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We theoretically investigate intersubband plasmon excitations in doped single-wall carbon nanotubes
(SWNTs) by examining the dependence of plasmon frequency on the nanotube diameter, chirality, and Fermi
energy. The intersubband plasmons can be excited by light with polarization perpendicular to the nanotube axis
and thus the plasmon excitations correspond to optical transitions between the two different subbands, which are
sensitive to the Fermi energy. In every SWNT, this mechanism leads to the emergence of the optical absorption
peak at the plasmon frequency for a given Fermi energy, Er. The plasmon frequencies calculated for many
SWNTs with diameter d; < 2 nm exhibit a dependence on (1/d;)"7 and the frequencies are further affected by
Fermi energy as E22. With this knowledge, it is possible to develop a map of intersubband plasmon excitations
in doped SWNTs that could be useful to quickly estimate the doping level and also be an alternative way to

characterize nanotube chirality.
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I. INTRODUCTION

For many years, single wall carbon nanotubes (SWNTs)
have been an important platform to study optical properties
of one-dimensional (1D) materials, especially due to their
geometry-dependent optical absorption [1-4] and also due to
their potential applications for optoelectronic devices [5-8].
Of the wide interest in the optical properties of SWNTs, a
particular problem of the doping effects on the absorption of
linearly polarized light is worth investigating. So far, previous
studies have confirmed that undoped SWNTs absorb only
light with polarization parallel to the nanotube axis [9-13],
so that when the light polarization is perpendicular to the
nanotube axis the undoped SWNTs do not show any ab-
sorption peak due to the depolarization effect [11,14]. The
optical absorption in the case of parallel polarization can be
understood in terms of the Ej;; interband excitations from
the ith valence to the ith conduction energy subbands, either
in single-particle [2,9,11] or excitonic pictures [15-18]. On
the other hand, much uncertainty still exists about what hap-
pens in the case of doped SWNTs for the linearly polarized
light.

Recently, Sasaki et al. suggested that doped (undoped)
SWNT absorb light with polarization perpendicular (parallel)
to the nanotube axis [19,20]. Furthermore, Yanagi et al.
[21] experimentally gave evidence that the doped SWNTs
absorb light with the perpendicular polarization within the
near-infrared range of a photon energy (~0.8—1.2 eV). This
energy range is similar to that when undoped SWNTs ab-
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sorb light with the parallel polarization. Senga et al. showed
consistent absorption peaks for isolated metallic SWNTs that
are unintendedly doped on the TEM supporting grid dur-
ing electron energy-loss spectroscopy (EELS) measurements
[22,23]. Yanagi et al. proposed that the absorption peaks
are related with infersubband plasmon excitations [21], i.e.,
the optical transitions with energies E;; occur collectively
between two electronic subbands i and j as a response to the
perpendicularly polarized light. Unlike the interband excita-
tions Ej; which take place from the valence to the conduction
bands, the intersubband plasmon excitations E;; occur within
the conduction band or within the valence band.

It should be noted that in the EELS experiment by Senga
et al. we can also see another plasmonic peak around 6 eV, the
so-called 7w plasmon, which is not excited by light with per-
pendicular polarization but with parallel polarization [22,23].
Observations of the mw-plasmons in SWNTs [24,25] or any
graphitic materials [26-28], either doped or undoped, are
quite common in the earlier EELS experiments and the peaks
are assigned unambiguously. Lin and Shung two decades
ago theoretically explained the origin of 7 plasmons in the
SWNTs as a result of collective interband excitations of
the m-band electrons [29,30]. On the other hand, the theory
for plasmons excited in doped SWNTs with perpendicularly
polarized light is just available recently by Sasaki et al.
[19,20] and Garcia de Abajo [31], in which they discussed
how the plasmon frequency (w,) in a doped SWNT depends
on its diameter (d;) and Fermi energy (Er). However, the
dependence of w, on d;, and Er was analyzed within the
Drude model, which is not relevant to intersubband transi-
tions but it deals with intrasubband transitions. In this sense,
there is a necessity to properly describe the intersubband
plasmons in the doped SWNTs for any SWNT structure or
chirality.

©2019 American Physical Society
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In this paper, we show our calculation of plasmon frequen-
cies for the doped SWNTs as a function of diameter and the
Fermi energy, considering all SWNTs with different chirali-
ties in the range of 0.5 < d; < 2 nm. The calculated plasmon
frequencies exhibit a diameter dependence of (1/d,)"’ and
are further dependent on the Fermi energy as Ep2. This
scaling of plasmon frequency differs with that predicted by the
Drude model, w, o (Er /d,)o'5 [19,31], hence indicating the
difference of the intersubband transitions (current work) from
the intrasubband transitions (the Drude model). We further
consider optical absorption at the plasmon frequencies caused
by intersubband transitions within the conduction and valence
bands, corresponding to Ef > 0 and Er < 0, respectively. We
find that the most dominant plasmonic transition, which we
label as P;; at a certain energy E;; (following the notation
introduced by Bondarev [32] for the interband plasmon at E;;),
changes with Fermi energy from a P;; to another P; ;. For the
smaller (larger) nanotube diameter, we need higher (lower)
Er to excite the plasmon. Using the fitting formula for the
plasmon frequency provided in this paper, one can estimate
the Fermi energy in the doped SWNTs by means of optical
spectroscopy, as well as EELS. Furthermore, experimental-
ists can also search for intersubband plasmons in isolated
SWNTs with various chiralities, not only limited to SWNTs
bundles.

The rest of this paper is organized as follows. In Sec. II,
we describe how to calculate the plasmon frequency for a
given SWNT starting from the dielectric function of the
SWNT. The complex dielectric function in this paper is calcu-
lated within the self-consistent-field approach by considering
dipole approximation for optical matrix elements from which
there exist selection rules for different light polarizations. In
Sec. III, we discuss the main results of intersubband plasmon
frequencies, including the opportunity to map them into a
unified picture of w, o« (EL2 /d"7). We justify the fitting by
means of graphene plasmon dispersion, considering the model
of the rolled graphene sheet for a SWNT. Finally, we give
conclusions and future perspectives in Sec. IV.

II. THEORETICAL METHODS
A. Defining plasmons from dielectric function

We consider a SWNT subjected to perturbation by light
whose vector potential, electric field, and magnetic field are
denoted by A, E, and B, respectively. The vector potential of
the electric field of incident light at the position of r and time
t is given by

A(r,t) = Apncos(q - r — wt), €))

where Ay, w, q, and n denote the vector potential amplitude,
angular frequency, wave vector in the direction of prop-
agation, and unit vector of polarization direction, respec-
tively. The magnetic and electric fields are related with A by
E(r,7) = —dA/dt and B(r,t) = V x A, respectively. These
quantities are important in the calculation of optical matrix
elements, as derived in details in Appendix A.
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FIG. 1. Two geometries of propagating linearly polarized light
with electrical field being polarized in (a) parallel and (b) perpendic-
ular directions with respect to the nanotube axis.

We will discuss two cases of n: parallel and perpendicular
to the nanotube axis, shown in Fig. 1. We refer to the two cases
as the parallel polarization and perpendicular polarization.
The nanotube axis is denoted by the translational vector T in
three dimension as shown in Fig. 1(a) for n || T and Fig. 1(b)
forn L T. If we imagine the SWNT as a rolled-up graphene
sheet, the nanotube axis in the unrolled sheet is always perpen-
dicular to the chiral vector Cj, thus the unit cell of the SWNT
is defined by the rectangular whose boundaries are C; and
T [33]. The chiral vector C;, in the basis of two-dimensional
(2D) lattice vectors of graphene uniquely identifies the SWNT
structure by C;, = (n, m), where the set of integers (n, m) is
known as the chirality.

In both optical spectroscopy and EELS, plasmons are
observed as prominent peaks in the spectra. The intensity
of optical absorption is proportional to Re(o /¢) [34], where
o and ¢ are, respectively, optical conductivity and dielectric
function as a function of light frequency w. Note that the
dielectric function in the optical absorption accounts for
the depolarization effect, which means that the screening
of the external electrical field is included in the calculation
of optical absorption for both perpendicular and parallel
polarizations of light. Indeed, the depolarization effect is
essential for explaining the anisotropy of optical absorption
in SWNTs [14,35,36]. On the other hand, the intensity of
EELS is proportional to the energy loss-function, Im(—1/¢)
[37,38], that describes the excitation spectrum of solid by
inelastic scattering of electrons at small angles. The plasmon
peaks originate from zero points of the real part of e(w),
i.e., Re[e(w)] = 0, followed by a relatively small value of its
imaginary part, Im[e(w)], in comparison with the maximum
of Im[e(w)].

According to the Maxwell equations, the optical conduc-
tivity o is related to the dielectric function ¢ as follows:

Aro(w)
elw)y=1+1i
wlLeg

, @

where ¢, is surrounding dielectric permittivity (e, =2 for
SWNT film [39]) and L is the effective thickness of the
material (L = d, for SWNT). We calculate ¢(w) within the
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self-consistent-field approach in the following form [29,40]:

8me? [12\’ dk s
oA, (;) Z/BZZ|M§‘,§’Z2(1€)|
81,82

His 12

e(w)=¢y+

where MEF2(k) = (s, o, kIm - Vsy, i, k) is the optical
matrix element corresponding to a transition from an initial
state (s;, ;1) to a final state (s, o) [41], A, = m(d,/2)? is
the cross-section area of a SWNT, and f[E (k)] is Fermi-Dirac
distribution function. The electron wave function |s, u, k) is
related with the subband energy E ,(k), where s =c¢ (s =
v) for a conduction (valence) subband and u is the index
for the cutting line, which represents the 1D Brillouin zone
(BZ) of the SWNT [33] with the electron wave vector k.
The cutting lines are plotted in the 2D BZ of graphene with
index u =1,2,...,N. The value of N depends on (n, m),
according to the formula N = [2(n* 4+ m? 4+ nm)]/dg, where
dg = gcd(2n + m, 2m + n).

In Eq. (3), I is the broadening factor that accounts for
relaxation processes in optical transitions resulting in finite
lifetime 7 of the electron state. Here we simply assume that
I' does not depend on w or E but is constant, ' = 50 meV
[42]. The numerical integration over k is implemented by
the left Riemann sums approximation, where the step dk is
chosen to reach an accuracy Ae/e = +0.01, corresponding
to dk = I"/(Shvr), where vp = 10°m/s is the Fermi velocity
in graphene.

To obtain the energy band structure of carbon nan-
otubes, we adopt the zone-folding approximation of graphene
with long-range atomic interactions up to the third nearest-
neighbor transfer integrals, or the so-called third-nearest-
neighbor tight-binding (third NNTB) model [43,44]. Al-
though this approach does not include the curvature effect, the
resulting band structure is sufficiently accurate for SWNTs
with diameter larger than 1 nm [45]. Note that in contrast
to the simplest tight-binding approach, the subbands within
the valence and conduction bands in the third NNTB model
are not further symmetric with respect to E = 0. Therefore,
the SWNTs properties are more sensitive to the doping type
(n-type or p-type) as usually observed in experiments.

B. Optical selection rules

Both dielectric function and optical conductivity are ob-
tained by taking summation of different contributions from all
possible pairs of (s;, wy) and (s2, wy). Although the summa-
tion in Eq. (3) is performed over all the cutting lines in valence
and conduction bands, only a limited number of subbands
gives nonzero contribution. The (s, 1) — (52, (7)) transition
is contributive when Mg{y;z (k) is nonzero (optical selection
rules) and the Pauli exclusion principle is satisfied [the differ-
ence of Fermi-Dirac distributions in Eq. (3) is nonzero]. The
concept of optical selection rules for SWNTs was originally
discussed by Ajiki and Ando [9], who formulated the optical
matrix elements by current-density operator. They proved that
the allowed transitions are always vertical (k; = k) and the

FlEs s ()] = f[Esy 10, ()] 1

, 3

Eszﬁ;tz(k) - Esl,m(k) - ha) + iF ESz,/l.g(k) - Es],u] (k)

(

cutting line index should be conserved for parallel polar-
ization (i1 = 7). On the other hand, the optical transition
for perpendicular polarization occurs within nearest-neighbor
cutting lines, u, = pu; £ 1.

For the sake of completeness, we rederive the optical
selection rules within the dipole approximation. For parallel
polarization, the optical matrix elements are

M k) = Y
€.0'=A.B
X §(ky — k2)8(u1 — p2)
X Znu (j, O'IV10, t)e kRO (4

J

5 %k S|
Ckzlizf’ckl J3%4

and for perpendicular polarization we obtain

Mk k) = )

t,U'=A,B

sz * Csl

kopo '~k €

8(ki — k)

1
X 5(8(/“ —u2 — 1)+ 8(uy — 2 + 1))

x Y nL- (VI Qe RO (5)
J

The detailed derivation for Egs. (4) and (5), as well as the
meaning of each variable in their right-hand sides, are given
in Appendix A. It should be noted that the results of optical
selection rules are the same either by considering dipole
approximation or current-density operator [9].

When we discuss the plasma oscillations in the electron
gas, all charges are considered equivalent and contributing
to the collective motion. However, it is not the case for
SWNTs, in which the electronic states consist of N subbands
in both valence and conduction bands. The calculated plas-
monic excitations in nanotubes show that the plasmon peak is
dominated by a particular (sy, ;1) — (52, 1) transition. With
this regard, and also for clarity in presenting our results, let
us introduce a more convenient notation for the plasmonic
transition that can be used generally for all (n, m) SWNTs.
Here our target is to assign one-to-one correspondence be-
tween the (s1, 1) — (s, U ) transition and the intersubband
transition energy E;;, similar to the notation adopted for the
interband optical transitions Ej;; [2,46]. The case of 51 # s»
is the interband transition, while the case of s; = s, (with
W1 # o) is the intersubband transition. The condition of
s1 = s, means that we consider the intersubband transition
within the conduction (or valence) band. Therefore, instead
of using the cutting line index w, which strongly depends
on the SWNT structure, we will label the cutting line by
integers i starting from the cutting line closest to the K point.
Two examples are shown in Figs. 2(b) and 2(c) for (10,5)
semiconducting and (6,3) metallic SWNTs, respectively. It is
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FIG. 2. (a) Cutting lines of the (10,5) SWNT on hexagonal 2D
BZ, where N = 70. We also show a closer look at cutting lines
around the K and K’ points for (b) (10,5) semiconducting SWNT
and (c) (6,3) metallic SWNT. In (b) and (c), two approaches are
demonstrated to label the energy bands: with the cutting line index
1 (upper) and with optical transition index i (lower). Intersubband
transitions for perpendicular polarization are shown by arrows.

possible to analytically obtain the new cutting line indices
(optical transition indices) around the K and K’ points [47].
Then, the transitions can be enumerated according to the
distance of the corresponding cutting line from the K or
K’ points [Fig. 2(b)], such as Ej,, Ey3, Eog4, Ess5, and Ey4g for
a semiconducting SWNT. In the case of metallic SWNT
[Fig. 2(c)], by excluding the trigonal warping effect [2], we
can obtain transitions such as Ey;, E1», E»3, and so on, either
going to the right or left direction away from the K (or K')
point.

III. RESULTS AND DISCUSSION

A. Absorption spectra of doped SWNT

Let us first discuss the absorption spectra of doped SWNT
for a particular (n, m). In Fig. 3, we plot Re(o /¢) of the (10,5)
SWNT as a function of photon energy 7w for parallel and per-
pendicular polarization. Many spectra are plotted for different
Fermi energies Er from —2.5 to 2.5 eV. For |[Er| < 0.5¢eV,
since the first energy subband of conduction (valence) band is
not occupied, we can observe interband transitions of all E;;’s
with i € {1, 2, 3} for the transitions between the valence and
conduction bands. When we increase |Er| more than 0.5 eV,
the E; peaks start to disappear from E;; to Es3 because the
ith subband in the conduction (valence) band begins to be
occupied (unoccupied) for i = 1,2, and so on. The position

=33]

Er (eV)

FIG. 3. Doping-induced evolution of optical absorption spectra
in a (10,5 SWNT. Solid (dotted) lines represent perpendicular
(parallel) polarization of light. Circles, triangles, and diamonds are
a guide for eyes to trace the E;;, Ej, and Ej; transition peaks in
the case of parallel polarization. The absorption peaks in the case
of parallel polarization are not due to intersubband plasmons, while
the peaks in the case of perpendicular polarization are caused by
intersubband plasmons, as discussed in the main text.

of E;; peaks (circles, triangles, and diamonds for Ey, E,;, and
Es3, respectively) is redshifted by increasing doping and then
blueshifted before disappearing. The redshift of E;; occurs
because of the depolarization correction, which decreases
with doping, whereas the blueshift attests the parabolic shape
of the subbands. The depolarization correction can be seen
as the inclusion of Coulomb interaction between electrons in
the calculation of optical absorption [Re(o /¢)], since e(w) =
1+ ivqo(a))qz/(e%)), where v, = 2me?/q is the Coulomb
potential and g = 2/d;. Hence the dielectric function can be
expressed as in Eq. (2). Without the inclusion of Coulomb
interaction, the position of Ej; absorption peaks is constant
by doping, not redshifted. Although we do not include the
excitonic effect for simplicity, the presence of redshift in the
E; peaks in our calculation is consistent with the previous
work by Sasaki and Tokura [20]. It should be noted that, by
the exclusion of excitonic effect, for d; = 2 nm, the deviation
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of the peak positions (defined as maxima of Re[o (w)]) is still
less than 10% in comparison with the exciton Kataura plot
[18].

While the ith subband is being occupied with electrons (or
holes), the value of E;; increases because the single-particle
excitations occur only for the restricted k-regions, which are
far from k; [2,11,47], where the interband energy distance
is larger. When the subband is partially occupied, a new
peak for perpendicular polarization appears. We expect that
such a peak is related with intersubband plasmon excitations
for several reasons: (1) Re(e) has a zero point close to the
peak position, (2) the peak position is different from the
single-particle intersubband i — j transition, (3) the peak
intensity strongly depends on Fermi energy and continuously
increases even when the subbands are almost occupied and
part of transitions is blocked, and (4) the blueshift with
increasing the Fermi energy is opposite to the redshift for
the single-particle excitation [39]. For highly positive doping
Er > 1.9 eV, the second smaller peak is observed around
1.4 eV as shown in Fig. 3. This peak is another type of
plasmon, which differs from the first one at 1.5 — 1.8 eV by
the dominant contributions (see the more detailed discussion
in Appendix B). Hereafter, we focus our attention to the
first, main plasmon peak, since this one should easily be
observed in experiments. The Fermi-energy dependent optical
absorption shown in Fig. 3 is consistent with that previously
discussed by Sasaki and Tokura [20] for the armchair (10,10)
and zigzag (16,0) SWNTs. However, the present result shows
additional plasmon peaks (Appendix B) and different doping-
type dependence (for Er > 0 and Er < 0), which appears by
introducing more accurate energy band calculation.

B. Plasmon excitation in SWNT

In Fig. 4(a), we plot the absorption peak position in the
case of perpendicular polarization for the (10,5) SWNT as a
function of Er. The intensity of each peak is represented by
the circle diameter. We attribute the peak as the plasmon peak
and denote its frequency as w, when Re[g(wp)] = 0 and wy
is close (<20 meV) to w,. Each point in Fig. 4(a) consists
of several circles which correspond to different contributions
from the transition of the cutting line pair i — j measured
from the K point. We denote the dominant i — j contribution
as P;;, where the threshold for dominant contribution was
chosen as 10% of maximum contribution for each peak. Here
we omit the valence and conduction band indices (si, 5;)
since the dominant transition is the intersubband transition,
51 = 5. One can clearly observe the kink shape of the func-
tion, as well as the existence of the second plasmon branch
at lower frequencies for Ep > 2 eV (see Appendix B for
details).

In Fig. 4(b), we display the density of states (DOS) and
charge density as a function of Fermi energy for the (10,5)
nanotube. The charge density for electrons at Ep > 0 is given
by p(Er) = fooo D(E)f(E)dE, where D(E) is the DOS. For
holes at Ef < 0, we modify the charge-density formula by
replacing the distribution function f(E) with 1 — f(E). In
Fig. 4(c), we show energy dispersion E , (k), where the en-
ergy subbands are labeled according to the approach discussed
in Sec. II B. The kink positions for the plasmon energy and the
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FIG. 4. (a) Plasmon frequency as a function of Fermi energy
for the (10,5) SWNT. The radius of the circles corresponds to the
intensity of the P;; peak. Note that the weak peaks for 0.6 < Ep <
1.1eV are not plasmonic, but related to E}3 absorption. (b) Density
of states (solid line) and charge density (points) for (10,5) SWNT as
a function of energy. Dotted vertical lines indicate the positions of
kinks for plasmon frequency. (c) Energy band structure for the (10,5)
SWNT. Colored bold lines correspond to the subbands coming from
the cutting lines nearest to the K point. Thin solid lines correspond
to the subbands from the other cutting lines in the presented energy
range.

charge density p(Er) are shown to be consistent to each other
[see grey dotted lines in Fig. 4(b)]. In the three-dimensional
(3D) Drude model, the plasmon frequency is known to be
proportional to the square root of charge density (wf,D X /P).
For carbon nanotubes, the Fermi energy dependence was
predicted to be consistent with the 2D graphene result (a)lz,D (66

VEF) [31]. However, we see from Figs. 4(a) and 4(b) that the
plasmon frequency is a function of p(Er), which in case of
carbon nanotubes is the sum ) Ei<Er Er — Ej;.

The kink in p(Er) appears when Ep passes through the
next van Hove singularity (E;) as shown in Fig. 4(b), which
is followed by the Pauli blockade of the ith subband and
change in the dominant contribution to the plasmon from P;;
to another Py, where i’ > iand j* > j for Er > 0 (/' < i and
j < jfor Ep < 0). As seen from Fig. 4(a), the first dominant
contribution is P;3 (P3;), the second dominant contribution
after the first kink is Po4 (P4;), the third contribution after the
second kink is P35 (Ps3) for Ef > 0 (Ef < 0). The plasmon
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intensity [radius of circle in Fig. 4(a)] increases with increas-
ing the Fermi energy and inceasing p(Er).

The asymmetry of plasmon peak intensity with respect
to the n-type and p-type doping is consistent with asym-
metric nature of p(Ep) for Er > 0 and Er < 0. The min-
imum plasmon frequency as well as the Fermi energy at
which the plasmon is excited basically depend on the energy
band structure. For example, in Fig. 4(a), the asymmetry
in the values of E;3 within valence and conduction bands
influences the starting plasmon frequency (fiw, = 1.52 eV
for the valence band and /iw, = 1.54 eV for the conduction
band). Meanwhile, the number of subbands under or above the
Fermi level within the valence or conduction band is essential
for accumulating negative contribution to dielectric function
to observe Re(e) = 0. Therefore, the interplay between the
intersubband transitions determines the asymmetric nature of
the plasmon peak intensity in the n-type and p-type doping.
Note that at Er = 0 eV, both real and imaginary parts of (w)
are positive in the energy range of 0—4 eV. In the case of
p-doped (10,5) SWNT, the plasmon starts to appear at Er =
0.6 eV, after the first subband becomes partially unoccupied,
in which the condition of Re(¢) = 0 is already satisfied. In the
case of n-doping, the first small peak appears at Er = 1.1 eV.
However, since Re(g) # 0, this peak is still not a plasmon,
but is a single-particle intersubband transition 1 — 3. It is ob-
served when the first subband is partially occupied and when
the depolarization effect, which was completely suppressing
absorption before, is relaxed. The true plasmon peak appears
at Er = 1.1 eV, which corresponds to the second subband
partially occupied. Thus, the condition to observe the plasmon
in SWNT for perpendicularly polarized light is to shift the
Fermi level up higher than the bottom of the second subband
in the conduction band [19,21], or down lower than the top of
the first subband in the valence band.

In Fig. 5(a), we plot intersubband and interband absorption
spectra in case of perpendicular polarization for (10,5) SWNT
and Er = 1.5eV. We define the absorption associated with

the i — j transition as A;; = Re(o'}/ /e, ), where o/ is

162 (AN [T dk
of =——(— / SoIMGE)P
dt h\m —)T 2w /

f(E(K)) — f(E;(K)) 1
E;(k) — E{(k) — hiw + iT E;(k) — E;(k)’

(6)

For Er > 0, when we consider the interband transitions, the
ith and the jth subbands come from the valence and con-
duction band, respectively. On the other hand, for the inter-
subband transitions, both subbands lie within the conduction
band. The total absorption A in Fig. 5(a) is contributed from
all the interband and intersubband transitions. We see that
the peak position and line shape of the absorption spectrum
are consistent with those of EELS spectrum, which is given
by Im(—1/¢).

As we already mentioned above, both optical conductivity
and dielectric function are superpositions of contributions
(0ij, &;) from different transitions between the i — j sub-
bands. To calculate absorption from the i — j transition A;;,
we take only the corresponding term from the conductivity
o;j, while the dielectric function (¢ ) is calculated for all pairs
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FIG. 5. (a) Absorption spectra for a doped (10,5) SWNT with
Er = 1.5eV. Black bold solid line represents the total absorption
Ao, considering both the intersubband and interband transitions.
Colored solid lines correspond to the dominant A;3, Ay, and A,
intersubband contributions. The EELS spectrum, Im(—1/¢), is plot-
ted with red dash-dotted line. Colored dashed lines lines correspond
to the interband absorptions with the same transition indices as the
intersubband counterparts. Inset depicts the enlarged region for the
interband peaks, which are about one order of magnitude smaller
than the intersubband peaks. (b) Real (g;) and imaginary (g;) parts
of dielectric function along with conductivity (o; and o) for (10,5)
doped SWNT with Er = 1.5eV. Solid (dotted) vertical line corre-
sponds to Re(e) = 0 [max(A)].

of interband and intersubband transitions according to Eq. (3).
As an example, in the case of Er = 1.5 eV in Fig. 4(a) two
main contributions are Pj3 and Py4. In Fig. 5(a), we see the
peak value of A;; for intersubband absorption (solid lines)
is one order of magnitude larger than that for interband ab-
sorption (dashed lines), which clearly shows that the plasmon
has an intersubband nature. One may notice that the same
Py3 and P4 transitions are dominant for both intersubband
and interband absorptions. However, the contributions have
different signs and different order of magnitude.

Although the interband transitions seem to give negligible
contribution to the plasmon intensity, they affect the redshift
of the zero point for the dielectric function [20], as shown in
Fig. 5(b). In fact, the position of the maximum in absorption
spectra (dotted vertical line) and the zero of Re[e(w)] (solid
vertical line) are slightly different (by ~1 meV). This differ-
ence comes from Im[e(w)], which decreases in the proximity
of Re[e(w)] =0, as well as Im[o(w)] [Fig. 5(b)]. If the
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dielectric function is a real function of w, the zero value would
give the exact position of plasmon, which is not the case for
a complex &(w). Indeed, for ¢ = ¢| + ie; and 0 = o] + ioy,
the absorption and the energy loss-function have the following
form:

1 1
I - == ) 7
m( s) eall + (e1/2)7] @

o 02+61(§—;)
“() - miremn @

The maxima of Im(—1/¢) and Re(o /¢) appear close to the
g1 = 0, but not exactly at this point. The shift of the maxima
strongly depends on slope of &;(w) near the zero point of ¢;.

C. Mapping of intersubband plasmons

In Fig. 6, we plot energy of intersubband plasmon /iw), as
a function of nanotube diameter d;, where 0.5 < d;, < 2 nm,
for five Fermi energies from Er = 1to 2 eV. For Er = 1 eV,
plasmons are observed only in tubes with d; > 1 nm. With
increasing Ep, the number of tubes which have plasmonic
excitations increases, since E; < Er (E; o« 1/d;) is satisfied
for a large Er even for smaller d; nanotubes. Plasmon en-
ergies fiw,, as well as their spreading for fixed d;, and Ef,
are increasing with decreasing diameter. This indicates the
presence of chirality dependence, which was neglected in
the previous works [19,20,31]. We see that the dominant
contributions for smaller diameters and higher Fermi energies
come from the cutting line pairs, which are close to the K
point. Therefore, the family spread due to the curvature effect
is inherited by plasmon frequency. Hereafter, we focus on the
Fermi energy and diameter dependence of plasmon frequency,
since this information is useful for most experimental studies
like the Kataura plot for optical absorption [49,50] or Raman
spectroscopy [51]. Chirality dependence of plasmon energy
is a challenging point for the present method, since the band
structure calculation by adopting the third NNTB model is
not satisfactory to build reliable chiral angle dependence or
curvature effect [52].

We numerically fit the diameter and the Fermi energy
dependence with power law, as shown in Fig. 7. The result is

0.2540.003

hw, = (1.49 £ 0.004) 7 V. ©)

The d; (in nm) and Er (in eV) dependence in Fig. 7 can
be understood from the dispersion of plasmon in graphene,
which is shown in Fig. 8 [53]. The intersubband plasmons in
doped SWNTs, which are nothing but the azimuthal plasmons
[19], can be considered as the plasmons in the rolled graphene
sheet, where we have the oscillations of charge around the
nanotube axis. Rolling of graphene into SWNT results in
the quantization of plasmon wave vector (qp) following the
reciprocal lattice vector K; [33] in the SWNT since we con-
sider the transitions of electron between different cutting lines.
The magnitude of the reciprocal lattice vector is inversely
proportional to the diameter, i.e., |K;| = 2/d;, similar to the
wave vector of the electron along the circumferential direction
(q < d'). From Fig. 8, we can see that the 4y depen-

v Pn Pi3 o Pss ]

255_ v P o Py 7
2.0F ]
1.5F - ;
[ “’!ﬂ% ]
10FE =1.0ey M
r o IvI Poll ' I|’13I ‘:‘I PIBS
25__ v P o Pu v P
2.0F ]
: u.‘u
1.5F e

1.0

3."% _
Er=1256V K

25;_ v Pz o Py Pa7 ]
L Pis ©o Pss o Pog ]
%20:_ ¢ nu _:
~ L %n‘ ]
Q r S0 ]
3 L ® ]
& 15 &@K
10rEr=15ey = 9
[ S lv ‘P01' D' Plas IA IP75I ]
2.5__ v P v Pi O P
r . . P13 & Psy Pg7
E R o P Pes O Pog 1
2> ok : bnn% o Py Pegs o  Pio11 ]
1.5F
1.0F
2.5F
2.0F
1.5F

1-0-Ef .=2.'0.e\|/ T
0.5 1.0 1.5 2.0
Diameter (nm)

FIG. 6. Intersubband plasmon frequencies (major peak) for
SWNTs of all different chiralities (n, m) with diameters from 0.5 to
2nm. Five different Fermi energies from 1.0 to 2.0 eV are consid-
ered. The dominant contributions are pointed out for each plasmon
(and thus each chirality) by specific marker types and colors. The
size of the marker corresponds to the plasmon peak intensity [48].

dence does not always hold for plasmon in graphene. The
plasmon dispersion becomes almost linear to g, as it enters
the interband single-particle excitation (SPE;y.) regime [53].
At the colored frequency range (1.75 Er < hw, < 2.25EF)
in Fig. 8, we fit the dispersion, where we get w, o< ¢

Therefore, we expect w, d %7 for the plasmon frequency
of SWNT, which confirms our finding in Eq. (9). It is noted
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FIG. 7. Fitting of the intersubband plasmon energy as a function

of nanotube diameter d; and Fermi energy Er. We consider SWNTs
with 1 < d, < 2 nm and only the major plasmon peak.

that the w, x q2'7 of graphene’s plasmon is at relatively
higher frequency range compared with the obtained plasmon
frequency range for SWNTs as shown in Fig. 6. This is owing
to the fact that in SWNT, the lower limit of photon energy
for single-particle excitation (the dash-dotted line in Fig. 8)
would be smaller compared with the case of graphene due
to the possible intersubband excitation of electron within the
conduction band of SWNT. This lowering of energy limit for
starting single-particle excitation by intersubband transition
(SPE;pr) shifts the “almost” linear dispersion of plasmon in
graphene to lower frequency range, too. Thus the fitting to
“the almost linear dispersion” is justified.

The Fermi energy dependence of azimuthal plasmon in
SWNT given by Eq. (9) can be also understood from the
dispersion of plasmon in graphene shown in Fig. 8. Since
the dispersion of plasmon in graphene is normalized to the
Fermi energy as shown in Fig. 8, we can obtain the following

3 e
2.5+ SPE;ter
0.6986
o 2 ‘\ wp X g, .
B s, /
D‘1 5 r 7
2 SPEinio
1r " Nplasmon in 7
o graphene //
051 7
0 b . 1 L Pl . )
0 05 1 15 2 25 3 35
cJp/kF

FIG. 8. Fitting of the plasmon dispersion of graphene. We
found w, o« ¢*%% within the horizontally dashed frequency range
(1.75 Eg < hw < 2.25 Ef) that could be related with the intersub-
band plasmon excitations in SWNTs. The other colored dashed
areas correspond to the regime where the interband and intraband
single-particle excitations occur in graphene, denoted by SPE; ., and
SPE., respectively [53].

equation:
q o
o, = (£2) B = @horrEE (o)
F

where we use linear energy band of graphene, Er = hvpkp.

Since w), o« ¢%%, we expect the Fermi energy dependence

to be w, E}m, which is not exact but close to the obtained
power law in Eq. (9). The difference with the obtained power
law comes from the fact that the electron energy bands of
SWNTs are not exactly linear as in graphene. It is noted
that if we have the /g, dependence of plasmon frequency in
graphene, using Eq. (10), we will have w, o« EQ as expected
in the Drude model [19,31,53].

IV. CONCLUSION

We have systematically studied intersubband plasmon ex-
citations in doped SWNTs as a function of diameter and the
Fermi energy. The intersubband plasmons are excited due to
the absorption of light with linear polarization perpendicular
to the nanotube axis. The calculated plasmon frequency w,
scales with the SWNT diameter d;, and the Fermi energy
Er as w, & (EP®/d?7), which is a direct consequence of
collective intersubband excitations of electrons in the doped
SWNTs, but not a result of intraband transitions described by
the Drude model. We also show that more than one branch of
intersubband plasmons occurs even in one nanotube chirality.
Our mapping of intersubband plasmon frequency may serve as
a guide for experimentalists to search intersubband plasmons
in many different SWNTs.
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APPENDIX A: OPTICAL MATRIX ELEMENTS

The Schrodinger equation for a SWNT is given by
H(r) i (r) = Eg (r),

where H(r) is the real-space Hamiltonian, k is the electron
wave vector, and s = ¢ (s = v) denotes the conduction (va-
lence) band. The wave function v;(r) can be expanded by a
linear combination of the Bloch functions ¢y, (r) as follows:

e = > Cl)(r),
{=A,B

where Cj(k) is the coefficient for the state k. The Bloch
function is expressed by

(AD)

(A2)

1 . .
Pre(r) = i ;e’k'R(-’)x(R(j) —r,—1), (A3)
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where x(r) denotes the 2p, atomic orbital, R(j) = jja; +
Joay gives the position of the jth unit cell (with a; and a,
unit vectors of hexagonal unit cell [33]), r, is the position of
£th atom (A or B) in the jth unit cell, and N is the number of
unit cells. Substituting Eq. (A2) into Eq. (A1) we obtain

1 R .
N ZZZAB C: (k) ; RO (1)) (R(j) — 10 — )

1 R
— ES CS k ik-R(j) R(j) — _ . Ad
KN Z:EA,B o( )Ej e X(R(j) —re—1). (A4)

One can rewrite Eq. (A4) in a matrix form multiplying
X (R(0) — ry —r) to Eq. (A4), to obtain

Y CMHwe = Y ECIK)Sker,

(=A.B t=A.B

(AS5)

where Hyyp and Sgpe are 2 x 2 Hamiltonian and overlap
matrices, respectively, defined by

Hype =y e*®ODHy, (), (A6)

j
Skere = Z M RISy, (),
J

(A7)
and

Hye(j) = f drx (R(0) — ro — OHx(R() — 1, — 1),

(A8)

Seej) = / dry(RO) — 1o —OxR(G) =1, —1). (A9)

Hy(j), Sere(j) are considered up to the third nearest-neighbor
sites. Thus we come to the generalized problem for eigenvec-
tors and eigenvalues of the form

H,C}, = E;SkC}., (A10)

where E} = {E?, E;/} gives the energy of valence and con-
duction subbands for particular SWNT and vector C; =
(Cik), Cg,(k))T gives the coefficients for the wave function
represented by Eq. (A2). Within the zone-folding approach,
Eq. (A10) is solved for Hamiltonian of 2D graphene, while
the wave vector is taken as quasi-1D BZ for SWNT given by

[33]
K, T T

k =k—— Ky, =1,....N; —— <k< =),
Ky T (’“‘ T S \T>

(A1)

where T is the length of translational vector T, N = 22 +
m? + nm)] /dg is the number of cutting lines and K, denotes
1D reciprocal lattice vector [33]. We adopt the wave-vector
notation of Eq. (All) to the single-electron wave function
in carbon nanotube as bra-ket style as [s, , k) = v,J(r).The
single-particle Hamiltonian in the presence of external elec-
tromagnetic field is given by

H(r,t) = H(r) + ih—eA(r, 1)V, (A12)
m

y b)) NLT ,
1 E A
! i 4 A & A
SIS U A0 S s LS Tl
1 la 4 Ja

d ! 4 A

B

FIG. 9. Projections of probe photon wave vector q and electric
field E onto nanotube cross section for (a) parallel polarization and
(b) perpendicular polarization.

where e > ( is elemental charge and m is the mass of electron.
The optical matrix element is given by (s>, Uz, kzl%Aq~
Vis1, w1, ki), where Aq is Fourier component of the vector
potential A(r,t) = Agpncos(q - r — ot). For the light propa-
gating parallel to the nanotube axis (n || T) [Fig. 9(a)], Aq in
the jth unit cell can be expressed as [54]

AqH(R(j)) — Aol‘lHeiq'R(-i)

d,
:A0n|<1 + in’ sin a,-), (A13)

In the case of perpendicularly polarized light (n L T)
[Fig. 9(b)], Aq is expressed as

Agt(R())) = AgcosOm 1RV

A . , d,
= TOnL(ezej + e"gf)<1 + iqé sin 9,-), (A14)

where we take the direction of n as m; = (0,0,1) and n; =
(1,0,0). We also take into account the fact that gd, is suf-
ficiently small compared with the unity, which means that in
both cases the dominant contribution to matrix element comes
from the first term, whereas the second term including g = |q|
can be neglected, which is known as the dipole approximation.
Hereafter we will consider only the dominant terms. The opti-
cal matrix element in tight-binding approximation of Eq. (A2)
has the following form:

<S27 M2, k2|Aq : V|Sl7 M],kl)

1 . o )
_ §2 % S| —iko-R(j") ik R(j)
- N Z Cl'czltzf’cl'ﬂm(Z Z ¢ €
£,L'=A,B JJ

x (J', U'|AqR()) - V1], £), (A15)

where |j, £) = x(R(j) —r; —r) is the bra-ket form for
the atomic orbital introduced in Eq. (A3). Let us discuss
Eq. (A15) for the two cases of parallel and perpendicular
polarization one by one.
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1. Perpendicular polarization

When we put Eq. (A14) to Eq. (A15), we get

(S29 M2, k2|Aq ! VlS] > M1, kl)
tl'=AB

_ A_O § : oo on
- N kool ki py €
L,U'=AB J

x Y nL - (L V], Qe RGIRG),

7

=% X i T
- N kzuze kl/tlf L

€/|V|j g)l(ei(krR(j)*kz'R(j')*%) + ei(k,~R(j)—kz.R(j’)+9,))
)

- (ei((kl —k)-R()H—0) 4 ei((klsz)-R(j)Jra/))

Here we define 2D unit vectors originated from carbon nanotube lattice vectors Cp,, T [54]:

Cy K;
€ec =

1Cul — K|

Then vectors ki, k, and R(j) can be expressed by ec and e7 as follows:

ki = u11Kilec + kier,

Using Eq. (A18), we simplify the phase in Eq. (A16):
(ki —k2) -R() £6; = (ki

Taking the summation on j in Eq. (A16) we get 6(k, — k) and §(uy —

following form:

(1, 1, k11Ag - Visz, ua, k2
0—AB

X ZHL S (j, O'|V]0, £)e kR,

J

k; = wo|Kilec + krer,

S S 1
=40 D CepCil bt — k)3

(A16)
o= L _ K (A17)
T VT
R() = e+ R() (AI8)
J K, |eC Jer.
—kR() 4+ (1 — iz £ 1), (A19)

@1 £ 1). Finally, the optical matrix elment takes the

[8(ur — p2 — 1) + 681 — 2 + 1)]

2. Parallel polarization

Similarly for parallel polarization, when we put Eq. (A13) in Eq. (A15), we get

Aony(s2, o, k2| Vs, w1, ki)

t,U'=A,B

Using Eqgs. (A17)-(A19) we finally get

Aony((s2, w2, ka|V1s1, pr, ki)

Ao —ik, R kR
N D ConeCle e "R DM Ry (1 |V, )

LU'=AB J.J

(A20)
Ao 0% s ; »
— N Z ijzzl’c ],414 Ze ((k1—k2)-R(j)) ZHH ] E |V|] g) iky-(R(G)— R(j)) (A21)
’ J
=Ao Y G2 G 8 — k)8 (uy — ) Yy - (. £[V0, £)e RO, (A22)

LU'=AB

APPENDIX B: DIFFERENT PLASMON BRANCHES

In Sec. III, we discuss plasmon spectra only for major
plasmons, which appear first and remain dominant in terms of
its magnitude. However, for Er > 2.0 eV there exists another
plasmon at the lower frequency as shown in Fig. 4(a). Now, in
Fig. 10(a), we plot the absorption spectra Ay, = Re(o /€1),
as well as EELS spectra by Im(—1/¢,) (dash-dotted line),
as a function of photon energy for the (10,5) SWNT at
Er =2.5 eV. We can see two prominent peaks at 1.86 eV
(peak 1) and 1.4 eV (peak 2), which differ by the dominant
contributions [Fig. 4(a)], i.e., P35 (from Ass) and P4 (from
Ayy), respectively. In particular, for the peak 2, the absorption
Ajzs, which is dominant for the peak 1, gives the negative

J

(

contribution. This leads to a different behavior of the peak 2
as a function of Er.

In Fig. 10(b), we plot &y = Re(e), & =1Im(e), o] =
Re(o), and 0, = Im(o) as a function of photon energy. The
condition on plasmon excitation is satisfied at two zero points
of the real part of dielectric function (solid vertical line).
The absorption maxima (dotted vertical line) are red-shifted
regarding to Re(e) = 0, the shift is larger for peak 2, since
&, is steeper around w,,. Here we can clearly observe the
effect of &, on plasmonic spectra: A;/As X &2(wp2)/€2(Wp1),
where we denote A; and A, as the intensities of plasmon
peaks 1 and 2. The presence of the second branch of inter-
subband plasmon have not been mentioned any of previous
works of SWNTs. However, in recent years, several ab initio
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3 E _:3 FIG. 11. Two plasmon branches in doped SWNTSs. Blue circles
[ ] correspond to the main branch discussed in Sec. 11, orange diamonds
2__ _;2 g correspond to the second branch plasmon, which appear at higher
W 1_ """ : ‘:‘q.i fioping levels. The size of the marker corresponds to the peak
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_1 a -:—1 studies show the similar second branch for bilayer graphene,
o L L L L ] nanoribbons, and other 2D materials [55-58]. The intraband
1.0 12 1 h‘tu (e\]}.)6 1.8 2.0 nature of the second branch plasmon in graphene nanoribbons

FIG. 10. (a) Absorption spectra for (10,5) doped SWNT with
Er = 2.5¢V. Black bold solid line represents the total absorption
Ao Colored solid lines correspond to the dominant Ass, A4, and
Ay intersubband contributions. The EELS spectrum, Im(—1/¢), is
plotted with red dash-dotted line. (b) Real and imaginary parts of
dielectric function and conductivity for (10,5) doped SWNT with
Er = 1.5¢eV. Solid vertical line corresponds to Re(e) = 0, while
dotted vertical line corresponds to max (A ).

was supposed by Gomez et al. [56], which is consistent with
our results. We plot both plasmon branches for SWNT in
Fig. 11 for different chiralities of SWNT with d; < 2 nm at
Er =2.0eV. The lower plasmon peak P,; shows a larger
chiral angle dependence since it comes from the cutting lines
pairs closer to the K point than the major plasmon Pss. Thus
the similar spreading character is observed for small-diameter
SWNTs (d; <1 nm) and the second branch plasmon for
bigger SWNTs (1 < d; < 2 nm).
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