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The electrical transport of p-type monolayer MoS, from acoustic phonon scattering at low temperature (7 <
100 K) is theoretically analyzed. The formalism of conductivity is systemically derived through the standard
Green’s functions technique (a full quantum-mechanical treatment) by taking into account the realistic band
structure of MoS,. It is found that the main contribution to resistivity is from piezoelectric scattering in the
transverse direction. Analogous to graphene, the conductivity exhibits a transition from o ~ T~* temperature
dependence in the Bloch-Griineisen temperature regime to weaker ¢ ~ T~! dependence at high temperature. It
is remarkable that we observe the derivation of Matthiessen’s rule in the presence of both disorder scattering and
phonon scattering due to the abrupt variation of phonon-induced transport scattering rates.
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I. INTRODUCTION

Monolayer MoS, and other transition-metal dichalco-
genides (TMDCs) represent a new class of two-dimensional
materials, intrinsically behaving as semiconductors. Unlike
graphene, inversion symmetry is broken in TMDCs, and they
exhibit strong spin-orbit coupling (SOC) in the valence band,
which leads to a series of spin- and valley-related anomalous
transport phenomena for p-type TMDCs, such as the spin Hall
effect [1], valley Hall effect [1,2], and spin- and valley-related
anomalous Nernst effect [3]. The strong SOC and coupling
of the spin and valley degrees of freedom in the valence
band offer a great chance for spintronics and valleytronics.
At present, experiments exploring the spin and valley effect
in MoS; are usually conducted below 100 K [2,4]. Thus, p-
type electrical conductivity of TMDCs at finite temperature is
highly desired for fundamental understanding of valleytronics
and spintronics in these materials.

Unlike the extensive studies on the electrical transport
in n-type MoS; both experimentally [5-7] and theoretically
[8—11], few works study the conductivity of p-type MoS,. In
our work, p-type MoS,; means that the Fermi level can be
tuned into the valence band by a gate voltage. Recently, an
electrolytic gate technique [12] was employed in graphene,
and high electron (hole) density can be obtained. Impurity
and acoustic phonon scattering dominate the scattering at
temperature below 100 K, while the optical phonon scattering
is usually not activated [11]. Moreover, the impurity scat-
tering can be diminished by dielectric engineering [12]. The
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conductivity determined by acoustic phonon scattering there-
fore gives rise to an upper limit of conductivity at low
temperature.

In this work, we theoretically study the electrical transport
in p-type MoS; by considering the acoustic phonon scattering.
We start from a realistic phonon model derived from the band
structure of MoS; rather than a simplified model so that we
can have results closer to possible experiments. We derive
a formalism for conductivity of p-type MoS, by using the
standard Green’s function [13—15] based on the Kubo formula
at low temperature. The current-vertex correction within the
first Born approximation (FBA) is taken into account through
the self-consistent process.

II. THEORETICAL DERIVATION

In the presence of the electron-phonon interaction, the
effective Hamiltonian of MoS, valley 7K is given by

2 + 770 +
H = E WA H Wk + E Wq,g,dq.
7k q

+ Z \Ij:iﬁ.qurkJrq,r’k\yt’k(aqt+Cli_q1)9 (D
kq,tt’

where Wi = (¢, .1 Chvrs Che. Cay,y ) I8 the fermion op-
erator, cjk,c,s, (c;rk,v,sf) indicates the creation operators of
one electron with momentum k in the conduction (valence)
band with spin s, = £1 at valley tK, v = %1 represent the
valley indices, aflj is the creation operator of one phonon with
momentum q in the ¢ branch of the phonon, wg, refers to

the corresponding frequency, g, B is the electron-phonon

matrix element, and HY is the noninteracting effective
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FIG. 1. Schematic of the energy band at valley K (—K). Dashed
and solid curves indicate the spin-up and spin-down bands, respec-
tively. E is the Fermi energy.

Hamiltonian around valley K and is determined by [1]

A
Hk—at(tkax—i—kay)—l- +7T(

Y 0
=( (T)“ 0 ) )
Jtk

with A? | = a, + Y;TC}[ + attk.6, + atk,6,, where 24 is

the spin sphttlng at the top of the valence band caused by
the SOC, 6 denotes the Pauli matrices for the two basis
functions of the energy bands, a is the lattice constant, ¢ is
the hopping integral, A is the energy gap, A’ = A — A is the
spin-dependent band gap, and §, represents the Pauli matrix
for spin. The energy eigenvalues are

s A — 5T\’
8norsz(k) = sz% + nO\/(kat)2 + ($> ) (3)

6z - 1)3‘1

2

where nyp = %1 is the band index. The corresponding band
structures are schematically shown for the two valleys in
Figs. 1(a) and 1(b). The spin- and valley-coupled band struc-
tures are clearly identified.

We here concentrate on the electron-phonon scattering
with the acoustic modes at low temperature (7 < 100 K,
100kg ~ 8.617 meV) containing both deformation potential
(DP) and piezoelectric (PE) scattering. Kaasbjerg et al. [10]
showed that the acoustic phonons exist below energy less
than 30 meV, while the optical phonons can be excited at
35-60 meV. Moreover, they showed that, in the tempera-
ture regime with which we are concerned (<100 K), the
scatterings from the intervalley acoustic phonons and optical
phonons are strongly suppressed and can be neglected [10]. In
addition, due to the strong spin-valley coupling in the valence
band, the intervalley scattering is suppressed for the p-type
MoS; in the absence of atomic-scale magnetic scatters [1].
For simplicity, we assume the acoustic phonon interactions
for the electron and hole are identical. Therefore, the coupling

strength &y, - behaves as

h n
FORINESY Ty gy g S ) @)
tk+q, 7'k 7q,7 sza)qL

where A is the area of the sample, p is the atomic mass
density per area, /i is Planck’s constant, and Méq is the

coupling matrix element for the given valley, TK, which is
assumed to be independent of the k vector of the carriers [10].
To get Eq. (4), the electron-phonon coupling for intravalley
scattering processes is approximated by the electron-phonon
coupling at the bottom of the valleys, i.e., |k| = 0, with the
momentum located at K, K’. The matrix elements for 7 = —1
(namely, —K) are related through the time-reversal symmetry
asM;__, ,=M;_, _,. Thus, we will show only the coupling
matrix elements M‘ —1.q Of the K valley explicitly, and the
coupling matrix elements from the —K valley can be deduced
by the time-reversal symmetry. Therefore, it is expressed as
My in the following.

For acoustic phonon scattering, in the long-wavelength
limit [11], both frequency wg, and the coupling matrix
element of the transverse-acoustic (TA) and longitudinal-
acoustic (LA) modes are linear in ¢, i.e.,
M| =@+ O
where ¢, is the sound velocity, EPF is the acoustic deformation

EPE = [(e”e) is the effective isotropic piezo-

Wq, = cldl,

potential, &,

electric coupling strength, e;; is the piezoelectric constant,
and €( indicates the vacuum permeability. The noninteracting
Green’s function of MoS,, in the Matsubara space, is
- . . A ~0 1-1
GUK, iwy) = [(iwy + )y — H), ]

G0, (k, io,) 0
- 0 & kioy) ©
~LT E) n

where iw, is the Matsubara frequency for fermions and
Ggr(k, iw,) is the spin-dependent noninteracting Green’s
function and is given by G?Vr(k, iwy) = [(iw, + n)é; —
a0 :

5.tk : R
function in the Pauli matrix basis, namely, GY L (k, ia)n) =
Zj:l,x,yz STj(k lw")al’ where srl(k lw’l) - sr+
(Es 5 LWy), Gs T, X(k iw,)= yoﬁ(EY r)GA z, _(Es T iw,)T COS P,

s- ‘[)(k iw,) = Voff(Ex T)Gs T, _(Ea v i) Sln¢ and Gi).[ z
(K, i) = y,(Es )G . _(Eg . iwy), with G | (Ey ¢, iw,) =
5180 4 By i) £ &), (Eyq, ioy)], where

We can expand the s,-spin-dependent Green’s

& s (Eyrs ioy) = 1 %
., S:T» n) —
s i, + 1 — S FE,

Yoft(Esc) = €1/Es«, and y,(E;;) = A'/2E, .. We denote
€; = atk and E, , = \/(atk)® + (A’/2)>. The intrinsically p
doped MoS, is concerned with |u| > Wmax (Wmax = 2¢,fikp
is the allowed exchanged phonon energies induced by the
acoustic phonon scattering, and the constraint can be ful-
filled in MoS; since vr > ¢,), u <0, and the electronic
states restricted to the Fermi surface: s,7A/2 — E; ; ~ p and
€1~ /(s.TA/2 — w)* — (A’/2)%. In this case, Yott(Es.z) is
written as y"“ ~ /1 — (A)2)2u — s,TA)%, and y,(E;.,) is
reexpressed as y2, ~ A'/(s,TA — 2u).

To determine the electrical transport properties, the full
Green’s function G.(k, iw,) is evaluated through Dyson’s
equation,

G.(k, iw,) " = GU(k, iw,) " — BIPAK, iw,),  (8)
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FIG. 2. (a) Illustration of first Born approximation for the self-
energy. The single straight solid line represents the noninteraction
Green’s function, and the wavy line is the phonon propagator. (b) Di-
agrammatic representation of the current-current response function
I1,,. The double straight line indicates the full Green’s function, and
the open circle is the velocity vertex ¥,. (c) The particle renormalized
current vertex Upfx with phonon insertions.

where 3!PA(K, iw,) is the self-energy determined through the
FBA [Fig. 2(a)] and has the following form:

LIBAK, iw,) = — Z % |'DO(k — K, ip, — i)
ﬁ ipyK't
x GUK, ip,), )
where ip, are Matsubara frequencies for fermions,

D?(qv iqn) = m = i +w
Green’s function, where zq,, is the Matsubara frequency
for bosons. Owing to the spin independence of the
electron-phonon coupling g, _,. and the free-phonon Green’s
function, the self-energy Z!BA(K, iw,) is also diagonal in
spin space. Replacing the free Green’s function G by the
spin-dependent Green’s function G°_ in Eq. (9), one can
obtain the formula of spin-dependent self-energy, which can
be further decomposed into the Pauli matrix as

is the free-equilibrium-phonon

S o) = Y B i85, (10)

Jj=I,x.y.z
where Z}EA] I Z(k, iw,) = ESIEA] 7 Z(ES:T, iwy,), Ev”i‘f(
(k, iw,) = szlﬁ,off(Es:z, ¢, iwy)cos ¢, and T (K, iw,) =

) 37]3‘*()&(EM, ¢, iw,) sin ¢. The relevant electron momenta are
here restricted to the Fermi surface, i.e.,k ~ K [&5,. (k) = ],
so that the self-energy depends only on the angular part of
the k vector, giving Z}EA](EY o @, iwy) — 2517%’3((1), iwy).
The sum over k' can be split into its énergy and
angular integrals: Y, — [T ‘zlj‘f [deNs.. () [here,

= 5% — (arky + (A'/2)°), where Ny 1 (¢) = 5 ==
is the denmty of states for spin s, and Valley T. Itis noted that
N;.-(¢) = 0 when the energy ¢ lies in the gap. Thus, we have

-1 ZJT
258, i) = Z /

L lCL),,,

/

Yi(@)Gy S iwm)

2 o
x/dQZQa F(p—¢'.Q) an

Q2 — (iw, — iwy)?’

where B =1/kgT; yj=1:(¢)=1; (@) =7cosd’;
(@) =sing’; G(S) i"j(zwm) indicates the local (k-averaged)
Green’s Gg lrof(la)m) ~ Ny (1) deSZTGSZT’Jr
(Epevion) and  GM_ (i) ~ Nyo () [ dE,G°, _
(Es <, iwy,); and o?F, (¢ — @', Q) is the Eliashberg function
introduced via ath(k -k, Q)= Ig‘k_k/IZS(Q — Wk—K,1)-
Decomposing Eq. (11) in the spherical harmonics basis (see
Appendix A), one can get the diagonal and off-diagonal
components of the self-energy in Eq. (11) as

, 1
zjﬁ{*,(zwn)zgz f d
2,5 (i )_yéfz d

s O — (ion— iy )

y°“ 2Qa%F, (D)
1BA $:T 4 0,loc
25 T, Off(lwn)_ Z/ 92 (la) _lwm)2 Gszr$—9 (14)

function,

2Q0’F, o(Q

Q% — (iw, — iwy)?

2Q02F, o(S2
_ 20 F o) Gl (13)

m,i

where G? ot = ?ioi(la)m) and «’F,, are the projection

of the Eliashberg function «?F,(¢) on the spherical Har-
monics with v =0, £1,+2,.... The retarded self-energy
Eslﬁf’}zo,offqz(w+in) can easily be obtained by taking the
analytical continuation (iw, — @ +in with n — 07) of
Egs. (12)-(14) on the real-frequency axis using standard tech-
niques. According to the imaginary part of the retarded self-
energy, we thus deﬁne the frequency-dependent scattering rate
ris Z00f2 () = —Imz1BA (w + in). The scattering rates

.7, j=0,0ff,z
are given (see also Appendlx B) by

I () =K (o), T0)=—-yTOKP(w), (15)
> K (o),

Kiw) =~ ”( >Z/dsza2m<sz)

j==%1

with K () =

x [ng(@) + ne(2 + jw)]O (), (16)

where § = —u —w — jQ2 — Afzzs*'”, O(£) is a step function,

and ng (ng) is the Fermi (Bose) distribution function. For the
states at the Fermi energy, which involve only the lower band
(n < 0), the total quasiparticle scattering rate can be defined
as

MM (@) =T} (@) =[BT ) + v T ()]

= S0+ () IR @)+ (TR @)} (7)

With the help of the Dyson equation in Eq. (8) and some
careful derivations described in Appendix A, one can deter-
mine the full retarded Green’s function taking into account the
acoustic electron-phonon interaction in the analogous form of
the noninteracting Matsubara Green’s function matrix, with
iw, — w + in and replacing the undressed Green’s function
in Eq. (7) by

1
w+/"_%q:Eszr+ingr.

gszrti(Es;rv o+ iﬁ) = (18)

Taking the conjugate to the retarded Green’s function, the ad-
vanced Green’s function G(E, -, w — in) can be determined.
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According to the Kubo formalism, the imaginary-time
current-current correlation function H}lj is defined as

1
H},lj,(f,) = v(Tri(Tz)Jj/(O))v 19)

where J;(7,) = ) \Illj(r,)vjlllk(rl) is the j component of
the particle current; v; is the j component of the velocity,
which is given by /it = at(t6.€;, ® 51 + 6,6, ® §;1); and 7
indicates the imaginary time. In terms of the definition of
J;(z;) and the conserving approximation consistent with the
FBA of the single-particle Green’s function, IT!! [Fig. 2(b)]
in the frequency space can be obtained as

2.2
1,:
I, (w,) = —

x I (K, i, io+ion G oK, io,+io,)]

1
= — Y Pulion, io, + iop), (20)

Ly

where the dimensionless vertex function I'* | can be evaluated
within the self-consistent ladder approximation [Fig. 2(c)]
1

A A - 210
F;‘zr(k, n,n+m) =16+ E lg: [|gk7k’,z| D,
St

x (k=K. n—DG (K,DI
x (K, 1,1 +m)G, (K, +m)]. (21)

For simplicity, I, n,m are used to represent iw, iwy, iwy,,
respectively. Considering only low-energy scattering caused
by electron-phonon interaction and the analogous approxi-
mation in self-energy, for the vertex function, one can have
|k| &~ kr and retain only the angular dependence, namely,
[ (K, iwy, iwy) ~ TF (¢, iw, iwy). In addition, the vertex
function can be decomposed in the basis of the Pauli matrices
as

PL (@ ion i) = Y yor (@, ion, in)6;.  (22)
j=I,x,y,z

With the properties of Pauli matrices, we have

yS;,T,j(qb’ iw] ’ la)z) = %Tr{é\—]a fif(qsy ia)h iwz)}‘ (23)

Expanding y, . j(¢, iw, iwy) in terms of the spherical
harmonics  components,  yy . (@, w1, i) =D, V5.1 j
(iw;, iwy)e’®. After a series of careful derivations described
in Appendix C, the longitudinal conductivity can be written
as

2 2t2 o 4 ’ d ’
o — e’a Z/ 15} (_ ng(w ))t{yél:,tol(w/,w/)
s.T YT

OOE do'

x bR (@', @) — Re[ YRy (o, o b5 (e, )]}, (24)

5. T

where bif(a)/, @) =Ny (1) [ dEsszir,Jerr,Jr and
D@, @) & Ni o (1) /4T01 (@), X and Y  represent
retarded (R) or advanced (A), and yXY'(«', )=

Zvj c‘;yi’f}(w/,a)’), where yi’f}{(a)’,w’) is the analytic
continuation of y; . (iwi, iw;), with yi’f?(w/,w’)z

Yo @ +in o +in) and YoM, o) =y, (@ —in,

' + in). The coefficients c}? are numerical coefficients which
arise from the angular average over ¢ and are given in
Eq. (C20). yR®©(¢/ ') can be determined via the Ward
identity [13] (see Appendix C) as

rof(w')
o 2 . Z
YRR @, ') = T(x ) (1 o ];UTFkF ) =

Here, yQ‘f""t(w’, ') can be solved through a single self-

consistent equation with the solution (see Appendix C)

/
yv,AR(a)/) — Kslj-r ') B v+ﬂ',AR(w/)
5.7,1 ngq;(a)/) - J ST, ’
/
K. (@) BHBAR ()

v,AR N
Vst (@) =8y + ZFECIT (') I J7s:Tj

VAR () = K. (") ByVHBAR (1)
Y 2 (o) &= ) 5T '
: jB
K (o))
W) = =2 Y IR ), (26)

- 2F§‘1(w/) - J 78T,

where the expansion coefficients are given in Eq. (C20).
By exploiting the symmetric/antisymmetric properties
of v— —v of the I,x,y, and z components, it can
be found that there are only four nonzero independent
components: yslz‘ﬁf(w’), yslz’é?(a)’), y?z’?’)l}(a)’), and yi’fj}(a}’)
with the relations yf;ﬁf(a)/) = ys’:%j}f‘R(w’) = iryi’?’;‘(w’) =
—ity 28R, vy (@) =y 1N (@), and  ylAR (o) =
ys’zi:?R(a)/). Putting these relations into Eq. (26) and the

AR, tot
S, T

definition of y (o, o) yields
27 (x07)’ P ()

I (@) , (27)

AR,tot, /N __
yszf © (0) ) -

where the energy-dependent transport
I'f () =), (o) is given by

M @) = () {207 K@) =200 Kir@)
— (r K2 @) (28)

Substituting Eq. (27) into Eq. (24) and neglecting the insignif-
icant second term [13], the conductivity is now simplified as

e2a*t? *® do' [ —dnp(@) N ()
= - : . (29
ot hA ; /_Do 2 < dw ) Y () @)

III. RESULTS AND DISCUSSION

scattering rate

"t =T (e’ = 0) depends on temperature for different
values of s,7 and phonon modes, as shown in Figs. 3(a) and
3(b). In the low-temperature regime 7 < Tpg, where Tgg =
2hvkg/kg is the Bloch-Griineisen temperature [11,12,16],
the transport scattering rates behave as I'"! &~ T* (refer to
Appendix A). In the limit of high temperatlire, T > Tgg, the
transport scattering rate ', as expected, varies linearly with

5.T?

T . In this temperature regime, the number of phonons linearly
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FIG. 3. The transport scattering rates I'(w’) are calculated as a
function of temperature for different values of (a) s,t, (b) phonon
modes, and (c) energy «’. The energy o' in (a) and (c) is taken at
0 eV. s, =1 is fixed in (b) and (c). The phonon mode in (a) and
(c) is chosen to be the transverse mode of acoustic deformation. (d)
The temperature dependence of the resistivity of MoS,. Here, E; =
—1.1 eV, and all material parameters are given in Table I.

depends on temperature (np = kgT /hw), leading to the linear
temperature dependence of K'Y (w) = 2N, . ()¢, Lk T /Fic, in
Eq. (28), where the coefficient ¢, is given in Eq. (A11). We
observe that the impact of transverse modes on the trans-
port scattering rate is stronger than those of the longitudinal
modes, and the transverse mode due to the effective isotropic
piezoelectric interaction is dominant [Fig. 3(b)]. Therefore,
the low-temperature resistivity (1 /o) for pure p-type MoS,
is mainly contributed by the transverse piezoelectric scattering
[Fig. 3(d)]. The piezoelectric coupling to acoustic phonons
results from the lack of an inversion center of the MoS,
crystal.

Figure 3(c) shows the variation of the transport scattering
rate ' (w') with temperature at different . Two limits
can be observed. At low-temperature limit, the transport
scattering rates show a 7* dependence, while they exhibit a
linear T dependence at the high-temperature limit. This gives
rise to a transition from a low-temperature Bloch-Griineisen
regime resistivity p ~ T* behavior to a weaker p ~ T at high
temperature. It is also seen that the transport scattering rate
is sensitively energy dependent. With increasing «’, it rises
faster and more abruptly at low temperature, while it tends to
a saturation value at high temperature for larger «'.

The effect of disorder manifests itself through a phe-
nomenological method [13,17] in which the imaginary part
of the self-energy, i.e., I'; = ii/t; (where 7; is the average
lifetime of the quasiparticle), is introduced into the full
Matsubara Green’s function [Eq. (18)], namely, I'P(w’) —
I'™M(w’) 4 T';. This replacement can provide us the correct and
qualitative results for the impurity scattering. The impurity-
induced resistivity p; in the absence of phonon scattering
is independent of the temperature, as expected (see Fig. 4).
However, the total resistivity pia = 1/01 induced by both
phonons and impurities at low temperature is no longer 74
dependent; ooy 1s given in Eq. (30), in which the effects
of the acoustic phonon scattering and impurity scattering are
taken into account already. It is observed from Fig. 4 that pya

- —r=02ev (b)
—r=002eV

Resistivity(KQ)

0 50 100 0 50 100
T(K) T(K)

FIG. 4. The deviations from Matthiessen’s rule. Here, p; and
Pan-ph are the resistivities induced by impurities and phonons,
respectively. The subscript “all” in o, indicates that all four
phonon modes (DP_LA, PE_LA, DP_TA, and PE_TA) are included.
(b) The ratio of the deviation in the resistivity to p; as a function
of temperature for different impurity scattering rates I'; = 0.2 and
0.02 eV, where Ap = pirar — (Paiiph + 0;). In (a), I'; = 0.02 eV.
Here, E; = —1.1 eV, and all material parameters are given in Table I.

is not equal to p; + paph, Which means that Matthiessen’s
rule (MR) is not fulfilled. The deviation from Matthiessen’s
rule has been studied systematically for alloys experimentally
[18,19] and theoretically [19-21]. Here, the deviation from
MR may be attributed to the abrupt variation of the phonon-
induced transport scattering rate Ft“(a/) [Fig. 3(c)] for o’
towards the vicinity of the zero point, i.e., @ = 0 (namely,
the Fermi level). At low temperature, the ratio of deviation
in the resistivity (Ap/p;) is close to zero, while it rises
quickly and abruptly with persistently increasing temperature
but gradually grows slower at high temperature [Fig. 4(b)].
This behavior of deviation in the resistivity is essentially
consistent with that of I'(@')|w=7.5k5T.5k57.... — T 7H(0) ver-
sus T [Fig. 3(c)], 1ndlcat1ng that the dev1at10n mlght result
from the variation of the phonon-induced transport scattering
rate towards energy «'. The ratio Ap/p; is suppressed with
increasing scattering strength [see ['; = 0.2 eV in Fig. 4(b)],
which is consistent with previous studies of the Cu-Au alloy
[19]. The temperature at which the deviation appears in MoS,
is lower than that in graphene (refer to the third paper in
Ref. [16]). This might be due to the lower Bloch-Griineisen
temperature in MoS,-type materials, which is about 11./n for
the transverse acoustic phonon, where # is the carrier density,
and 18,/n for the longitudinal acoustic phonon [11]; it is
higher in graphene, i.c., 54./n. Another reason might be the
sensitive dependence of the deviation on the disorder level that
is different from that of graphene.

Analogous to the derivation of Eq. (29), the total longitudi-
nal conductivity including the phonon and impurity scattering
now has the form

2
Ototal ~ (eat) Z /

where nj, = (d”F(“’)) develops a peak at @ =0 and is es-
sentially zero When the energy is beyond the range of
[—10kgT, 10kgT]. The functions '™ (') vary rapidly in this
region. Thus, the denominator in the last term of Eq. (30),

/

n}?NsZr (n)

— 30
= e Y
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ie, Y I'"(w')+ T, cannot be taken out of the integration.
The total fesistivity Protal thus cannot be divided into two in-
dependent parts (namely, 1/0.1pn and 1/07). Even for almost
constant I'\"!("), the equality 1/ = 1/0uiph + 1/0i is
not satisfied owing to the summation on spins.

IV. CONCLUSION

In summary, we studied the electrical behavior of p-type
MoS,; constrained by acoustic phonon scattering at low tem-
perature through the standard Feynman diagram technique
based on the MoS;-specified electron-phonon interaction. We
found that the main contribution to resistivity is the piezo-
electric scattering of the transverse mode of phonons. The
resistivity exhibits a p ~ T* temperature dependence in the
Bloch-Griineisen temperature regime and a weaker p ~ T
dependence at relatively high temperature. It is remarkable
that we observe the derivation of Matthiessen’s rule when
further considering the disorder scattering owing to the abrupt
variation of the phonon-induced transport scattering rate.
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APPENDIX A: SPHERICAL HARMONICS EXPANSION
The spherical harmonics expansion v, (¢) is defined as

Uo(@) =€, v=0,+1,42,.... (A1)

Any generic angle-dependent function S(¢) can be decom-
posed on this basis as

T (A2)

2 d¢ .
@) =Y S0 (@), S, = /0 S@W).

The angle-dependent component of Eq. (11) can be written in
the form

2 d / L
Co(¢) = / 2"’ A — $OB@H. (A3)
0 JT

The Harmonic component C, of function C(¢) is

2 2w /
= 40 ivo | Y
0 0

2 2
2

/zn/
0 0 nm

2w d ) 2 do’ ... ,
— / _¢eft(ufn)¢ / iel(l‘l +m—n)¢p Aan
nm V0 0

Ao dd’ iy e in—¢)p im¢’
ZEE e ZAne Bme
21 21

= Z Smv—nAyB. (A4)

To obtain Eq. (A4), we have used

2
I SEU@) =80

The explicit expressions for the harmonic components of
the Eliashberg function ozZE,v(a)) and K;?(w) coefficient will

be derived. The momentum-dependent Eliashberg function is
defined as

the property

/ l 2
?F(k — K, Q) = |gl_1o]| (2 — wk—r.),

(AS5)

where g, = g7, 1s given in Eq. (4). As mentioned in the
main text, electron momenta are constrained on the Fermi sur-
face: |k| ~ |K'| = kg, giving |q| = 2kgsin[(¢ — ¢')/2]. The
Eliashberg function thus depends on only the exchange angle

¢ — ¢', namely,
¢ — ¢’]
2

X 8|:Q — Wmax SIN <

o*F (¢ — ¢, Q) = 2Lkr sin[

¢ —¢
A6
] e
where I, = hE%/(2pAc,). Hence,

2 _ / _ /
(XZE,U(L()) = thkpf d(¢ ¢ ) sin <¢ ¢ )
0 2z 2

Y
x V9= [Q — Wmax SiN <¢ 7 ¢ >:|

TdO . i .
= 21 kg — 8in0e”™8(2 — wmax Sin6). (A7)
0 T

To obtain the second line, we have made the variable trans-
formation, i.e., (¢ — ¢')/2 — 6. The § function has two so-
lutions for 6 € [0, r]: one for 8 = yg and another for 6 =
T — yq With yg = arcsin & Therefore, we reach

1
|@Wmax cOS O]
X [6(0 —ya) +6(0 — 7 + yo)l

21, Q0(wmax — 2) cosRuyg)

T do ,
o’F, () = 2Lk f — singe*?
o T

= , (A8)
mhe, \Y w1211ax - Q2
where we used the relations sin(yq) = sin(r —yq) = =
and |cosyq| =|cos(m —yo)| =,/1— % Wmax = 2hc kg

is the highest exchanged phonon energy [14]. Owing to
cos (—2vyq) = cos (2vyq), we have otzFL,,v(a)) = azFL,v(a)).
Substituting Eq. (A8) into Eq. (16), we have

K (w) = A7) Z/'w’"“ 0(&)Q2d2
T hic, = Jo w2 — Q2

max

Q
)[nB(Q) + np(2 + jo)l,

X COS (21} arcsin
a)max

(A9)

where £ = —u —w — jQ — (A — 2s,71)/2. In the relatively
high temperature limit kg7 >> wmax, the following result oc-
curs: np(2) ~ kgT /hS2 > 1, giving rise to

2NY-‘L’ UIl
e () ks

T, Al10
i (A10)

Ko (w) ~
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where
g /w 6(5)dQ (2 in S ) (Al1)
b = ———— cos [ 2v arcsin .
0 N/ wrznax — Q2 @max

We will study the property of K/7(0) at the low-temperature
limit 7 < wmax. When modulatmg the Fermi energy in the
regime where the Fermi energy is sufficiently below the top
of the valence band, i.e., —u — (A — 25,TA)/2 > Wmax, the
highest exchanged phonon energy wp,x caused by the acoustic
phonon scattering in MoS; is smaller than 30 meV [10], and
the step function 6(&) will be identically equal to 1. Let x =
B2 in Eq. (A9); we have

KL’U(O) = ZNJ'T(M)IL 1 Bwmax L
5. T FlCl CUmax,Bz 1 — (x/ﬂwmux)z
X €08 (21} arcsin )[nB(x) + np(0)].
(A12)

In the limit of low temperature 7 << wmax, only the leading
terms in powers of y/Bwmax in the integrand will be retained,
and the upper limit of integration can be expanded to infinity,
i.e., Bwmax — 00, giving rise to

2N, (W1, k2T2 1 — 40 K3T?
—_— by + b3 ,

K22(0) = =2

hc, @Wmax max

(A13)
where b,, = fooo dxx"[ng(x) + f(x)], with the solutions b; =
w2/4 and by = m*/8. Substituting Eq. (A13) into the expres—

sion for F“ (0) [Eq. (28)], the transport scattering rate F‘”
o =0is found,

2N5:T(N)Lﬂ44+4(yso£f) e
8ic, ( ott)2 w3

r{0) = (A14)

Vst max

To obtain the above equation, we have applied the relation
P + () = 1.

APPENDIX B: THE SCATTERING RATE F{zt(w) AND FULL
RETARDED GREEN’S FUNCTION MATRIX Gszr(k, iw,)

The Matsubara sums that have to be evaluated in Egs. (12)—

(14) can all be written in the form

1 2Q
Ai(lwn) - /3 Z QZ — (la),, —

o

—— Gy Y (o). (Bl)
iwpy)

The sum over fermionic frequencies iw,, in Eq. (B1) can be
converted into

As(ioy) = [n(Q) + 11GY % (i, — Q)+ np(Q)Gyrs.
SZT(M)/ dE, .np
2 y :

A
x (Eserr Sz; _ M) (80, 4 (Esrv i+ R)

X (iw,+ Q)+

oo
— e (Buion—@)] £ 25 [T

2

X <_Es,_r + SZ;)L - M) [g?',_r,—(ESzf’ iw" + Q)

— &) (Esr.iw, — Q)], (B2)
with

GU(iwy) = 1[g0 (iw,) £ &% ()] (B3)

and g? lzoft(lwn) = str(,U“) deszrgng,i(Eszra iwy),

g(s)yr’i(E&_r, iw,) is given in Eq. (7). As mentioned in the main
text, we focus on the properties of p-type MoS,, which means
u < 0. Taking the analytical continuation iw, — ® + in
(n — 0%), one finds the imaginary part of AL(w + in) to be

where

. TNy (1) .
ImAL (0 +in) = F—5—— Y [n8() + ne(Q + jo)]
j==£1
A+ 2s,TA
x@(—u—jsz—%—w).

(B4)
In order to obtain Eq. (B4) we use the equality
Iranr dE”m O(—a — —) Based on Egs. (12),
(13), (14) (B2), and (B4), we obtain the formula of frequency-
dependent scattering rates Fﬁzro M) = —ImX AlliA] (w +in)
shown in Eq. (15).
The real part of phonon self-energy is nearly zero and
can be neglected, and the spin-dependent retarded self-energy
matrix can thus be approximately written as

> iy (@)

j=0,z

= D @3, (BS)
_x ,y
with yj—o . (¢) = 1, y,(¢) = T cos ¢, and y,(¢p) = sin ¢. Sub-
stituting Eq. (BS) into the spin-dependent Dyson equation,
analogous to Eq. (8) except replacing subscript t by s.7, the
spin-dependent full retarded Green’s function is found to be

S+ in) = —

. _ A A
GSRZT(ES:T,O)) 1 — ( Sz; . X:r>6’1+<ir‘§zt—7)6}
+ (iFfo — €1)(T cos @6, + sinpé,),  (B6)

where € = atk = | /Es2 (A) . The spin-dependent full re-

tarded Green’s function can be expanded in the Pauli matrix
as

& (Fr) = Y G () BD)

j=1,x,y,z
with
1
Gl}r[( Yf’w) = E(gsr-&-"'gvr—)
1 o
Gl}r/( Yf’w)zz(gff-‘r_gvr,—)Fj» j=x,y,Z’
P (ctcos@, csing, 5 —il'% )
\/c2+( —il% )
1
8s.t1,+ = s

- o+ u— E? . i(Eszra a))
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S, AT A/ 2
B Er0) = 54T [ (G- )

c= (e —ilY"). (B8)
In order to identify the total effective quasiparticle scattering

rate, we expand the square-root part of the energy band
E/} . (E,. v)inEq. (BY),

A ) AN LA
c2+(7—zr;ﬂ> =612—|—<7) —21(611—‘;*:4—71—‘57{)
2 2
=(r5)" = (M%) (B9)
Since e% + (&) = E2, = (u— )" ~ 2 and I, T,

I'? . <« ||, we can neglect the second order of Fﬁzt, and at
the same order, we have

AN\ A
o+ (3) -a(art+3r)
/

AN A
~ Es;r —i I - thi + _Fir
) ZESJ ‘ 2E‘x‘:r :

2

~ [Eszr - i(yoffrzfi + Vzrir)]z- (BIO)
Thus, the modified energy band is found to be
A
ER (B, 0) = % +E,, —ilE, (B11)

where the + (—) in =+ refers to the conduction (valence) band
and I‘_fr is the quasiparticle scattering rate given by

M =T (T ). (BIY)
Putting the expression for E;;Ei(Eszr, w) in Eq. (B11) into
Eq. (B8), we can determine the full retarded Green’s function.
In addition, by changing F{;, — —Fffzt in Egs. (B6) and
(B8), the advanced full Green’s function str(Eszf, w —in)
can be determined.

APPENDIX C: EXPRESSION OF CONDUCTIVITY o,, IN
THE PRESENCE OF ACOUSTIC PHONON SCATTERING

In this appendix, the expression for conductivity [Eq. (24)]
will be derived in detail. The sum over fermion frequencies
iw,, in Eq. (20) can be converted to an integral,

_1 0

Hjlmlc(lwn) = 2_7_” / dw,nF(a)/)[Pxx(w, + i’l, a), + ia)n)
— Po(@' —in, @' + iwy)+Pu (0 — iw,, o' + in)
- Pxx(w/ - iwm C()/ - ”7)] (Cl)

Analytical continuation iw, — w + in and variable change
o' — o' + w in the last two terms bring us to the result

o0 /

M, (@ +in) = / {[np (@) — np(0’ + o))

oo 2T
x PR/, 0 + w) — np(0)PRR (0, &' + )

+np(0 + 0)PAN W, o + w)}. (C2)

The longitudinal conductivity oy, in the Kubo formula is
given by

2
0 = — lim “Im 1! (@ + in). (C3)
w—0 w
Here, we should notice that 7Zw has been written as
in H}é(w +in). So the next step is to take the limit
o — 0 in Eq. (C2). Based on the relation P (z1,22) =
P(z2,21), PAR(0, @) = Poo(@' — in, @ + i) is real. And
PRR(0/, 0 + @) = P(@ +in, @ + @ + in) is the complex
conjugate of PM (0,0 + @) = Pu(0 — in, o' + w — in).
Thus, we derive

oo hd /
O = [ z_w(_n;)[PgR(w’, ') — RePR (o, )]
— v

oo
(C4)
Substituting Eq. (22) into Eq. (20), we obtain
ta’t?
Po(m,n+m)=——=>" L1,k m,n+m)
Ah ks;7j
X ysz‘[,j(kﬂ m,n + m)v (CS)

with
Ly .1k, m,n+m) = Ti[t6:G, . (k, m)&;G, . (k,n+ m)],
(C6)

where [, n, and m denote iw;, iw,, and iw, for simplic-
ity, respectively. Similar to the self-energy, the relevant
electron momenta are assumed to be constrained on the
Fermi surface, i.e., |k| =~ [K'| ~ kg, k — (kg, ¢), and ), —
Nyo () [ 22 [ de,... With the relation &, = s,TA/2 — E
(for the hole), the integration over &, can be changed
into E, .. Meanwhile, expanding the ¢-dependent part, i.e.,

fozn %L&f- 1;(#)Ys,<,j(¢) in terms of spherical harmonics (Ap-
pendix A), we obtain

Ta’t?
Py (m,n+m)= W Z C;bs:r(mv n+ m)y;,r,j(ms n+m),

vs;j

(o))
with
©
bs,r(mv n+m) = N; (1) /A/ dEserszr,Jr(Eszr, m)
2

X Gy.z 4 (Escon+m). (C8)

The expansion coefficients c? are given in Eq. (C20). Taking
the analytical continuation of Eq. (C7), the longitudinal con-
ductivity in Eq. (C4) can be written as

e2d*t’t /'°° do' [ dnp(o)
hA oo 2T do’

Oxx =

)Gxx(w/)’ (C9)

with

(@) = yr (@, bt (@, o)

—Re[yR2" o', B (@', 0], (C10)

075404-8



TRANSITION FROM T~* TO T~! BEHAVIOR OF ... PHYSICAL REVIEW B 99, 075404 (2019)

where y?", Ol ) =Y, iy (@', @), the superscripts ~ From Egs. (23) and (C12), we obtain

C;Ys.

vj “jrs g

x and x’ refer to retarded (R) or advanced (A), the expansion Foff (@)
coefficients ¢} are given in Eq. (C20), and yf f};(a) ') can be ys T, X(a) o)=1t[1- Ssz ,
determined from the Ward identity [13]: VFkF

Yex (@, o) = 3% (0, ) = 3% (@, @) = 0. (Cl4)

IR (ko o) =16+ 5040k, o +in), (Cl11)

hp 3k, Here, we can find that yRR (o', @) is independent of ¢.
Based on the propertles of spherlcal harmonics expansion,

only yg fl;(w ') = ys , j(w ®') is nonzero. Therefore,

where Z!BAk, o' +in) ~ EIBA(qﬁ ' +in) is given in
Eq. (B5), which yields

off( /)
Ver' = Y@ o) = rxoff<1 — ) (C15)
['¢-RR FOff(w) & C12
5T,% (@', ') = 76; — ﬁUFkF : (C12) In the following, we will deduce the solution of y.* AR(a))
Owing to the constraint (i.e., |k| =~ kp), the k- dependent
function depends on the directional angle ¢ of the mo-
mentum, and the summation over K’ can be converted

into Y, — Ny (1) f dé [ dE .. Therefore, the dimension-

hupkg = \/(,U« 4 A_TM) (M _ %) (C13) less current vertex momentum-dependent Fx Kk, n,n+m)=~
w(q&, n, n + m) in Eq. (21) within the self—cons1stent ladder
approximation can be rewritten as

Here, vpkp can be determined by the chemical potential

2w /
0y (@ nn+m) =10, + ”(“)Z/ 9 /dE”W¢ 0 n=DGy o (Ege, )L (¢, 11 +m) Gy 1 (E o, [+ m),

(C16)
where Wy_y (n — 1) = | g¢_¢/,l|2D?(¢ — ¢',n—1). For u < 0, the spin-dependent full Green’s function matrix is
G, t(k iw,) = Gy ¢ (Es o9, lwn) = %gszr,f(Eszrv iwn) [(Afl - Xéfﬁz - Xs(szf(f cos ¢6, + sin ¢6))] (C17)

Substituting Eq. (C16) into Eq. (23), the function y; ; ; (¢, n, m) is found to be

5. (kT T d , ,
ys”(¢ n, n+m)_81j TZ dEerq& ¢’L(n ) sr,jj’(¢ ’E‘vzr’lalﬂ‘m)yszt,j’((ﬁal,l+m).
(C18)
The matrix ZAJSTT(¢, E, ., [, +m)is
I:szr (45’ Eszr, [+ m) = Gszr,+(Eszrs l)GsZr,+(Es.rs I+ m)

4 —4rx°ff cos ¢ —4x°ff sin ¢ —4Xs -

—4rxMcos ¢ Z(Xs"frf) (1 + cos2¢) 27 (Xfff) sin 2¢ 4oyl xS cos ¢ 19)
1
—4)(0ff sin ¢ 2T(X;0fff) sin 2¢ 2(Xv°frf) (1 —cos2¢) 4)(Y r)("ff sin ¢
—4xw 417)(? T)("ff cos ¢ 4)(Y IXOff sin ¢ 4(str)2

Decomposing y; ., j(#, iwy, iw,) in terms of the spherical harmonics as ), yy j(ioy, iwy)e’? and using the standard proce-
dures for the analytical continuation to each element on the right-hand side of Eq. (C18), the coefficients yi’f?(w’, o) =

Yy.r,j(@ — in, "+ in) are found to have the simple set of algebraic relations given in Eq. (26). The related expansion coefficients

075404-9



XIAO-QIN YU, QING-LIAN XU, ZHEN-GANG ZHU, AND GANG SU

PHYSICAL REVIEW B 99, 075404 (2019)

are
0
h? = 25 fI = _2XSZ~T’
rh;l :rh1 ——Xffrf, Tf_1 =Tf1 _Xfftf)(;,,
h;l = _h] ZX;)frfv f ! _fl _lX?ferv T
0 __
hy = =2X50s £ =2(xi,)%
else h;} =0, else f;’ =0,
-1 _ 1 _ ff
¢ =cp=—xN, 47 = —d) = leOtft,
el =1- (XZ )2, (Xurr)z
x s 1d7? = —rd? = —i%
-2 _ _ (X?f:) d°=1- ( )2
TG =T = "% y = X5.o)s
ot} -2 _ 32 _ (X;fi)z
== )[4 =di=—
1 _ 1 _ ,z off dz_l = —dzl = —lX”Xffff,
cz - cz - XSZTXA T Ise d¥ = 0
else ¢ 0, clsed; =1,
(C20)

off ~

where x0T~y ~ V11—
Voo~ A /(s:AT = 200).

(A'Y/Qu—s.TA) and xi, ~

APPENDIX D: SOME DISCUSSION
OF THE DISORDER EFFECT

The disorder scattering is another important scattering
mechanism which should be studied in more detail. There
may be a few types of disorder, including impurities, de-
fects, substituting atoms, etc. Moreover, the specified band
structures for the host materials must be considered. From
the theoretical aspect, in metals, the effect of disorder scat-
tering is usually treated after averaging over the disorder
configurations, restoring the momentum conservation [13,17].
Therefore, this kind of scattering does not induce intervalley
transitions which need momentum transfer. A single impurity
may induce momentum-transferred scattering if it possesses
an intrinsic degree of freedom. For the disorder in MoS,-type
materials, there are studies about the effect of atomic defects
on the intervalley scattering in the conduction bands. In addi-

TABLE I. Material parameters for MoS, used in this work. Apart
from the first four parameters, which are taken from Ref. [1], all the
parameters are adopted from Ref. [11].

Parameter Symbol Value
Lattice constant a 3.193 A
Hopping t 1.1eV
Spin splitting 2X 0.15eV
Energy gap A 1.66 eV

Ion mass density 0 3.1 x 1077 g/cm?
Effective electron mass m* 0.48 m,
Transverse sound velocity C1A 4.2x10° m/s
Longitudinal sound velocity CLA 6.7x10° m/s
TA ETA 1.5eV

LA EL A 2.4eV
Piezoelectric constant e 3.0 x 107" C/m

tion to the spin-valley coupling, it is shown that the symmetry
and positions of atomic defects give rise to unconventional
selection rules for intervalley quasiparticle scattering [22].
Because the band structure of valence bands is different from
that of conduction bands, the disorder-induced scattering also
possesses different characters. Xiao et al. [1] showed that spin
and valley degrees are coupled, leading to the splitting of the
bands for different spins in one valley; that is, the valley-
contrasting spin splitting is 0.1-0.5 eV. The spin and valley
relaxations are suppressed at the valence-band edges by this
splitting. Valley and spin can be simultaneously flipped only
in energy conservation processes, which requires atomic-scale
magnetic scatters. Therefore, it is reasonable to ignore the
intervalley scattering from usual disorders.

APPENDIX E: PARAMETERS USED
IN THE CALCULATIONS

The parameters for MoS, are given in Table I.
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