted into

A±(iωn) = [nB(�) + 1]G0,loc
szτ,±(iωn− �)+ nB(�)G0,loc

szτ,±

× (iωn+ �)+ Nszτ (μ)

2

∫ ∞

�′
2

dEszτnF

×
(

Eszτ +
szτλ

2
− μ

)[
g0

szτ,+
(
Eszτ , iωn+ �

)

− g0
szτ,+

(
Eszτ , iωn− �

)]± Nszτ (μ)

2

∫ ∞

�′
2

dEszτnF

×
(

−Eszτ + szτλ

2
− μ

)[
g0

szτ,−
(
Eszτ , iωn + �

)
− g0

szτ,−
(
Eszτ , iωn − �

)]
, (B2)

with

G0,loc
szτ,±(iωn) = 1

2

[
g0,loc

szτ,+(iωn) ± g0,loc
szτ,−(iωn)

]
(B3)

and g0,loc
szτ,±(iωn) = Nszτ (μ)

∫
dEszτg0

szτ,±(Eszτ , iωn), where
g0

szτ,±(Eszτ , iωn) is given in Eq. (7). As mentioned in the main
text, we focus on the properties of p-type MoS2, which means
μ < 0. Taking the analytical continuation iωn → ω + iη
(η → 0+), one finds the imaginary part of A±(ω + iη) to be

ImA±(ω + iη) = ∓πNszτ (μ)

2

∑
j=±1

[nB(ω) + nF(� + jω)]

×�

(
−μ − j� − � + 2szτλ

2
− ω

)
.

(B4)
In order to obtain Eq. (B4), we use the equality
Im
∫∞

�′
2

dEszτ
1

a+Eszτ+iη = �(−a − �′
2 ). Based on Eqs. (12),

(13), (14), (B2), and (B4), we obtain the formula of frequency-
dependent scattering rates �

j=0,off,z
szτ (ω) = −Im�1BA

szτ, j (ω + iη)
shown in Eq. (15).

The real part of phonon self-energy is nearly zero and
can be neglected, and the spin-dependent retarded self-energy
matrix can thus be approximately written as

�̂1BA
szτ

(ω + iη) = −
∑
j=0,z

iγ j (φ)� j
szτ

(ω)σ̂ j

−
∑
j=x,y

iγ j (φ)�off
szτ

(ω)σ̂ j, (B5)

with γ j=0,z(φ) = 1, γx(φ) = τ cosφ, and γy(φ) = sin φ. Sub-
stituting Eq. (B5) into the spin-dependent Dyson equation,
analogous to Eq. (8) except replacing subscript τ by szτ , the
spin-dependent full retarded Green’s function is found to be

ĜR
szτ

(
Eszτ , ω

)−1 =
(
ω+μ− szτλ

2
+i�0

szτ

)
σ̂I +

(
i�z

szτ
−�

′

2

)
σ̂z

+ (i�off
szτ

− ε1
)
(τ cosφσ̂x + sin φσ̂y), (B6)

where ε1 = atk =
√

E2
szτ

− (�′ )2

4 . The spin-dependent full re-
tarded Green’s function can be expanded in the Pauli matrix
as

ĜR
szτ

(
Eszτ , ω

) =
∑

j=I,x,y,z

ĜR
szτ, j

(
Eszτ , ω

)
σ̂ j, (B7)

with

ĜR
szτ,I

(
Eszτ , ω

) = 1

2

(
gszτ,+ + gszτ,−

)
,

ĜR
szτ, j

(
Eszτ , ω

) = 1

2

(
gszτ,+ − gszτ,−

)
�Fj, j = x, y, z,

�F =
(
cτ cosφ, c sin φ, �

′

2 − i�z
szτ

)
√

c2 + (�′

2 − i�z
szτ

)2 ,

gszτ,± = 1

ω + μ − E ′
szτ,±

(
Eszτ , ω

) ,
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E ′,R
szτ,±

(
Eszτ , ω

) = szλτ

2
+ �0

szτ
±
√

c2 +
(
�

′

2
− i�z

szτ

)2

,

c = (
ε1 − i�off

szτ

)
. (B8)

In order to identify the total effective quasiparticle scattering
rate, we expand the square-root part of the energy band
E ′,R

szτ,±(Eszτ , ω) in Eq. (B8),

c2 +
(
�

′

2
− i�z

szτ

)2

= ε1
2+
(
�′

2

)2

− 2i

(
ε1�

off
szτ

+�′

2
�z

szτ

)

− (�z
szτ

)2 − (�off
szτ

)2
. (B9)

Since ε1
2 + (�′

2 )
2 = E2

szτ
= (μ − szτλ

2 )
2 ≈ μ2 and �0

szτ
, �off

szτ
,

�z
szτ

� |μ|, we can neglect the second order of �
j
szτ , and at

the same order, we have

ε1
2 +

(
�′

2

)2

− 2i

(
ε1�

off
szτ

+ �′

2
�z

)

≈
⎡
⎣Eszτ − i

⎛
⎝
√

1 −
(

�′

2Eszτ

)2

�off
szτ

+ �′

2Eszτ

�z
szτ

⎞
⎠
⎤
⎦

2

≈ [Eszτ − i
(
γoff�

off
szτ

+ γz�
z
szτ

)]2
. (B10)

Thus, the modified energy band is found to be

E ′,R
szτ,±

(
Eszτ , ω

) = szλτ

2
± Eszτ − i�±

szτ
, (B11)

where the + (−) in ± refers to the conduction (valence) band
and �±

szτ
is the quasiparticle scattering rate given by

�±
szτ

= �0
szτ

± (γ off
szτ

�off
szτ

+γ z
szτ
�z

szτ

)
. (B12)

Putting the expression for E ′,R
szτ,±(Eszτ , ω) in Eq. (B11) into

Eq. (B8), we can determine the full retarded Green’s function.
In addition, by changing �

j
szτ −→ −�

j
szτ in Eqs. (B6) and

(B8), the advanced full Green’s function Ĝszτ (Eszτ , ω − iη)
can be determined.

APPENDIX C: EXPRESSION OF CONDUCTIVITY σxx IN
THE PRESENCE OF ACOUSTIC PHONON SCATTERING

In this appendix, the expression for conductivity [Eq. (24)]
will be derived in detail. The sum over fermion frequencies
iωm in Eq. (20) can be converted to an integral,

�11
xx (iωn) = −1

2π i

∫ ∞

−∞
dω′nF(ω′)[Pxx(ω′ + iη, ω′ + iωn)

− Pxx(ω′−iη, ω′ + iωn)+Pxx (ω′ − iωn, ω
′ + iη)

− Pxx(ω′ − iωn, ω
′ − iη)]. (C1)

Analytical continuation iωn → ω + iη and variable change
ω′ → ω′ + ω in the last two terms bring us to the result

�11
xx (ω + iη) =

∫ ∞

−∞

dω′

2π i

{
[nF(ω′) − nF(ω′ + ω)]

× PAR
xx (ω′, ω′ + ω) − nF(ω′)PRR

xx (ω′, ω′ + ω)

+ nF(ω′ + ω)PAA
xx (ω′, ω′ + ω)

}
. (C2)

The longitudinal conductivity σxx in the Kubo formula is
given by

σxx = − lim
ω→0

e2

ω
Im�11

xx (ω + iη). (C3)

Here, we should notice that h̄ω has been written as ω

in �11
xx (ω + iη). So the next step is to take the limit

ω → 0 in Eq. (C2). Based on the relation Pxx(z1, z2) =
Pxx(z2, z1), PAR

xx (ω′, ω′) = Pxx(ω′ − iη, ω′ + iη) is real. And
PRR

xx (ω′, ω′ + ω) = Pxx(ω′ + iη, ω′ + ω + iη) is the complex
conjugate of PAA

xx (ω′, ω′ + ω) = Pxx(ω′ − iη, ω′ + ω − iη).
Thus, we derive

σxx =
∫ ∞

−∞

h̄dω′

2π
(−n′

F )
[
PAR

xx (ω′, ω′) − RePRR
xx (ω′, ω′)

]
.

(C4)

Substituting Eq. (22) into Eq. (20), we obtain

Pxx(m, n + m) = τa2t2

Ah̄2

∑
kszτ j

Lszτ,1 j (k,m, n + m)

× yszτ, j (k,m, n + m), (C5)

with

Lszτ,1 j (k,m, n + m) = Tr
[
τ σ̂xĜszτ (k,m)σ̂ j Ĝszτ (k, n + m)

]
,

(C6)

where l, n, and m denote iωl , iωn, and iωm for simplic-
ity, respectively. Similar to the self-energy, the relevant
electron momenta are assumed to be constrained on the
Fermi surface, i.e., |k| ≈ |k′| ≈ kF, k → (kF, φ), and

∑
k →

Nszτ (μ)
∫ dφ

2π

∫
dεszτ . With the relation εszτ = szτλ/2 − Eszτ

(for the hole), the integration over εszτ can be changed
into Eszτ . Meanwhile, expanding the φ-dependent part, i.e.,∫ 2π

0
dφ
2π Lszτ,1 j (φ)yszτ, j (φ) in terms of spherical harmonics (Ap-

pendix A), we obtain

Pxx(m, n + m)= τa2t2

Ah̄2

∑
vsz j

cv
j bszτ (m, n + m)yv

szτ, j (m, n + m),

(C7)

with

bszτ (m, n + m) = Nszτ (μ)
∫ ∞

�′
2

dEszτGszτ,+
(
Eszτ ,m

)
× Gszτ,+

(
Eszτ , n + m

)
. (C8)

The expansion coefficients cv
j are given in Eq. (C20). Taking

the analytical continuation of Eq. (C7), the longitudinal con-
ductivity in Eq. (C4) can be written as

σxx = e2a2t2τ

h̄A

∑
s

∫ ∞

−∞

dω′

2π

(
−dnF(ω′)

dω′

)
σxx(ω′), (C9)

with

σxx(ω′) = yAR,tot
szτ

(ω′, ω′)bAR
szτ

(ω′, ω′)

− Re
[
yRR,tot

szτ
(ω′, ω′)bRR

szτ
(ω′, ω′)

]
, (C10)
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where yxx′,tot
szτ

(ω′, ω′) =∑v j cv
j y

v,xx′
szτ, j (ω′, ω′), the superscripts

x and x′ refer to retarded (R) or advanced (A), the expansion
coefficients cv

j are given in Eq. (C20), and yv,RR
szτ, j (ω′, ω′) can be

determined from the Ward identity [13]:

�̂RR
szτ,x(k, ω′, ω′) = τ σ̂x + ∂

h̄vF∂kx
�̂1BA

szτ
(k, ω′ + iη), (C11)

where �̂1BA
szτ

(k, ω′ + iη) ≈ �̂1BA
szτ

(φ,ω′ + iη) is given in
Eq. (B5), which yields

�̂φ,RR
szτ,x (ω′, ω′) = τ σ̂x − i

�off
szτ

(ω′)

h̄vF kF
τ σ̂x. (C12)

Here, vFkF can be determined by the chemical potential

h̄vFkF =
√(

μ + � − 2szτλ

2

)(
μ − �

2

)
. (C13)

From Eqs. (23) and (C12), we obtain

yRR
szτ,x(ω′, ω′) = τ

(
1 − i

�off
szτ

(ω′)

vFkF

)
,

yRR
szτ,I (ω′, ω′) = yRR

szτ,y(ω′, ω′) = yRR
szτ,z(ω′, ω′) = 0. (C14)

Here, we can find that yRR
szτ, j (ω

′, ω′) is independent of φ.
Based on the properties of spherical harmonics expansion,
only y0,RR

szτ, j (ω′, ω′) = yRR
szτ, j (ω

′, ω′) is nonzero. Therefore,

yRR,tot
szτ

= c0
xy0,RR

szτ,x (ω′, ω′) = τχ2
off

(
1 − i

�off
szτ

(ω′)

h̄vFkF

)
. (C15)

In the following, we will deduce the solution of yv,AR
szτ, j (ω′).

Owing to the constraint (i.e., |k| ≈ kF), the k-dependent
function depends on the directional angle φ of the mo-
mentum, and the summation over k′ can be converted
into

∑
k′ → Nszτ (μ)

∫ dφ
2π

∫
dEszτ . Therefore, the dimension-

less current vertex momentum-dependent �̂x
szτ

(k, n, n + m) ≈
�̂x

szτ
(φ, n, n + m) in Eq. (21) within the self-consistent ladder

approximation can be rewritten as

�̂x
szτ

(φ, n, n + m) = τσx + Nszτ (μ)

βV

∑
l,ι

∫ 2π

0

dφ′

2π

∫
dEszτWφ−φ′,ι(n−l )Ĝszτ

(
Eszτ , l

)
�̂x

szτ

(
φ′, l, l + m

)
Ĝszτ

(
Eszτ , l + m

)
,

(C16)

where Wφ−φ′,ι(n − l ) = |ĝφ−φ′,ι|2D0
ι (φ − φ′, n − l ). For μ < 0, the spin-dependent full Green’s function matrix is

Ĝszτ (k, iωn) = Ĝszτ

(
Eszτ , φ, iωn

) = 1
2 gszτ,−

(
Eszτ , iωn

)[
σ̂I − χ z

szτ
σ̂z − χoff

szτ
(τ cosφσ̂x + sin φσ̂y)

]
. (C17)

Substituting Eq. (C16) into Eq. (23), the function yszτ, j (φ, n,m) is found to be

yszτ, j (φ, n, n + m) = δ1 j + Nszτ (μ)kBT

2

∑
j′ιl

∫ 2π

0

dφ′

2π

∫
dEszτWφ−φ′,ι(n − l )Lszτ, j j′

(
φ′,Eszτ , l, l + m

)
yszτ, j′ (φ

′, l, l + m).

(C18)

The matrix L̂szτ (φ,Eszτ , l, l + m) is

L̂szτ

(
φ,Eszτ , l, l + m

) = Gszτ,+
(
Eszτ , l

)
Gszτ,+

(
Eszτ , l + m

)

×

⎛
⎜⎜⎜⎜⎝

4 −4τχoff
szτ

cosφ −4χoff
szτ

sin φ −4χ z
szτ

−4τχoff
szτ

cosφ 2
(
χoff

szτ

)2
(1 + cos 2φ) 2τ

(
χoff

szτ

)2
sin 2φ 4τχ z

szτ
χoff

szτ
cosφ

−4χoff
szτ

sin φ 2τ
(
χoff

szτ

)2
sin 2φ 2

(
χoff

szτ

)2
(1 − cos 2φ) 4χ z

szτ
χoff

szτ
sin φ

−4χ z
szτ

4τχ z
szτ

χoff
szτ

cosφ 4χ z
szτ

χoff
szτ

sin φ 4
(
χ z

szτ

)2

⎞
⎟⎟⎟⎟⎠. (C19)

Decomposing yszτ, j (φ, iω1, iω2) in terms of the spherical harmonics as
∑

v yv
szτ, j (iω1, iω2)eivφ and using the standard proce-

dures for the analytical continuation to each element on the right-hand side of Eq. (C18), the coefficients yv,AR
szτ, j (ω′, ω′) =

yv
szτ, j (ω

′ − iη, ω′ + iη) are found to have the simple set of algebraic relations given in Eq. (26). The related expansion coefficients

075404-9
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are⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h0
I = 2,

τh−1
x = τh1

x = −χoff
szτ

,

h−1
y = −h1

y = iχoff
szτ

,

h0
z = −2χ z

szτ
,

else hv
j = 0,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f 0
I = −2χ z

szτ
,

τ f −1
x = τ f 1

x = χoff
szτ

χ z
szτ

,

f −1
y = − f 1

y = −iχoff
szτ

χ z
szτ

,

f 0
z = 2

(
χ z

szτ

)2
,

else f v
j = 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c−1
I = c1

I = −χoff
szτ

,

τc0
x = 1 − (χ z

szτ

)2
,

τc−2
x = τc2

x =
(
χoff

szτ

)2

2 ,

c−2
y = −c2

y = −i

(
χoff

szτ

)2

2 ,

c1
z = c−1

z = χ z
szτ

χoff
szτ

,

else cv
j = 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d−1
I = −d1

I = iχoff
szτ

,

τd−2
x = −τd2

x = −i
(χoff

szτ )2

2 ,

d0
y = 1 − (χ z

szτ
)2,

d−2
y = d2

y = − (χoff
szτ )2

2 ,

d−1
z = −d1

z = −iχ z
szτ

χoff
szτ

,

else dv
j = 0,

(C20)

where χoff
szτ

≈ γ off
szτ

≈
√

1 − (�′)2/(2μ − szτλ)2 and χ z
szτ

≈
γ z

szτ
≈ �′/(szλτ − 2μ).

APPENDIX D: SOME DISCUSSION
OF THE DISORDER EFFECT

The disorder scattering is another important scattering
mechanism which should be studied in more detail. There
may be a few types of disorder, including impurities, de-
fects, substituting atoms, etc. Moreover, the specified band
structures for the host materials must be considered. From
the theoretical aspect, in metals, the effect of disorder scat-
tering is usually treated after averaging over the disorder
configurations, restoring the momentum conservation [13,17].
Therefore, this kind of scattering does not induce intervalley
transitions which need momentum transfer. A single impurity
may induce momentum-transferred scattering if it possesses
an intrinsic degree of freedom. For the disorder in MoS2-type
materials, there are studies about the effect of atomic defects
on the intervalley scattering in the conduction bands. In addi-

TABLE I. Material parameters for MoS2 used in this work. Apart
from the first four parameters, which are taken from Ref. [1], all the
parameters are adopted from Ref. [11].

Parameter Symbol Value

Lattice constant a 3.193 Å
Hopping t 1.1 eV
Spin splitting 2λ 0.15 eV
Energy gap � 1.66 eV
Ion mass density ρ 3.1 × 10−7 g/cm2

Effective electron mass m! 0.48 me

Transverse sound velocity cTA 4.2×103 m/s
Longitudinal sound velocity cLA 6.7×103 m/s
TA �TA 1.5 eV
LA �LA 2.4 eV
Piezoelectric constant e11 3.0 × 10−11 C/m

tion to the spin-valley coupling, it is shown that the symmetry
and positions of atomic defects give rise to unconventional
selection rules for intervalley quasiparticle scattering [22].
Because the band structure of valence bands is different from
that of conduction bands, the disorder-induced scattering also
possesses different characters. Xiao et al. [1] showed that spin
and valley degrees are coupled, leading to the splitting of the
bands for different spins in one valley; that is, the valley-
contrasting spin splitting is 0.1–0.5 eV. The spin and valley
relaxations are suppressed at the valence-band edges by this
splitting. Valley and spin can be simultaneously flipped only
in energy conservation processes, which requires atomic-scale
magnetic scatters. Therefore, it is reasonable to ignore the
intervalley scattering from usual disorders.

APPENDIX E: PARAMETERS USED
IN THE CALCULATIONS

The parameters for MoS2 are given in Table I.
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