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We derive a model to describe the interaction of an rf-SQUID (radio frequency superconducting quantum
interference device)-based metasurface with free space electromagnetic waves. The electromagnetic fields are
described on the base of Maxwell’s equations. For the rf-SQUID metasurface, we rely on an equivalent circuit
model. After a detailed derivation, we show that the problem that is described by a system of coupled differential
equations is well posed and, therefore, has a unique solution. In the small amplitude limit, we provide analytical
expressions for reflection, transmission, and absorption, depending on the frequency. To investigate the nonlinear
regime, we numerically solve the system of coupled differential equations using a finite element scheme with
transparent boundary conditions and the Crank-Nicolson method. We also provide a rigorous error analysis that
shows convergence of the scheme at the expected rates. The simulation results for the adiabatic increase of either
the field’s amplitude or its frequency show that the metasurface’s response in the nonlinear interaction regime
exhibits bistable behavior both in transmission and reflection.
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I. INTRODUCTION

In the last years, researchers spent tremendous efforts in
understanding and developing electrodynamic metamaterials
that operate at different frequencies from the GHz range up
to the visible [1–5]. Metamaterials consist of unit cells that
are mostly periodically arranged in space. These artificially
structured materials are designed to offer control on the prop-
agation of electromagnetic fields inaccessible with natural
materials [6]. For that, one relies frequently on tiny structures
inside a host medium to form the unit cells: the meta-atoms.
Meta-atoms shall assure a strong interaction of the electro-
magnetic field with matter. Therefore, resonances are often
exploited. Moreover, controlling the scattering properties of
the individual meta-atom is key to tailor the emerging material
properties. For a long time, a magnetic response had been
looked after but many more properties can be tailored. The
meta-atoms themselves can be described by purely classical
means, e.g., within the context of electrodynamics itself if
they are made from ordinary materials such as dielectrics or
metals [7], but also by quantum mechanical means if required.
That would hold when the meta-atom consists of, e.g., a flux
qubit as an artifical two-level system [8].

A referential example for a meta-atom with a strong mag-
netic response is the split ring resonator (SRR) [9–12]. An
SRR is a metal ring acting as an inductance with a small
gap forming a capacitance, i.e., an LC circuit. In a natural
way, determined by its geometry and material, the SRR has
a resonance frequency. However, the downside of using res-
onant structures made from ordinary metals is (a) a spurious
intrinsic absorption that lowers the quality factors and with
that the achievable dispersion in the effective properties of
the actual metamaterial and (b) their limitation to a fixed
resonance frequency upon fabrication [1].

Both aspects can be mitigated while relying on supercon-
ducting materials in the design of meta-atoms. First of all,
superconductors do not suffer from dissipation [13] because
they carry current that is not subject to Ohmic resistance due
to the bosonic character of their charge carriers [14]. That
requires, however, an operational frequency corresponding to
an energy that is smaller than the binding energy of the Cooper
pairs. This restricts the use of superconductor-based metama-
terials to the GHz or at most the lower THz frequency range.
But superconductors also solve the second aforementioned
problem as their properties sensitively depend on the environ-
mental temperature [15] and magnetic fields they are exposed
to [13,16–18]. Thus, external parameters have an impact on
the intrinsic resonance properties of the meta-atoms.

A further option to tune metamaterials is by exploiting non-
linear effects in the interaction of the electromagnetic wave
with the metamaterial. A well-understood nonlinear element
in the field of superconductivity is the Josephson junction (JJ)
[19]. It introduces both nonlinearity into the system and makes
use of the low-loss properties of superconducting charge
transport. In 2007, it was proposed to put JJs into the gap of
an SRR made of superconducting material and to use these de-
vices as meta-atoms [20]. Such structures are called rf-SQUID
ring resonators (radio frequency superconducting quantum
interference device). They are already well investigated in the
context of transmission line theory [16,21,22]. Additionally,
rf-SQUID rings provide a tunable intrinsic inductivity via an
externally applied magnetic field [16]. Hence, an rf-SQUID is
a natural and promising candidate as a building block to create
novel, efficient, and tunable metamaterials.

Besides metamaterials as volumetric matter, is has been ap-
preciated that comparable control over electromagnetic fields
can be offered by metasurfaces, i.e., thin films made from
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a monolayer of meta-atoms. Then, it is not refraction and
diffraction in the bulk media that shall be controlled but rather
reflection and transmission from an array [23–26]. In that con-
text, a question of scientific importance concerns the proper
description of rf-SQUID-based metasurfaces and the explo-
ration of their linear and nonlinear properties. The present
contribution develops a comprehensive theoretical framework
for that purpose and explores linear and nonlinear properties.

We start by developing an interaction model of free
space electromagnetic waves with a thin film loaded with
rf-SQUIDs. In the spirit of the metasurface, we assume the
spatial extent of the meta-atom LMA to be much smaller
than the operational wavelength λ of the incident wave [27],
i.e., LMA � λ. Also the thickness d of the metasurface is
considered to be much smaller than λ, i.e., d � λ. Hence,
the interaction region can be regarded as infinitesimally thin
in the propagation direction of the waves [28]. On the one
hand, we will describe the dynamics of the system by the
continuity of the magnetic field and a jump discontinuity of its
first derivative with respect to space, derived from Maxwell’s
equations [29,30]. On the other hand, we will use circuit
theory and macroscopic quantum effects to describe the inner
dynamics of the current and voltage drop inside the rf-SQUID.
From these considerations, we derive in Sec. II two coupled
differential equations that describe (a) the propagation of the
incident field coupled to the rf-SQUIDs and (b) the temporal
evolution of the internal dynamics of the rf-SQUID metasur-
face. The well-posedness of our system of equations is proven
in Sec. III. We take this as a justification for the reliability
of our approach. The optical response of the metasurface
in the linear regime is discussed analytically in Sec. IV.
Selected properties of the optical response of the metasurface
in the nonlinear regime are discussed numerically in Sec. V.
For these simulations, we outline an efficient scheme and
discuss details of the spatial and temporal discretization of the
governing differential equations. This discussion also contains
a rigorous error analysis showing error estimates for both
discretizations. Finally, we conclude on our work in Sec. VI.

II. DERIVATION OF THE MODEL

The derivation of a model that describes the interaction of
an rf-SQUID ring film with an electromagnetic wave will take
into account Maxwell’s theory of electrodynamics and circuit
theory to express the dynamics in the rings. For the latter, we
rely on the resistively and capacitively shunted junction model
(RCSJ model) of the JJ in the rf-SQUID ring [28,31,32].
Moreover, we use models of macroscopic quantum effects,
such as the Josephson effects and flux quantization. These
different aspects are documented in the following subsections.
The final purpose of this section is to derive a set of coupled
differential equations [cf. Eqs. (31)] that describe in a self-
consistent manner the evolution of the electromagnetic field
and the internal dynamics in the rf-SQUID ring film.

A. Electrodynamics—Maxwell’s equations

To describe the interaction of an rf-SQUID ring film
with electromagnetic fields, we start with Maxwell’s equa-
tions describing the evolution of electromagnetic fields in
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FIG. 1. Schematic view of the geometry and the variables used
in the derivation of the model.

time [33]:

�∇ × �E (�r, t ) = −∂t�B(�r, t ), (1a)

�∇ × �H (�r, t ) = �j(�r, t ) + ∂t �D(�r, t ), (1b)

�∇ · �D(�r, t ) = ρ(�r, t ), (1c)

�∇ · �B(�r, t ) = 0. (1d)

We set the polarization and the magnetization of the film’s
host material to zero, since for simplicity, we consider the film
to be located in vacuum, such that

�D(�r, t ) = ε0�E (�r, t ), (2a)

�B(�r, t ) = μ0 �H (�r, t ). (2b)

Differentiating Eq. (1a) with respect to time and applying
the curl operator to Eq. (1b) together with Eqs. (2) yields

∂2
t
�H (�r, t ) + c2 �∇ × �∇ × �H (�r, t ) = c2 �∇ ×�j(�r, t ), (3)

where c is the speed of light in vacuum. This is the governing
wave equation that we have to solve to express the dynamics
of the electromagnetic field.

As illustrated in Fig. 1, we assume that the film comprising
the rf-SQUID rings has a thickness of d = 2a. Without loss of
generality, it is located around z = 0 inside the x-y plane, such
that z ∈ [−a, a]. This thickness shall be much smaller than the
wavelength of the incident light, i.e., d � λ. The orientation
of the rings can be arbitrary but we bias our description to-
ward the assumption that the strongest interaction is observed
when the rings are upright in the film and the normal vector
of the rf-SQUID rings points in the y direction. We consider
normally incident light which renders our model to be transla-
tionally invariant in the x-y direction, thus �H (�r, t ) = �H (z, t ).
Moreover, we assume linear polarization for the magnetic
field in the y direction. This assures a strong coupling of the
magnetic field to the ring at their preferential orientation.

We start with the evaluation of the left-hand side of Eq. (3)
and have a look at the double curl of the linearly polarized
magnetic field �H (�r, t ) = Hy(z, t )êy. It needs a special treat-
ment since the magnetic field �H is not differentiable twice
with respect to space. We make a piecewise ansatz in the three
different regions of space (to the left, to the right, and inside
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the film) and introduce the notation

�H� (z) := �H−(z)�(−z − a) + �H0(z)�(a − z)�(a + z)

+ �H+(z)�(z − a), (4)

where �H is forced to be continuous, i.e.,

�H−(−a) = �H0(−a), �H0(a) = �H+(a). (5)

We compute

∂zH
�
y = (∂zHy)� + (

H0
y − H−

y

)
δ(z + a)

+ (
H+

y − H0
y

)
δ(z − a)

= (∂zHy)�, (6)

using the chain rule ∂z�( f (z)) = δ( f (z))∂z f (z) and Eqs. (5).
Following the same arguments as before, we arrive at

∂z(∂zHy)� = (
∂2

z Hy
)� + (

∂zH
0
y − ∂zH

−
y

)
δ(z + a)

+ (
∂zH

+
y − ∂zH

0
y

)
δ(z − a). (7)

Note that the differences in the brackets do not vanish in gen-
eral. However, performing the limit a → 0, we can simplify
the expression further and get

�∇ × �∇ × �H� = −∂z(∂zHy)� êy

= −∂2
z Hyêy + (∂zH

−
y − ∂zH

+
y )δ(z)êy. (8)

For the evaluation of the right-hand side of Eq. (3), consider a
current density created by a current flowing within a supercon-
ducting metal ring. We parametrize the current density in the
plane y = 0 that fully contains the enclosed area of the ring.
We call the ring’s cross-sectional area Ac = π (Ra − Ri )2/4,
where Ri = R − b and Ra = R + b are the inner and outer ra-
dius of the ring, respectively. Therefore, one can parametrize
the current density’s motion as

�j(�r, t ) = I (t )

2bAc

⎛⎝ z
0

−x

⎞⎠�(Ra − ρ)�(ρ − Ri ), (9)

where ρ = √
x2 + z2 and 2b is the ring’s thickness. Due to

the cylindrical symmetry, at the position of the origin, where
the center of the ring is placed and the interaction with the
electromagnetic field takes place, we see that

(�∇ ×�j(�r, t ))x = (�∇ ×�j(�r, t ))z = 0. (10)

The curl of the current density in Eq. (9) is therefore given by

�∇ ×�j(�r, t ) = I (t )

bAc
�(Ra − ρ)�(ρ − Ri )êy

+ I (t )

2bAc
ρ[δ(ρ − Ri ) − δ(Ra − ρ)]êy. (11)

After expressing Ra and Ri through R and shrinking the ring
(R → 0), such that it is contained inside the thin film, Eq. (11)
reads

�∇ ×�j(�r, t ) = I (t )

bAc
�(b − ρ)�(b + ρ)êy

+ I (t )

2bAc
ρ[δ(b + ρ) − δ(b − ρ)]êy. (12)

In the limit of a vanishing thickness of the ring, such that
b → 0, we notice, that

lim
b→0

δ(b + ρ) = lim
b→0

δ(b − ρ) = δ(ρ), (13a)

lim
b→0

�(b + ρ)�(b − ρ)

2b
= δ(ρ). (13b)

Therefore, only the fist term in Eq. (12) remains and we are
left with

lim
b→0

�∇ ×�j(�r, t ) = 2I (t )

Ac
δ(ρ)êy. (14)

The Dirac distribution in Eq. (14) confines the curl of the
current density to z = 0. Since the model for the entire film
is assumed to be translationally invariant in the x direction,
we omit the confinement to x = 0 here. This accounts for the
existence of other rings along the x direction inside the film.
Please note, that the limit in Eq. (14) is performed in such a
way that the current density inside the ring remains constant.
For an arbitrarily oriented ring’s area with unit normal vector
�n, from Eqs. (3), (8), and (14), we can summarize

∂2
t
�H − c2∂2

z
�H =

(
∂z �H

+ − ∂z �H
− + 2I

Ac
�n

)
c2δ(z), (15)

linking the current’s motion in the ring and the hereby radiated
magnetic field �H . Please note, that for z �= 0, we deal with a
free wave equation for the magnetic field in the negative and
positive half space, respectively,(

∂2
t − c2∂2

z

)
�H (�r, t ) = 0. (16)

Additionally, from Eq. (15), we obtain a jump condition for
the first spatial derivative of the magnetic field at the position
of the film z = 0,

∂z �H
+(0, t ) − ∂z �H

−(0, t ) = −2I (t )

Ac
�n, (17)

illustrating that �H is not differentiable twice at z = 0. The
latter two equations are the most important equations describ-
ing the evolution of the field coupled to a film that carries a
current. In the next subsection, we elaborate on the details of
the rf-SQUID ring to express the current in the film that is
driven by an external field.

B. Circuit theory—Kirchhoff’s rules

We apply the RCSJ model of a JJ to the rf-SQUID ring
[31,34]. It states that a JJ can be replaced in circuit diagrams
by the junction itself (JJ), a shunted capacitor (C), and a
shunted resistor (R). Additionally, the ring’s loop is taken into
account as an inductance connected in series, see Fig. 2(b).
Kirchhoff’s nodal rule yields

Iring(t ) = IC(t ) + IR(t ) + IJJ(t ) = C∂tU (t ) + U (t )

R
+ IJJ(t ).

(18)

Kirchhoff’s mesh rule yields
∑

ring U (t ) = −∂t
ring(t ), where

ring(t ) denotes the flux penetrating the ring’s enclosed sur-
face acting as the electromotive force. As the voltage drop
across all three shunted elements is the same, we pick the

075401-3



MÜLLER, MAIER, ROCKSTUHL, AND HOCHBRUCK PHYSICAL REVIEW B 99, 075401 (2019)

FIG. 2. (a) Illustration of an rf-SQUID ring with a JJ. (b) shows
the equivalent circuit diagram.

voltage drop across the JJ for convenience and write

UJJ(t ) = −∂t
ring(t ). (19)

C. Macroscopic quantum effects

To link the current through a JJ and the voltage drop
across it to the phase difference ϕ, we use the gauge invariant
definition

ϕ(t ) = 1

h̄

∫
JJ

�p(t ) · d�l = 1

h̄

∫ 1

2
�p(t ) · d�l (20)

of the phase difference of the superconducting wave functions
on either side of the JJ [35]. The integration path 2 → 1 in
Eq. (20) refers to Fig. 2(a). For ϕ(t ), Josephson’s equations

IJJ(t ) = Icr sin ϕ(t ), (21a)

UJJ(t ) = h̄

2e
∂tϕ(t ) (21b)

hold. Hence, from Eqs. (18) and (19), we obtain

Iring(t ) = Ch̄

2e
∂2

t ϕ(t ) + h̄

2eR
∂tϕ(t ) + Icr sin ϕ(t ), (22a)

h̄

2e
∂tϕ(t ) = −∂t
ring(t ). (22b)

Yet another macroscopic quantum effect has to be taken
into account, namely the flux quantization in a superconduct-
ing loop. This effect occurs when considering a superconduct-
ing bulk material device containing a hole [36]. We state the
general expression of the momentum of a Cooper pair of mass
m = 2me and charge q = 2e inside a superconductor [14],

�p(�r, t ) = h̄�∇φ(�r, t ) = 2me�vq(�r, t ) + 2e�A(�r, t ), (23)

where �vq denotes the velocity of the Cooper pairs and �A is
the magnetic vector potential that obeys �B = �∇ × �A. The term
in the middle of Eq. (23) is generated when applying the
momentum operator to the general expression of a conden-
sate’s wave function in real space, i.e., (�r, t ) = √

neiφ(�r,t )

with position-independent density distribution n. We integrate
Eq. (23) along a closed loop around the superconducting ring:

h̄
∮

�∇φ · d�l =
∮

(2me�vq + 2e�A) · d�l. (24)

The integration path is chosen such that the distance from
the path to the surface of the ring is everywhere larger than
the London penetration depth λL of the electromagnetic field
into the ring. Then, the integration path only coincides with
a current carrying region inside the JJ and �vq(�r, t ) · d�l = 0
holds elsewhere inside the ring. Thus, the current has to be
integrated only across the JJ. Please note that even if the
magnetic field penetrates deep into the superconductor and
there is no such current-free region, we only have to correct
the geometric inductance L in Eq. (27) by a kinetic term, i.e.,
L → L′ = L + Lkinetic. By Stokes’ theorem, we obtain

2πm ≈ 1

h̄

∫ 1

2
(2me�vq + 2e�A) · d�l + 2e

h̄

∫
Ar

�B · d�F ,

(25)

2πm = ϕ(t ) + 2π


0
· 
(t ),

where 
0 = h/2e is the flux quantum, Ar = πR2
i is the en-

closed area of the ring, and m an integer. Furthermore, 
(t )
is the externally applied magnetic flux via a magnetic field
and in the first term of the right-hand side we used Eq. (20).
We can see that the total flux 
ring(t ), which penetrates the
ring, consists of the externally applied flux 
(t ) = 
ext (t ) and
an additional term that describes a screening current Iring in
the ring. Its role is to force the enclosed flux onto an integer
multiple value of the flux quantum 
0, i.e.,


0 · m = 
0

2π
arcsin

(
I (t )

Icr

)
+ 
ext (t ), (26)

where the current is determined by Eq. (21a). Equation (26)
can be reformulated to


ring(t ) = 
ext (t ) + LIring(t ). (27)

In the case of the interaction of an electromagnetic wave
with the ring, the external flux penetrating the ring’s enclosed
surface is provided by the magnetic component of the wave,
i.e.,


ext (t ) = μ0

∫
Ar

(�H (z = 0, t ) ·�n)dF. (28)

For the sake of brevity and comprehensible readability,
we drop the spatial and temporal dependencies from now
on, whenever the situation is unambiguous. Hence, from
Eq. (22a), using Eqs. (22b), (27), and (28), we arrive at

Ch̄

2e
∂2

t ϕ + h̄

2eR
∂tϕ + Icr sin ϕ + 
0

2πL
ϕ = −μ0Ar

L
�H (0) ·�n.

(29)

Equation (29) is a nonlinear oscillator ϕ(t ), that is driven by
the magnetic field vector �H (z = 0, t ) at the position of the
film. Equation (17) describes the back action of the current in
the film on the magnetic field via the jump condition of its first
spatial derivative. We know that accelerated charges send out
radiation, such that the current can be regarded as the source
of the electromagnetic field �H (�r, t ). Equations (17) and (29)
constitute the central equations of the interaction model.

075401-4



ANALYTICAL AND NUMERICAL ANALYSIS OF LINEAR … PHYSICAL REVIEW B 99, 075401 (2019)

D. Normalization of the model

To investigate their mathematical structure, we boil
Eqs. (17) and (29) down to dimensionless equations by in-
troducing

ω̃ := 1√
LC

, λ̃ := c

ω̃
= c

√
LC,

�h(�r, t ) := 2π
μ0Ar


0

�H (�r, t ), α := 1

R

√
L

C
,

β := 2π
LIcr


0
, κ := 4π

Ar

Ac

μ0Icr


0
c
√

LC.

We use both dimensionless time τ := ω̃t and space ξ := z/λ̃
variables, where ω̃ defines a characteristic timescale of the
oscillator and λ̃ a characteristic length scale of the system.
Inserting the above relations, Eqs. (17) and (29) transform to
the dimensionless expressions(

∂2
τ − ∂2

ξ

)
�h = 0, (30a)

∂ξ
�h+(0) − ∂ξ

�h−(0) = κ�n(�h(0) ·�n + ϕ), (30b)

∂2
τ ϕ + α∂τϕ + β sin ϕ + ϕ = −�h(0) ·�n. (30c)

For the sake of simplicity, we will now rename the spatial and
temporal coordinates back to the original ones and write τ →
t and ξ → z, both still being dimensionless, i.e.,(

∂2
t − ∂2

z

)
�h = 0, (31a)

∂z
�h+(0) − ∂z

�h−(0) = κ�n(�h(0) ·�n + ϕ), (31b)

∂2
t ϕ + α∂tϕ + β sin ϕ + ϕ = −�h(0) ·�n. (31c)

After the physical model of the dynamics in the system
has been derived, we now discuss the well-posedness of the
problem from a mathematical point of view. This offers a clear
indication that the derived system of equations is reasonable.

III. WELL-POSEDNESS

We now show that Eqs. (31) together with initial conditions

�h(0) = �h0, ∂t
�h(0) = �ht,0, on R,

(32)
ϕ(0) = ϕ0, ∂tϕ(0) = ϕt,0,

have a unique solution �h : [0, T ] → H1(R)3 ∩ H2(R\{0})3

and ϕ : [0, T ] → R, where Hk (R) denotes the Sobolev space
of order k ∈ N.

We prove well-posedness of Eqs. (31) with Eqs. (32) using
Ref. [37]. To keep notation short, we introduce the spaces

X = L2(R)3 × R, V = H1(R)3 × R,

equipped with the respective standard norms. Using the
short notation u = (�uh, uϕ ) = (�h, ϕ), u0 = (�h0, ϕ0) and ut,0 =
(�ht,0, ϕt,0), we derive the weak form

Find u : [0, T ] → V , such that for all w ∈ V

m(∂2
t u,w) + b(∂t u,w) + a(u,w) = m( f (u),w), (33)

u(0) = u0, ∂t u(0) = ut,0,

where m : X × X → R, a, b : V × V → R and f : V → X
are defined by

m(w, v) =
∫
R3

�wh�vh dx + κwϕvϕ, b(w, v) = καwϕvϕ,

a(w, v) =
∫
R3

∇�wh∇�vh dx

+ κ (�wh(0) ·�n + wϕ )(�vh(0) ·�n + vϕ ),

f (w) =
(

0
−β sin wϕ

)
.

Since κ > 0, m is an inner product for X . Moreover, b is
positive semidefinite and continuous with

b(w,w) � 0, b(w, v) � κα‖w‖V ‖v‖V , w, v ∈ V.

Furthermore, by Gauss’s theorem, a is continuous. It is also
symmetric and satisfies a Garding inequality, i.e.,

a(w, v) � C‖w‖V ‖v‖V , w, v ∈ V,

a(w,w) + cGm(w,w) � cG‖w‖2
V , w ∈ V

for all cG > max{1, κ−1}. Finally, the right-hand side f is
Lipschitz continuous with constant κβ, i.e.,

‖ f (w) − f (v)‖X � κβ‖w − v‖V , w, v ∈ V.

Therefore, Theorem 3.3 in Ref. [37] yields the existence of
a unique solution u ∈ C2(0, T ; X ) ∩ C1(0, T ;V ) of Eqs. (31)
with Eqs. (32) for initial values u0 ∈ (H2(R3\S) × R) ∩ V
satisfying the jump condition Eq. (31b) and ut,0 ∈ V (even
if u0 is a bistable point of the potential).

We want to emphasize that an analogous proof holds
true without the assumption of the film being translationally
invariant with respect to the x-y plane, i.e., �h and ϕ being
also functions of x and y. This situation is relevant if the
metasurface shall show a position dependent response to
encode further functionalities.

IV. ANALYTICAL TREATMENT IN
LINEAR APPROXIMATION

First, we consider a special case of Eqs. (31) and calculate
reflection and transmission from the film in the linear regime,
where we assume that the effective interaction potential can be
accurately described by a parabola. As the one-dimensional
case suffices to describe the reflection and transmission co-
efficients of the film, we continue to assume that the film is
placed in the x-y plane. We further assume the electromagnetic
field and the film to be translationally invariant with respect
to the x-y plane and calculate the reflection and transmission
coefficient of an incident plane wave that is y polarized with
its magnetic field.

We make a small-amplitude ansatz to linearize the differ-
ential equations,

�h(z, t ) = �hs + δ�h(z, t ), (34a)

ϕ(t ) = ϕs + δϕ(t ), (34b)
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FIG. 3. Graphical illustration of the ansatz for the magnetic field
amplitudes in Eq. (40).

where �hs and ϕs are the static components of the magnetic
field and the phase difference. For ϕs = 0, we obtain(

∂2
t + α∂t + ω2

0

)
δϕ = −δ�h(0) ·�n, (35)

where we used ω0 = √
1 + β. Analogous to the calculations

in Ref. [32], we proceed with a time-harmonic ansatz to
investigate the model in frequency space:

δ�h(z, t ) =
∫

dω�f (z, ω) exp (−iωt ), (36a)

δϕ(t ) =
∫

dωφ(ω) exp (−iωt ). (36b)

Equation (35) yields(
ω2 + iαω − ω2

0

)
φ(ω) = �f (0, ω) ·�n. (37)

We can plug φ(ω) from Eq. (37) into the jump condition
Eq. (31b) and, as a result, we eliminate one equation, i.e.,

∂z
�f +(0, ω) − ∂z

�f −(0, ω) = −κ�n(�f (0, ω) ·�n)M(ω), (38)

where we defined

M(ω) = ω2 + iαω − β

ω2
0 − ω2 − iαω

= 1

ω2
0 − ω2 − iαω

− 1. (39)

Reflection and transmission coefficients

For the spatial dependence of the magnetic field, we
also make a harmonic ansatz in the two half-spaces z < 0
and z > 0 and impose continuity of the magnetic field at the
position of the film z = 0, see Fig. 3, i.e.,

�f (z, ω) =
{

�fin(ω)eiωz + �fref (ω)e−iωz if z < 0,

�ftrans(ω)eiωz if z > 0,
(40)

�fin(ω) + �fref (ω) = �ftrans(ω) at z = 0. (41)

Note that due to the normalization of the model and the
propagation direction of the electromagnetic wave along the
z axis, it holds ω(�k) = kz. From Eq. (38) and using the ansatz

in Eq. (40), we find

�ftrans(ω) − �fin(ω) + �fref (ω) = iκ

ω
�n(�f (0, ω) ·�n)M(ω). (42)

Using Eq. (41) as well, we obtain

�fref (ω) = iκ

2ω
M(ω)�n(�ftrans(ω) ·�n), (43a)

�ftrans(ω) = �fin(ω) + iκ

2ω
M(ω)�n(�ftrans(ω) ·�n). (43b)

Our goal is to express both the reflected wave �fref and the
transmitted wave �ftrans through the incoming wave �fin only.
On that account, we project Eq. (43b) onto �n and obtain

�ftrans(ω) ·�n =
�fin(ω) ·�n

1 − iκ
2ω

M(ω)
. (44)

As desired, using Eq. (44), we can write Eqs. (43a) and (43b)
as functions of the incoming field amplitude �fin only. We
obtain

�fref (ω) = i
κM(ω)

2ω − iκM(ω)
(�fin(ω) ·�n)�n, (45)

�ftrans(ω) = �fin(ω) + i
κM(ω)

2ω − iκM(ω)
(�fin(ω) ·�n)�n. (46)

For the following, we make assumptions concerning the ge-
ometry of the problem. Assuming that θ is the inclination
angle of the ring’s normal vector �n with respect to the incom-
ing field amplitude �fin, i.e., �fin ·�n = |�fin| cos θ , we find the
reflection coefficient R(ω, θ ) and the transmission coefficient
T (ω, θ ) according to

R(ω, θ ) := |�fref (ω)|2
|�fin(ω)|2 = κ2

4ω2

|M(ω)|2
CD(ω)

cos2 θ, (47a)

T (ω, θ ) := |�ftrans(ω)|2
|�fin(ω)|2

= 1 − R(ω, θ ) − κ

ω

Im(M(ω))

CD(ω)
cos2 θ, (47b)

where we defined the “common denominator” as

CD(ω) = 1 + κ2

4ω2
|M(ω)|2 + κ

ω
Im(M(ω)). (48)

Since the absorption function A(ω, θ ) has to fulfill the energy
conservation relation A + R + T = 1, we find by comparison

A(ω, θ ) = κ

ω

Im(M(ω))

CD(ω)
cos2 θ. (49)

For θ = 0, Fig. 4 shows the reflection and transmission co-
efficients, as well as the absorption function for the two cases
β = 0 (a) and β = 1 (b). Both cases show the resonance at the
resonance frequency ω0 = √

1 + β of the rings. However, for
a notably large current through the JJ (β > 0), in the DC limit
the film acts as a reflector. This can be explained taking into
account self-induction of the rf-SQUID ring loop for small
frequencies.
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FIG. 4. Reflection and transmission coefficients, and absorption
functions for β = 0 (a) and β = 1 (b). We chose α = 0.1, κ = 1.

V. SIMULATIONS IN THE NONLINEAR
INTERACTION REGIME

Up to this point, the effects have been computed analyti-
cally in the linear interaction regime after having performed
linear approximations in Eqs. (34). We next consider nonlin-
ear effects by numerical simulations. As soon as the amplitude
of the incoming magnetic field�hinc exceeds a critical value, the
trigonometric expressions in the equations of motion of our
model can no longer be replaced by the linear term of their
Taylor expansion.

A. Well-posedness on a bounded domain

To introduce a spatial discretization, we restrict the compu-
tational domain to a bounded subdomain �� := [�1, �2] ⊂ R
for some �1 < 0 < �2. This leads to the following simplified
model problem, where the magnetic field �h and the phase ϕ

satisfy (
∂2

t − ∂2
z

)
�h = 0, [0, T ] × �� \ {0}, (50a)

∂2
t ϕ + α∂tϕ + ϕ + β sin ϕ = −�h(0) ·�n, [0, T ], (50b)

together with the jump condition at the interface z = 0:

κ�n(h(0) ·�n + ϕ) = ∂z
�h+(0)−∂z

�h−(0), [0, T ]. (50c)

Following the approach of Ref. [38], we introduce exact
transparent boundary conditions

∂z
�h(�1) = ∂t

�h(�1), ∂z
�h(�2) = −∂t

�h(�2), [0, T ]. (50d)

With these boundary conditions, the solution of the reduced
system coincides with the restriction to the domain �� of the
solution of the original system Eqs. (31) with Eqs. (32) if
the support of both �h0 and �ht,0 is contained in ��. Therefore,
the reduced system yields the same reflection and transmis-
sion coefficients as the problem considered on the full space.
Finally, we impose again the initial conditions Eqs. (32), but
with �� instead of R.

The well-posedness of the reduced system is shown anal-
ogously to the approach for the general setting. First we

introduce the spaces

X1 = L2(��)3 × R, V1 = H1(��)3 × R, (51)

equipped with the standard norms. The bilinear forms m :
X1 × X1 → R, a : V1 × V1 → R and the right-hand side f :
V1 → X1 are defined as before, but with �� instead of R. Only
the bilinear form b : V1 × V1 → R changes significantly:

b(w, v) =καwϕvϕ+ �wh(�1)�vh(�1) + �wh(�2)�vh(�2),

but as all bilinear forms and the right-hand side have the same
properties as before, Theorem 3.3 in Ref. [37] again yields the
existence of a unique solution u ∈ C2(0, T ; X1) ∩ C1(0, T ;V1)
of Eqs. (50).

B. Space discretization

We discretize in space using finite elements on a grid �̂�

of ��. To resolve the jump condition Eq. (50c) correctly,
we require 0 to be a grid point. We denote the maximal
length of the intervals in �̂� by h. We further introduce the
space Pk (�̂�), consisting of piecewise polynomials of degree
at most k ∈ N in every interval in �̂�, and the space V̂ :=
Pk (�̂�)3 × R.

Find û ∈ C1(0, T ; V̂ ), such that for all v̂ ∈ V̂

m̂
(
∂2

t û, v̂
) + b(∂t û, v̂) + â(̂u, v̂) = m̂( f (̂u), v̂), (52)

û(0) = û0, ∂t û(0) = ût,0,

where the initial values û0 and ût,0 discrete versions of their
continuous counterparts. The discrete bilinear forms m̂, â :
V̂ × V̂ → R are approximations of m and a, where the in-
tegrals are replaced by a quadrature rule of order at least
k2. Therefore, the discrete bilinear forms coincide with their
continuous counterparts on V̂ × V̂ . Hence, they satisfy the
same assumptions and we get from Theorem 3.6 in Ref. [37]
the following semidiscrete error estimate.

Theorem (semi-discrete error estimate). For the
exact solution u = (�uh, uϕ )T ∈ C2(0, T ;W k,2(��) × R) ∩
C1(0, T ;W k+1,2(��) × R) of the continuous problem and the
discrete solution û ∈ C2(0, T ; V̂ ) of Eq. (52), the following
estimate holds for all t ∈ [0, T ]:

‖̂u(t ) − u(t )‖V1 + ‖∂t û(t ) − ∂t u(t )‖X1

� Ce( 1
2 +κβ )t (1 + t )

(‖̂u0 − u0‖V1 + ‖̂ut,0 − ut,0‖X1

× hk
(‖�uh‖∞,k+1 + ‖∂t�uh‖∞,k+1 + ∥∥∂2

t �uh

∥∥
∞,k

))
. (53)

C. Full discretization

We use the Crank-Nicolson scheme for the time discretiza-
tion of Eq. (52). First, we define Â, B̂ : V̂ → V̂ via

m̂(̂Âu, v̂) = â(̂u, v), m̂(̂B̂u, v̂) = b(̂u, v̂)

for all û, v̂ ∈ V̂ . The Crank-Nicolson scheme with time step τ

is then given by(
ûn+1

ûn+1
t

)
=

(
ûn

ûn
t

)
− τ

2

(
0 −I

Â B̂

)((
ûn+1

ûn+1
t

)
+

(
ûn

ûn
t

))

+ τ

2

(
0

f (̂un+1) + f (̂un)

)
. (54)

From Corollary 3.7 in Ref. [37] we get the following result.
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FIG. 5. Error against spatial resolution h. (a): with boundary
conditions (b.c.) Eq. (50d) (no inflow, fixed domain) (b): with b.c.
Eq. (55) (with inflow, domain (−h, h)) dashed line indicates first
order in h.

Theorem (fully discrete error estimate). For the exact
solution u = (�uh, uϕ )T ∈ C4(0, T ; X1) ∩ C3(0, T ;V1) and the
numerical approximation ûn ∈ V̂ obtained by the Crank-
Nicolson scheme Eq. (54), the following error estimate holds
for all tn = nτ � T :

en = ‖̂un − u(tn)‖V1 + ∥∥̂un
t − ∂t u(tn)

∥∥
X1

� Ce( 1
2 + κβ

1−κβτ
)tn (1 + tn)

(‖̂u0 − u0‖V1

+ ‖̂ut,0 − ut,0‖X1 + τ 2
(∥∥∂3

t u
∥∥

∞,V1
+ ∥∥∂4

t u
∥∥

∞,X1

)
+ hk

(‖�uh‖∞,k+1 + ‖∂t�uh‖∞,k+1 + ∥∥∂2
t �uh

∥∥
∞,k

))
.

D. Validation

In Fig. 5(a), the error estimate Eq. (53) is numerically
confirmed for α = 0, β = 3, κ = 1, and k = 1. For the initial
values, we chose a Gaussian-modulated sinusoidal pulse of
the form

û0(z) =
(

− exp
(−400

(
z + 1

2

)2)
sin

(
5
(
z + 1

2

))
êy

0

)
,

ût,0(z) = d

dz
û0(z)

for z ∈ [− 1
2 , 1

32 ] = �̂�. Since the exact solution is unknown,
we computed a reference solution on a finer grid. As pre-
dicted, we see linear convergence in the spatial resolution for
the error measured in the energy norm.

Since it is not possible to have any inflow with the bound-
ary conditions Eq. (50d), the support of the initial values
yields a lower bound for the size of the spatial domain.
However, for the reflection and transmission coefficients it
is sufficient to know the magnetic field at any pair of points
ε1 < 0 < ε2 arbitrarily close to the film, i.e., −ε1, ε2 � 1.
Therefore, we adapt the boundary condition at �1 to allow
an incident wave �hin : [0, T ] → R entering the computational
domain �� from the left side. Using d’Alembert’s formula,
�hin is uniquely defined by the initial values �h0 and �ht,0. So,
in the following, we replace Eq. (50d) by the new boundary
conditions:

∂z
�h(�1) = ∂t

�h(�1) − 2∂t
�hin, [0, T ],

∂z
�h(�2) = −∂t

�h(�2), [0, T ]. (55)

Although not covered by our analysis, numerical experiments
also show first-order convergence, as can be seen in Fig. 5(b).

The benefit of these boundary conditions is the possibility
to drastically reduce the computational domain. In fact, the
choice −�1 = �2 = h means that the grid �̂� contains only
the two intervals (−h, 0) and (0, h). Therefore, the numerical
effort for the spatial discretization is completely independent
of the spatial resolution.

As the Crank-Nicolson scheme is unconditionally stable,
one can even keep the number of time steps constant. There-
fore, there is no dependency between spatial resolution and
the computational effort. So, the maximal computable spatial
resolution is solely restricted by the machine epsilon, as the

condition number of the resolvent ( I − τ
2 I

τ
2 Â I + τ

2 B̂) is growing

proportionally to h−2.

E. Simulation results

To investigate the nonlinear effects, we increase the am-
plitude of the incoming light’s magnetic field component and
observe the excited phase difference ϕ as well as the reflected
and transmitted field amplitude. We apply two qualitatively
different types of sources in the simulation setup.

(1) One option is to sweep the amplitude hinc of the incom-
ing magnetic field at a fixed driving frequency ω(t ) = ωD. The
corresponding magnetic field for t ∈ [0, T ] has the form

�hinc(z, t ) = hinc(t )e−iωD(t−z)êy, (56)

hinc(t ) = hinc,max − hinc,min

T
t + hinc,min, (57)

where hinc,min is still part of the linear interaction regime, but
hinc,max is not.

(2) Another way to observe nonlinear effects is to sweep
the frequency of the incoming light at fixed amplitude. In the
linear interaction regime, the system provides its maximum
amplitude response of ϕ at resonance frequency ωD = ω0.
This is not necessarily the case when we go to the nonlinear
interaction regime. When we perform a frequency sweep of
the incoming light at fixed amplitude, the incoming magnetic
field will be of the form

�hinc(z, t ) = hince−iω(t )(t−z)êy, (58)

ω(t ) = ωmax − ωmin

T
t + ωmin. (59)

We will choose the setting in such a way that, at some
time, the incoming field is in resonance with the structure, i.e.,
ωmin < ω0 < ωmax holds.

Figure 6(a) shows simulation results of the first kind,
applying a source term according to Eq. (57) to an rf-SQUID
with parameters α = 0.1 and β = 1.5. One can see the am-
plitude of the stationary state oscillation of ϕ, belonging to
different incident plane-wave amplitudes. The blue triangles
pointing to the right indicate dynamic parameter sweep sim-
ulation results from small amplitudes upward toward larger
ones. Vice versa, the red triangles pointing to the left indi-
cate dynamic sweep simulation results from large amplitudes
downward toward smaller ones. One can observe that in a
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FIG. 6. Stationary state amplitude of ϕ (a), reflected magnetic
field amplitude (b), and transmitted magnetic field amplitude (c)
against incoming magnetic field amplitude hinc for α = 0.1, β = 1.5,
and ωD = 1.14.

certain range of amplitudes, the curves do not coincide. The
hysteresis loop that occurs for ϕ can also be observed in the
reflected and transmitted field amplitudes, see Figs. 6(b)–6(c).
In a certain bistable region, the amplitudes of the reflected
and transmitted waves, respectively, do not only depend on the
amplitude of the incident plane wave, but also on the direction
this amplitude value has been approached from.

We further apply a plane-wave source according to
Eq. (59), i.e., we keep the amplitude of the incident plane
wave fixed throughout the entire simulation and sweep its
driving frequency ωD over a frequency range, which contains
the resonance frequency ω0 = √

1 + β. The results are shown
in Figs. 7(b)–7(d). The resonance frequency is indicated by
the vertical black dashed lines. In Fig. 7(a), hinc = 10−3 is
in the linear interaction regime. The other three figures are
plots of a simulation done at hinc = 1.2, when nonlinear
effects already play a role. The damping parameter is chosen
to be α = 0.1 and the SQUID parameter is β = 2.5. The
sweeps were done first from ωmin = 1.3 to ωmax = 2.1 in an
increasing way (blue triangles pointing to the right), afterward
vice versa in a decreasing way (red triangles pointing to the
left). The response of the system is different in either case,
exhibiting the manifestations of the nonlinear terms in the
equations of motion. We can observe that the resonance of
both the phase difference ϕ and the reflected wave href are
shifted to smaller frequencies. Compare this observation to
the Duffing oscillator, which takes into account the cubic term
in the sin expansion as well [39,40]. Hence, the minimum of
the transmitted wave amplitude occurs at smaller frequencies
than in the linear case as well. Thus, one can tune the effective
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FIG. 7. For hinc = 10−3: stationary state amplitude of ϕ for (a).
For hinc = 1.2: stationary state amplitude of ϕ (b), reflected field
amplitude (c), and transmitted field amplitude (d). All plotted against
the frequency ω for α = 0.1, β = 2.5.

resonance frequency of the entire system by increasing the
amplitude of the incoming magnetic field amplitude hinc to
smaller frequencies.

VI. DISCUSSION OF REALISTIC PARAMETERS

To retain a physical intuition of the dimensions of the
involved quantities, we briefly insert realistic values into the
parameters of the normalized system introduced in Sec. II D.
From Refs. [21,41], we take the values presented in the
experimental study of a transmission-line-based rf-SQUID
interaction setup. We plug in the geometric inductance L =
83 pH, an intrinsic capacitance of the JJ of C = 0.02 pF, a
critical current of the JJ of Icr = 1.8 μA, and a resistance R =
1600 �. This results in the characteristic frequency ω̃ ≈ 2π ×
124 GHz and a scaling parameter for the spatial coordinates
of λ̃ ≈ 0.4 mm. Due to the large resistance, the damping
parameter is α ≈ 0.04 and the rf-SQUID in this case is non-
hysteretic with β ≈ 0.45. We want to point out here that in this
contribution we used a higher value α = 0.1 (corresponding to
a resistance of R = 640 �) to investigate the effect of dissipa-
tive losses, which otherwise wouldn’t have shown its impact
on the dynamics of the system. All other parameters remain
unchanged by this replacement of the resistance. We would
also like to emphasize that the authors of Refs. [21,41] used
an additional shunted capacitance of C = 2 pF to lower the
resonance frequency of the rf-SQUID by roughly one order of
magnitude to the range of ω ≈ 2π × 10 GHz. In this paper,
we generically used κ = 1. We obtain this value by assuming
Ri = 10 μm, according to Fig. 1, and a cross sectional area
of Ac = 1600 μm2. This corresponds to a torus-shaped ring
with quite small aspect ratio. The operational frequency is
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in the range of f ≈ 100 GHz. Consequently, the wavelength
λ is in the order of mm. The above choice of geometry is
therefore justified and we meet the condition d � λ, since
the wavelength is two orders of magnitude larger than the
radius of the rings. The scaling parameter for the magnetic
field evaluates to �h = 1.2 m

A · �H . This means, that a value of
h = 1 corresponds to a magnetic induction of B = 1.05 μT.

VII. CONCLUSION

We have derived an interaction model of an rf-SQUID
loaded infinitesimally thin film with electromagnetic waves.
In a strictly mathematical treatment, we showed that our
problem is well-posed. Therefore, a unique solution of the
system of coupled differential equations exists.

We have treated the model in the linear small-amplitude in-
teraction regime analytically. In this limit, we derived analyti-
cal expressions for the reflection and transmission coefficients
of the film as well as for the absorption function.

To investigate nonlinear effects, we proposed a numerical
scheme based on the finite element method and the Crank-

Nicolson scheme. We further showed rigorous error esti-
mates and presented a numerical scheme based on transparent
boundary conditions with inflow, where the computational
effort is independent of the spatial resolution. With these
methods, we simulated the dynamics in the system numeri-
cally and found bistable and hysteretic behavior in the nonlin-
ear interaction regime.

In future work, interaction between the rf-SQUIDs inside
the film has to be taken into account. It has been proposed
already to assume an interaction via mutual inductance be-
tween the rings [42–44]. Moreover, one has to investigate if
the coupling of the electric component of the wave to the
rf-SQUID is relevant in the description of the interaction.
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