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Fourier modal method for the description of nanoparticle lattices in the dipole approximation
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Rigorous coupled-wave analysis (RCWA) is a very effective tool for studying optical properties of multilay-
ered vertically invariant periodic structures. However, it fails to deal with arrays of small particles because
of high gradients in a local field. In this paper, we implement the discrete dipole approximation (DDA)
for the construction of scattering matrices of arrays of resonant nanoparticles. This strongly speeds up the
calculations and therefore provides an opportunity for thorough consideration of various layered structures with
small periodic inclusions in terms of the RCWA. We demonstrate the performance of the proposed method by
considering plasmonic lattices embedded in a homogeneous ambience and placed inside and onto an optical
waveguide. Both localized surface plasmon resonances (LSPRs) and lattice plasmon resonances (LPRs) are
observed as well as their hybridization with photonic guided modes. High accuracy and fast convergence
of our approach are shown by comparison with the finite element method (FEM) and RCWA calculations
correspondingly.
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I. INTRODUCTION

Periodic photonic structures are one of the most important
low-level components in modern photonics since they form
the basis for plenty of optical elements and devices. They
include band-gap materials [1–3], diffraction gratings [4–7],
frequency selective surfaces [8], antennas [9,10], waveguides
[11–13], metasurfaces [14–18], biosensors, etc. Spatial pe-
riodicity naturally suggests that the electromagnetic field in
periodic structures can be expanded into the Fourier series,
which appears to be an effective tool for calculating of optical
properties of such structures. Indeed, this is a basic idea of the
rigorous coupled-wave analysis (RCWA) [13,19] proved itself
to be an extremely fast and efficient computational method.
However, inclusions much smaller than a wavelength give rise
to high gradients in the near field, which forces to take lots
of harmonics into account and can significantly slow down
this approach. This fundamental drawback of all Fourier-
modal methods, which originates from the Gibbs phenomenon
[20,21], is most pronounced for high-contrast inclusions, such
as plasmonic nanoparticles. Moreover, occurring of localized
surface plasmon resonances makes the contribution of these
inclusions determinative for the optical properties of the
whole structure.

To overcome this problem, several approaches have been
developed. One of them is the Li factorization rules [22],
which solve the problem of poor convergence at concurrent
jump discontinuities. Yet another approach is the use of an
adaptive spatial resolution by choosing specially designed co-
ordinate transformation which increases the resolution around
the material boundaries [23,24]. These methods significantly
improve the convergence of the RCWA numerical scheme.
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However, if the size of metal inclusions is much smaller than
the structure spatial period, practically unrealizable number of
Fourier harmonics is required for the solution of Maxwell’s
equations to be converged. As a result, the RCWA fails to
describe optical properties of a periodic array of metallic
particles in a dielectric. At the same time, the light scattering
by relatively small particles in most cases might be approx-
imately described by substituting them with ideal electric
dipoles, which brings us to discrete dipole approximation [25]
(DDA).

In this paper, we report the approach for calculation of
a scattering matrix of a plasmonic lattice, which is based
on a determination of an effective polarizability tensor of
nanoparticles arranged in periodic arrays. We combine three
widespread numerical methods: finite element method (FEM),
DDA, and RCWA in order to implement each of them on a
specific stage of computation and obtain precise results in a
fast way. It helps to study any layered structures with inclu-
sions of plasmonic lattices for any angles of incident light.
Such an approach makes it possible to observe dispersion
of lattice waves and phenomena of out-of-plane polarization
of plasmonic particles [26,27]. To illustrate the feasibility of
the proposed method, we consider the same plasmonic lattice
in a homogeneous ambience, on a photonic waveguide and
inside it, the formation of photonic band structure, strong
coupling of photonic guided modes with both LSPRs and
LPRs. To verify our approach, we compare the obtained
results with calculations conducted by conventional RCWA
and FEM.

II. EFFECTIVE POLARIZABILITY

Dipole approximation makes it possible to split the prob-
lem of determination of particle polarization into two parts,
which deal with a problem in different scales. Indeed, when a
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particle is incorporated in a certain structure of permittivity
εbg(r) so that this permittivity is constant over the volume
of a particle then it can be conveniently substituted with a
solitary dipole (see Appendix A). The dipole moment of the
ith particle Pi is determined as a polarizability tensor α̂, acting
on a background low-gradient electric field Ebg

i , which excites
electron oscillations in a plasmonic nanoparticle:

Pi = α̂Ebg
i . (1)

In this paper, we define dipole moment Pi as a dipole moment
of free charges, which generates the same far field as a real
particle. To give an example, such a definition makes α̂ tensor
εbg times larger in comparison with a tensor convention-
ally defined for a particle in a homogeneous medium [28].
Computation of this polarizability tensor is the first subprob-
lem, which can be easily solved numerically by any near-
field computational method for a particle of any shape (see
Appendix A) or even analytically for particles of trivial shape
[29,30]. The second subproblem is a determination of the
background field itself Ebg

i , which is a sum of an incident wave
field E0

i , which would have been in the absence of the lattice
and electric field scattered by all the neighboring particles of
a lattice at the coordinate of the considered particle, ri:

Ebg
i = E0

i +
∑
j �=i

Ĝ(ri, r j )P j, (2)

where Ĝ(ri, r j ) is the dyadic Green’s function showing elec-
tric field induced at the point ri by a dipole at the coordinate r j

in a considered, not necessarily homogeneous environment. It
should be emphasized that in this expression Green’s function
acts on a dipole moment of free charges and is defined
accordingly.

Background electric field can be found immediately by
solving this linear algebraic system consisting of 3N equa-
tions (N is a number of particles) via any specialized method
[31], which is a general approach for DDA method. However,
when an infinite lattice is considered (see Fig. 1), then ac-
cording to Bloch theorem the Floquet periodicity occur, which

FIG. 1. Sketch of a plasmonic lattice embedded in a homoge-
neous layer of a typical layered structure.

helps to solve the system analytically [31–38]:

Ebg
i = (Î − Ĉ(k‖)α̂)−1E0

i , (3)

where Î is the identity matrix, k‖ is the in-plain component
of photon wave vector, and Ĉ tensor is a so-called dynamic
interaction constant [37], which is a sum of dyadic Green’s
function over the lattice (see Appendix B for details of practi-
cal calculation):

Ĉ(k‖) =
∑
j �=i

Ĝ(ri, r j )e
−ik‖(ri−r j ). (4)

Relation (3) allows to introduce effective polarizability
tensor α̂eff , which connects dipole moment with an incident
electric field Pi = α̂effE0

i :

α̂eff = α̂(Î − Ĉ(k‖)α̂)−1. (5)

As it can be seen from this expression, effective polarizability
α̂eff has resonances of two types. The first one occurs, when
the ordinary individual polarizability α̂ experiences wide
LSPR. Another resonance with nontrivial dispersion (LPR) is
associated with collective oscillations of the lattice and occurs
when the condition Ĉ(k‖) = α̂−1 is fulfilled.

This approach allows to describe the structure in a very
simple way but naturally has inherent limitations. Indeed,
dipole approximation works until background field does not
change on the dimensions of a particle, which results in a
requirement for a particle to be much less than a wavelength
(far-field limit) and a period of a structure (near-field limit).
Also, an electric field of an ideal dipole and a real particle
match each other for distances larger than several particle
sizes. This means that all the in the vicinity of particles
should be accounted in α̂eff tensor by an appropriate choice
of Green’s function and polarizability of a single particle α̂.

Dipole approximation allows considering a wide range
of structures. However, the proposed approach can be natu-
rally extended by taking into account higher-order multipole
moments. Even accounting for quadrupole moment makes it
possible to consider larger particles, place them closer to each
other and observe quadrupole resonances. For instance, this
can be potentially profitable for the description of dense plas-
monic metasurfaces or periodic structures of large dielectric
particles.

III. SCATTERING MATRIX CALCULATION

Calculation of the effective polarizability α̂eff of a particle
in a lattice is an important stage. However, our final goal is
to obtain the total scattering matrix of the entire structure
containing resonant particles. For this hereafter, we will use
the formalism of RCWA which was conveniently developed
for calculating of optical properties of vertically invariant
periodic structures (e.g., multilayered gratings). The total
scattering matrix of a multilayered structure is calculated
iteratively [39]; at each iteration step, the scattering matrix
of the ith layer is connected with the total scattering matrix of
layers 1 to i − 1 found at previous iteration step. Usually, the
scattering matrix of each layer is found by decomposing the
electromagnetic field into spatial Fourier harmonics.

As mentioned above, such structures as small metallic
particles cause high-gradient fields, which requires taking
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FIG. 2. Calculation of the scattering matrix of a plasmonic lattice in dipole approximation. (a) Nanoparticles lattice in a layered medium.
(b) Calculation of external field at the position of nanoparticles (red points) in the layered medium without nanoparticles. (c) Calculation of
current densities (blue arrows) at the position of nanoparticles. (d) Calculation of the local scattering matrix. In (a)–(d), dashed lines separate
the local dielectric environment of the nanoparticles (blue color) from the outer dielectric environment (green color). Both local and outer
dielectric environments might include any number of vertically homogeneous layers and interfaces between them.

into account a very large number of spatial harmonics to
resolve them in RCWA. However, strongly evanescent behav-
ior of high-k‖ harmonics leads to their confinement inside a
layer of several dozens nanometers thickness, which contains
plasmonic nanoparticles (blue region in Fig. 2). This means
that construction of the scattering matrix of this layer as a
whole, Slocal, via DDA gives us a possibility to work only
with low-k‖ harmonics [see Fig. 2(a)]. In such an approach,
all high-k‖ effects are described by the effective α̂eff , while
low-k‖ effects are treated conventionally by RCWA. Once the
local scattering matrix Slocal is calculated, the initial RCWA
problem of calculation of the total scattering matrix takes on
the task of coordination of adjacent layers, which is consistent
with the original spirit of RCWA.

By definition, the scattering matrix of the considered layer,
Slocal, connects amplitudes of the incoming and outgoing
waves on the boundaries of the considered layer [see Fig. 2(a)]
[13]:

[
�d2

�u1

]
= Slocal

[
�d1

�u2

]
. (6)

Hereinafter, we use the symbols �d and �u for the amplitudes of
positively and negatively propagating waves taken at positions
specified by the subscripts as shown in Fig. 2. Please note that
z axis is directed from top to bottom.

Elaborating the idea discussed in the section II we repre-
sent this matrix as a sum of two terms Slocal = Slocal

0 + δSlocal.
The first term corresponds to a matrix calculated in the as-
sumption of the absence of a lattice inclusion [see Fig. 2(b)],
whereas the second one [see Fig. 2(c)] accounts for the
radiation of the currents induced in the particles. Finally, we
substitute the complex layer that contains nanoparticles lattice
by a black box, which is fully described by the matrix Slocal,
which has a small number of nonzero elements, describing
low-k‖ harmonics.

We start with the consideration of an empty layer without
plasmonic inclusions. Scattering matrix Slocal

0 connects ampli-
tudes on the boundaries:[

�d0
2

�u0
1

]
= Slocal

0

[
�d1

�u2

]
. (7)

However, for our purposes, it is very important to know the
vector of amplitudes [�d0,�u0]T at the plane, which will further
contain the dipole lattice. Therefore we introduce scattering
matrices S1 and S2 of upper and lower parts of the layer,
respectively. These matrices act as follows:[

�d0

�u0
1

]
= S1

[
�d1

�u0

]
,

[
�d0

2

�u0

]
= S2

[
�d0

�u2

]
, (8)

Moreover, they are obviously connected as

Slocal
0 = S1 ⊗ S2, (9)

where the operand ⊗ denotes the combination of two adjacent
scattering matrices [39] (see Appendix C for details of its
calculations).

It is convenient to introduce an auxiliary matrix Bin, which
allows to determine [�d0,�u0]T vectors directly from the incom-
ing waves amplitudes. Equations (8) allows us to represent
this matrix via S1 and S2 components:[

�d0

�u0

]
= Bin

[
�d1

�u2

]
, Bin =

[
D1S1

11 D1S1
12S

2
22

D2S2
21S

1
11 D2S2

22,

]
, (10)

where

D1 = (1 − S1
12S

2
21

)−1
, (11)

D2 = (1 − S2
21S

1
12

)−1
. (12)

Vector [�d0,�u0]T help us to determine subsequently the
field, E0, induced at the position of the particle and cor-
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responding current I = −iωα̂eff E0. According to Maxwell’s
equations, the presence of currents leads to an appearance of
discontinuities of the horizontal components of electric and
magnetic fields [40,41]. As a result, the vectors of amplitudes
taken at the coordinates infinitesimally above and below the
dipole plane [see Fig. 2(c)] are connected as follows:[

�d

�u

]
zp+0

−
[
�d

�u

]
zp−0

=
[
�jd
�ju

]
= A[α̂eff ]

[
�d0

�u0

]
, (13)

where [�jd ,�ju]T is the amplitude discontinuity vector deter-
mined by the induced current I, which results in a connection
with incoming wave amplitudes via a special tensor A[α̂eff ],
(see Appendix C).

The last thing, which is left to do is the calculation of
outgoing from the layer wave amplitudes, determined by
this emission. Similarly to Bin, it is very convenient to in-
troduce another matrix Bout connecting these discontinuities
with outgoing wave amplitudes associated with them. This
matrix can be expressed through scattering matrices S1 and
S2 components from the condition of the absence of incoming
waves [see Fig. 2(c)]:[

δ�d2

δ�u1

]
= Bout

[
�jd
�ju

]
, Bout =

[
S2

11D1 −S2
11D1S1

12

S1
22D2S2

21 −S1
22D2

]
.

(14)

It should be especially emphasized, that although there are
no incoming waves in the subproblem of dipole radiation,
their amplitudes depend on the incoming waves, which allows
finding the correction to the scattering matrix δSlocal defined
as [

δ�d2

δ�u1

]
= δSlocal

[
�d1

�u2

]
. (15)

Summing up, in order to do this, we just have to (I) calculate
the incoming wave amplitudes at a plane of the particles,
(II) apply A[α̂eff ] operator in order to find the amplitude
discontinuity vector [�jd ,�ju]T and finally (III) determine the
correction to the outgoing from the layer waves.

Combining Eqs. (10)–(15), we obtain the following expres-
sion for the correction to the scattering matrix of the layer:

δSlocal = BoutABin. (16)

When the local scattering matrix of a plasmonic layer is
known, it can be easily inserted in any structure. Its total
scattering matrix is then found as

Stot = St ⊗ Slocal ⊗ Sb. (17)

These rather general expressions can be potentially used
for a description of rather complex structures, for example,
a plasmonic lattice inside a photonic crystal or a lattice on
a metamaterial. However, in this paper, we implement our
approach only for two most practical cases and it makes sense
to specify B matrices for them. When the lattice is embedded
in a homogeneous medium, B matrices take a very simple

(a) (b)

x

z

FIG. 3. Sketch of the two most practical structures: (a) nanopar-
ticles in homogeneous medium and (b) nanoparticles on an interface.
Dashed lines bound the local dielectric environment of the nanopar-
ticles. Dotted lines connects the nanoparticles centers.

form:

Bin =
[

eik0K̂zh1 0̂

0̂ eik0K̂zh2

]
, Bout =

[
eik0K̂zh2 0̂

0̂ −eik0K̂zh1

]
,

(18)
where h1 and h2 are the thicknesses of higher and lower
layers included into the local environment (see Fig. 3) and K̂z

satisfies the relation

K̂2
x + K̂2

y + K̂2
z = εÎ. (19)

In Eqs. (18) and (19), K̂x, K̂y, and K̂z are the dimensionless
diagonal operators [13] and

K̂x = 1

k0
diag(kx +�gx ), K̂y = 1

k0
diag(ky +�gy), (20)

where�gx and�gy are 1 × Ng hypervectors of x and y projections
of reciprocal lattice vectors. Matrix A[α̂eff ] also takes a simple
form discussed in details in Appendix C.

The second most practical case is a lattice placed in close
proximity of an interface between two homogeneous media.
It should be noted, that even if the real particles lay right on
the boundary, effective dipole lattice is placed at a level of the
centers of these particles. Thus, for a dipole lattice situated at a
distance of h above an interface, B matrices have the following
form:

Bin =
[

eik0K̂ (1)
z h1 0̂

Sint
21 eik0K̂ (1)

z (h1+2h) Sint
22 ei(k0K̂ (2)

z (h2−h)+k0K̂ (1)
z h)

]
,

Bout =
[
Sint

11 ei(k0K̂ (2)
z (h2−h)+k0K̂ (1)

z h) 0̂

Sint
21 eik0K̂ (1)

z (h1+2h) −eik0K̂ (1)
z h1

]
, (21)

where Sint is the scattering matrix of the interface and op-
erators K̂ (1)

z and K̂ (2)
z are calculated above and below the

interface correspondingly, h1 and h2 are defined according to
the Fig. 3(b).

The matrix A[α̂eff ] has the same form as for homogeneous
environment (whereas α̂eff used for its calculation of course
differs) since the plane of particle centers is fully inside a
homogeneous medium.

It should be emphasized once again that the dyadic Green’s
function Ĝ, which is used for a calculation of effective polar-
izability tensor α̂eff , accounts for the structure of the layer (for
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instance, presence of an interface) in the near field of metallic
particles (see Appendix B). Indeed, this fact allows us not to
account for the self-influence of dipoles by means of RCWA
and escape from operating with all the high-k‖ harmonics.
Also, it should be noted, that, although the matrices A[α̂eff ]
of the same form are implemented for both considered cases
they differ in tensors α̂eff applied for their calculation, which,
in turn, strongly depend on the presence of an interface and a
distance h to it.

There is an interesting fact that such splitting parameters as
h1 and h2 can be chosen arbitrarily and even set to zero. How-
ever, the method performance is determined by the distance to
the first boundary not accounted by the local scattering matrix.
Indeed, the closer the boundary, the larger is the number of
required harmonics and the less is our advantage over the
conventional RCWA. Moreover, for distances of the order of
the particle size, our approach becomes inapplicable and an
additional boundary should be included in a local environment
to be accounted by the polarizability tensor.

IV. EXAMPLE: HYBRID RESONANCES

Plasmonic metals play an important role in modern pho-
tonics, because of unique ability to enhance light-matter in-
teraction via strong confinement of light in subwavelength
dimensions. Very well-known localized surface plasmon res-
onances (LSPR) and surface plasmon resonances (SPR) have
low Q factors but can compete with conventional resonances
because of extremely small mode volume. In some cases, an
intermediate regime of middle Q factor and mode volume is
needed, which suggests the use of hybrid plasmon-photonic
resonators [42,43]. An elegant way of implementation of this
idea is a construction a regular lattice of resonant plasmonic
nanoparticles. Such a structure allows employing both ad-
vantages and features of plasmonic and periodic structures.
Lattice plasmon resonances that occur in them are actively im-
plemented in biosensors [44–46], sources of light [36,47,48],
and stretchable devices [49]. They might be used for lasing
[50,51], strong coupling with emitting systems [52,53] and
other purposes [54–56].

Plasmonic lattices have already been thoroughly studied
theoretically. Such universal near-field methods as FEM or
finite-difference time-domain method [57] (FDTD) can be
implemented for a description of any periodic structure. How-
ever, they are too computationally expensive for observation
of angle-dependent spectra with a good resolution, which
requires at least thousands of computations. RCWA [13,19]
specialized for periodic structures as it was mentioned before
also fails in this case. Plasmonic lattices not only consist from
small particles but generate high contrast in permittivities
of adjacent materials as well. These factors together with
exciting physical phenomena make them the most promising
candidate for the first application of our approach.

For this reason, in order to show the performance of our
method and illustrate the physical phenomena, which can be
investigated, we consider plasmonic lattice in three different
environments [see Figs. 4(a)–4(c)]. We have chosen a square
lattice of silver nanodisks with a period of a = 400 nm. Disks
have the radius of 30 nm, the height of 20 nm and are
described by Johnson-Christy optical constants [58]. In the

first case, this lattice is embedded in an infinite surrounding
of silica (ε = 2.1). In the second variant of the structure, the
lattice is incorporated directly in the middle of this waveguide.
Also, in the latter one, we deposit nanoparticles on an 800-nm
membrane silica waveguide.

A. Homogeneous environment

To start with we have calculated extinction spectra (− ln T ,
where T is a transmission in the main diffraction order) of
the plasmonic lattice in a bulk silica for both polarizations of
light incident on a lattice along its crystallographic axis [see
Figs. 4(d) and 4(g)]. Several specific phenomena are observed
in this structure.

So-called Rayleigh anomalies [59] [magenta dashed lines
in Figs. 4(d) and 4(g)] correspond to openings of different
diffraction channels. In other words, for this relation of ω and
k‖ all the particles radiate light coherently along the plane of a
lattice, which results in in-phase contribution into the Ĉ tensor,
its divergence and subsequent vanishing of the effective po-
larizability α̂eff → 0. Hence, in dipole approximation lattice
becomes effectively transparent under Rayleigh condition,
which is clearly seen in Figs. 4(d), 4(g) and 4(i). At the
same time, when we go to the energies lower than Rayleigh
anomalies, interaction constant Ĉ slightly decreases, which
leads to a fulfillment of the resonant condition for LPRs,
observed in Figs. 4(d), 4(g) and 4(i) as well. These resonances
are so-called Fano-Wood anomalies [59], which occur when
one of the diffraction orders matches both frequency and an
in-plane component of the wave vector of the guided mode.
LPRs in a homogeneous or almost homogeneous ambience
have been thoroughly studied both theoretically and exper-
imentally [35,45,54,60–62]. Their dispersion spectra have
been observed experimentally and explained in Ref. [60].
Extinction spectra of the plasmonic lattice in a homogeneous
environment are shown in Fig. 4(j). Reflection and transmis-
sion spectra, which can be potentially measured directly in the
experiment as well as absorption and diffraction spectra of all
the considered structures are presented in Ref. [63].

B. Lattice in a waveguide

When the lattice is embedded in the middle of the waveg-
uide of finite thickness [see Fig. 4(b)] photonic guided modes
come into play, while the positions of LSPR and LPR almost
do not change. An interaction between plasmonic resonances
with guided modes leads to an appearance of hybridized
resonances [see Figs. 4(e), 4(h) and 4(k)], which represents
the main difference with the lattice in the bulk space. Since
the lattice is located strictly in the middle of the symmetric
membrane waveguide the hybridization is determined by the
parity of the guided modes. Therefore half of the modes,
which have zero electric fields in the center of the waveguide
are optically active.

The charachteristic example is observed for p-polarized
wave at h̄ω ≈ 2.15 eV and kx ≈ 0.11 × 2π/a [see Fig. 4(h)].
In this point, almost horizontal dispersion curve of lattice
plasmon resonance is crossed by a second TM guided mode,
which results in Rabi splitting.
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FIG. 4. Schematics of the plasmonic lattice in different environments [(a)–(c)]. In-plane wave-vector and energy dependencies of extinction
(− ln T , where T is a transmission in the main diffraction order) in s and p polarizations [(d)–(i)] for the case shown in (a)–(c) correspondingly.
Color scale of (d)–(i) is explained on the right. (j)–(l) show extinction spectra for the normal incidence of light, which corresponds to a
kx = 0 section of angle-dependent spectra. They include the comparison of computations conducted via our approach with conventional FEM
calculations.

C. Lattice on a waveguide

Despite the apparent similarity of the structures, the ap-
pearance of an interface in proximity of a lattice [see Fig. 4(c)]

strongly changes optical properties. The difference comes
from the fact that dipole located near an interface between
two media almost does not radiate light along the boundary.
It can be explained by the destructive interference of waves
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FEM

RCWA+DDA

RCWA

FIG. 5. Extinction of the lattice in bulk silica for a normally
incident light at h̄ω = 2.3 eV calculated by different methods as
a function of

√
1/Ng, where Ng is the total number of Fourier

harmonics.

with their counterparts totally reflected in an opposite phase.
Therefore, in this case, LSPRs are able to couple to each other
only via near field, which strongly suppresses any collective
phenomena. However, the feedback required for observation
of Fano-Wood anomalies can emerge again from the coupling
of LSPRs to an external photonic guided mode.

In this way, we observe coupling between strongly
blueshifted LSPRs (see Appendix A) and guided photonic
modes of a membrane silica waveguide [see Fig. 4(c)]. Since
the lattice is located on the surface of the waveguide, guided
modes of both parities are excited in the structure [see
Figs. 4(f), 4(i) and 4(l)], unlike the previous case.

V. CONVERGENCE AND COMPARISON
TO RCWA AND FEM

In order to verify the considered method, we compare our
results with FEM calculations conducted in COMSOL MULTI-
PHYSICS. Since the calculation of extinction coefficients for
each and every frequency and in-plain wave-vector compo-
nent takes of the order of minute it is possible to conduct
computations varying only one parameter in a reasonable
time. We have considered spectra corresponding to a normal
incidence of light on the same structures. As it can be seen
from Figs. 4(j)–4(l), our results almost perfectly match with
FEM calculations.

In order to compare convergence rate with conventional
RCWA method, we have considered extinction emerging in
the lattice in a homogeneous silica under the normal-incident
light of 2.3 eV. It is seen in Fig. 5 that DDA enhanced method
converges almost immediately, which is actually determined
by the convergence rate of the dynamical interaction constant
Ĉ(k‖) (see Appendix B for details). Concurrently, original
RCWA method converges very slowly and does not provide
reliable results even for 1681 harmonics, which is the maxi-
mum available value in our calculations.

VI. CONCLUSIONS

We have proposed a method for the implementation of
DDA method in RCWA. Although, our approach is very
general and allows considering lattices of nanoparticles in a
complex environment, in this paper, we have implemented it
for lattices in a homogeneous ambience and on a boundary
between two homogeneous media, which are the most prac-
tical cases. We have demonstrated its operational feasibility
by calculation of spectra for solitary plasmonic lattice and
a lattice coupled with an optical waveguide. An occurrence
of Fano-Wood anomalies, lattice plasmon resonances, and
strong coupling between them is observed via the proposed
approach. The accuracy of our approach was verified by
comparison with FEM calculation, whereas convergence rate
was shown to be much faster than in conventional RCWA cal-
culations. Fast speed of calculation (typically several dozens
of milliseconds for one computation at a fixed ω and k‖) and
high accuracy of results makes this approach convenient and
perspective for both interpretation of experimental results and
fundamental analysis of phenomena occurring in plasmonic
lattices. Although in this paper we formulate our method for a
single particle in the unit cell, it can be easily generalized for
the case of multiple particles.
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APPENDIX A: POLARIZABILITY TENSOR
CALCULATION

In order to find a polarizability α̂ of an isolated nanoparti-
cle, it is very convenient to switch to the total/scattered field
formulation. Indeed, it can be easily shown that if Ebg(r) is a
solution of Maxwell’s equations for the definite environment
of a particle (without a particle itself) given by a permittivity
distribution εbg(r), then the following calculation rule can be
formulated. In the presence of an auxiliary scatterer (plas-
monic nanoparticle in our case), the scattered field (defined as
the difference between the total field and the background one)
Esc(r) = Etot (r) − Ebg(r) can be found as a radiation field of
a distributed current jbg(r) = −iω�ε(r)Ebg(r)/(4π ) [64,65],
where �ε(r) = εtot (r) − εbg(r) is a difference of particle
and background structure permittivities. The dipole moment,
which we are searching for, corresponds to distribution of
the free charges, which are placed in a medium described
by εbg(r) permittivity and generate an additional field, which
together with Ebg constitute the total field Etot. Therefore
the density of the additional dipole moment can be found as
(Dtot − εbgEtot )/(4π ) = �εEtot/(4π ) [66], which brings us
to the expression for dipole moment of a particle:

P =
∫

�ε

4π
Etot (r)d3r =

∫
�ε

4π

(
Ebg(r) + Esc

jbg (r)
)
d3r, (A1)

Since, in this paper, we consider small particles in media
with constant permittivity, εbg(r), over their volume (bound-
aries between materials does not intersect particles), we as-
sume Ebg(r) [not Esc(r)] to be constant in space on the
dimensions of a particle Ebg(r) = Ebg. This means that the
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primary induced current jbg(r) is just a vector with three com-
ponents, not dependent on coordinates and makes it possible
to introduce α̂ as a simple 3 × 3 tensor, connecting additional
dipole moment of a particle, P, with a background field Ebg:

P = α̂Ebg = �εV

4π

(
Ebg + 〈Esc

jbg

〉)
, (A2)

where V is the volume of a particle and 〈Esc
jbg〉 is a scattered

field (determined as a field generated by the current density
jbg) averaged over the volume of a particle. Such an approach
clearly shows that dipole approximation can be applied even
for a particle in a very complicated environment and provides
an easy-to-apply procedure of α̂ tensor calculation for the
cases considered in this paper.

Thus the only thing that should be done to calculate polar-
izability tensor, α̂, is the calculation of scattered field, which
is a field radiated by an effective current density jbg. Since,
the connection between dipole moment and electric field is
linear a unitary background field (e.g., Ebg = [1, 0, 0]T ) is
taken in numerical simulations. In general case, three inde-
pendent calculations are required to determine the response
of a particle on each polarization of a background field.
However, in the presence of additional symmetry, there can
be only two or even one independent components, which
simplifies calculations additionally. We conduct the described
calculations in COMSOL MULTIPHYSICS, whereas they might be
potentially realized via any near-field calculation methods.

In Fig. 6, we show energy dependence of in-plain compo-
nent α̂xx of a polarizability tensor of a nanodisk in bulk silica,
air and in the air on the air/silica interface. It is seen, that
wide resonances of LSPRs correlate with the obtained spectra
[see Figs. 4(d)–4(i)]. Since silica has permittivity higher than
air, corresponding plasmonic resonance in a disk is strongly
red shifted. Resonance of a particle laying on a boundary is
obviously located between them. Almost perfect matching of
extinction spectra with FEM calculations [see Figs. 4(j)–4(l)]
indirectly proves that our approach provides precise results
and substantiates our choice.

There are several important advantages of the method
applied for the calculation of α̂ tensor. First of all, it is very
universal so that allows considering particles of any, even very
complex shape, in any environment. Also, it provides high
accuracy, which as a result leads to high-precision spectra.

APPENDIX B: SUM CALCULATION

1. Green’s function filtering

First of all, since in this paper we consider only examples
of environments, which have translational symmetry in the x-y
plane, and all the particles are located in the same plane, for
a fixed z coordinate, Green’s function depends only on the
difference of coordinates. Therefore sum (4) transforms to a
slightly simpler form:

Ĉ(k‖) =
∑
j �=0

Ĝ(t j, z = zp)eik‖t j , (B1)

where t j is the jth translational vector of a lattice in real space.
Typically this sum converges very slowly. For instance, in

a homogeneous medium dyadic Green’s function Ĝαβ (r) =

2 2.5 3
Energy [eV]

-3

-2

-1

0

1

2

3

4

P
ol

ar
iz

ab
ili

ty
 [n

m
3 ]

105

2 2.5 3
Energy [eV]

0

1

2

3

4

5

6

P
ol

ar
iz

ab
ili

ty
 [n

m
3 ]

105

(a)

(b)

FIG. 6. Energy dependence of real (a) and imaginary (b) parts
of in-plain polarizability of the same silver nanodisks embedded in
bulk silica, air and laying on the air/silica interface. All the data is
calculated in COMSOL MULTIPHYSICS.

k2
0 (δαβ + 1

k2 ∂α∂β ) eikr

r (where k = √
εmk0 is a wave vector in a

medium) decays as eikr/r, which makes the sum calculation
not a trivial problem. Various methods have been developed
for an efficient calculation of a lattice sum for homogeneous
ambience [37,67–70]. Many of them, starting from the clas-
sical Ewald’s method are based on the following idea: if a
lattice sum of a function converges slowly in real space, then
this function can be represented as a sum of two auxiliary
functions. The first one accounts for high gradients and decays
very fast at infinity, whereas the second one, on the contrary,
should be very smooth. In this way, the sum of the first
function converges fast in real space and the sum of the second
one can be calculated efficiently in reciprocal space (via the
Poisson formula [71]).

Following this idea, we implement a very similar method,
which helps us to obtain fast convergence for lattices both
in homogeneous ambience and on an interface between two
media and has very clear physical sense. Green’s function has
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* =

FIG. 7. Schematic of filtering of the dyadic Green’s function. W
is the width of the filter, which should be less than a period.

high gradients only in the proximity of the zero point, but in
our case, this point is not included in the sum, since self-action
of a particle is already accounted for by the polarizability
tensor α̂. This fact gives us an opportunity to split the Green’s
function in such a way that the contribution of the first, high-
gradient function is negligible. In order to do that, we multiply
the original Green’s function by a special filter, which is equal
to zero at the zero point and tends to unity for distances larger
or equal to the period of a structure Ĝf (r) = f (r)Ĝ(r) (see
Fig. 7). In this way, the summation can be conducted over all
the nodes of a lattice, having exactly the same result:

Ĉ(k‖) =
∑
j �=0

Ĝ(t j )e
−ik‖t j

=
∑

j

Ĝf (t j )e
−ik‖t j = 4π2

s

∑
j

M̂f (k‖ + g j ), (B2)

where M̂f (k‖) = 1
4π2

∫
Ĝf (r)e−ik‖rd2r, is the filtered dyadic

Green’s function in reciprocal space, s is an area of a unit cell
in real space and g j is a jth vector of reciprocal lattice. If the
filtered Green’s function, Ĝf , is a smooth enough that it has n
derivatives and all of them are absolutely integrable, then its
Fourier image M̂f (k‖) = o(k−n

‖ ) for k‖ → ∞, which provides
fast asymptotic convergence.

This simple approach not only provides fast convergence
but also has a clear physical meaning. Indeed, if we apply
a filter, which is smooth, then each summand in reciprocal
space has a sense of a contribution of corresponding diffrac-
tion order in the interaction between particles. Therefore, in
most cases, it is possible to account for the same number
of diffraction orders in sum calculation and in the scattering
matrix S, which is very convenient.

However, calculation of Fourier image of a filtered Green’s
function M̂f (k‖) is not always an easy task. When the ho-
mogeneous space is considered, then it is possible to com-
pose such a filtering function, that Fourier transform can
be calculated analytically. However, when a particle near
an interface is considered, then expressions become too
complex. Since in real space filtering is just a multiplica-
tion then in reciprocal space we deal with a convolution
M̂f (k‖) = (F ∗ M̂ )(k‖), where F (k‖) = 1

4π2

∫
f (r‖)e−ik‖rd2r

and M̂(k‖) = 1
4π2

∫
Ĝ(r‖)e−ik‖r‖d2r‖. However, since filtering

function tends to unity at infinity, it is convenient to introduce
complementary filtering function, f̄ (r‖) = 1 − f (r‖), for fur-
ther derivations. In this way, we introduce M̂f̄ (k‖) = (F̄ ∗
M̂ )(k‖), which helps to find the originally filtered Green’s
function as M̂f (k‖) = M̂(k‖) − M̂f̄ (k‖).

2. Green’s function near an interface

Here, we consider Green’s function for an emitter located
in the proximity of an interface between two media since it
might be easily reduced to a case of a homogeneous medium.
It is known, that this function can be expressed as a sum of
two parts, M̂ = M̂0 + M̂r [72]. The first term is just Green’s
function of the homogeneous medium and the second one
accounts for the field reflected from the boundary, which is
naturally calculated in reciprocal space because it requires
just multiplication of amplitudes of plane waves by Fresnel
coefficients.

Green’s function for a homogeneous ambience in recip-
rocal space M̂0(k‖) can be expressed as a sum of s- and
p-polarized contributions:

M̂0,± = M̂0,±
s + M̂0,±

p

= ik2
0

2πkzk2
‖

⎛
⎜⎝

k2
y −kxky 0

−kxky k2
x 0

0 0 0

⎞
⎟⎠

+ ik2
0

2πk2k2
‖

⎛
⎜⎜⎝

k2
x kz kxkykz ∓kxk2

‖
kxkykz k2

y kz ∓kyk2
‖

∓kxk2
‖ ∓kyk2

‖ k4
‖/kz

⎞
⎟⎟⎠, (B3)

where kz =
√

k2 − k2
‖ is the z component of the wave vector

(positive imaginary part should be chosen for k‖ > k). Sign
± corresponds to upper/lower half-spaces, however, when we
consider plane z = zp, the choice of the sign does not matter
and all the alternating-sign components finally do not make
any contribution.

Splitting of the tensor into two terms corresponding to
different polarizations is very convenient for an accounting
of reflection from an interface. We just have to multiply each
term by corresponding reflection coefficient, choose appro-
priate signs keeping in mind the fact that the reflected wave
propagates in the direction opposite to an incident one and
take into account an additional phase, which is gained during
the propagation to the interface and back.

Without loss of generality, we consider a lattice of particles
placed above an interface, whose centers are located at a
distance of h from a boundary [see Fig. 3(b)]. Reflected part
of Green’s function has the following form:

M̂r = M̂r
s + M̂r

p

= e2ikzh

⎡
⎢⎣rs(k‖)

ik2
0

2πkzk2
‖

⎛
⎜⎝

k2
y −kxky 0

−kxky k2
x 0

0 0 0

⎞
⎟⎠

− rp(k‖)
ik2

0

2πk2k2
‖

⎛
⎜⎝

k2
x kz kxkykz kxk2

‖
kxkykz k2

y kz kyk2
‖

−kxk2
‖ −kyk2

‖ −k4
‖/kz

⎞
⎟⎠
⎤
⎥⎦,

(B4)

where rs and rp are Fresnel reflection coefficients for corre-
sponding polarizations, and e2ikzh is a phase delay.
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3. Fast calculation of convolution

2D convolution, which is required for filtering of M̂ is a
rather expensive operation. In order to tackle this problem, we
boost it in several ways.

It can be easily noticed, that components of of all the M̂
tensor summands have some trivial angular dependence. Here,
we consider axial symmetric filtering functions f̄ (r‖), which
means that F̄ (k‖) also depends only on the absolute value of
the wave-vector in-plain component. This makes it possible to
reduce the convolution to a much simpler form.

Indeed, let us consider a convolution for a certain compo-
nent of the tensor mf̄ (k‖) = (F̄ ∗ m)(k‖). From the explicit
expressions for tensor components, it can be easily noticed,
that any of them can be represented in the following way:

m(k‖, α) = mk (k‖)mα (α), (B5)

where angular part takes one of the following forms:

mα (α) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1(α)
sin α

cos α

sin2 α

cos2 α

sin α cos α

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (B6)

In this way, convolution can be calculated as follows:

mf̄ (k‖, α) =
∫

mk (k′
‖)mα (α′)

× F̄ (
√

k2
‖ + k ′2

‖ − 2k′
‖k‖ cos(α′ − α))k′

‖dk′
‖dα′

=
∫

mk (k′
‖)mα (α′ + α)

× F̄ (
√

k2
‖ + k ′2

‖ − 2k′
‖k‖ cos(α′))k′

‖dk′
‖dα′.

(B7)

For each and every element of a set mα , a decomposition of
mα (α′ + α) can be conducted. To give an example, a case of
mα (α) = sin2(α) is considered below. Since sin2(α + α′) =
0.5 − 0.5 cos(2α) cos(2α′) + 0.5 sin(2α) sin(2α′), we obtain

mf̄ (k‖, α) = 0.5m(k‖) − 0.5 cos(2α)mcos 2α (k‖)

+ 0.5 sin(2α)msin 2α (k‖), (B8)

where

m(k‖) =
∫

mk (k′
‖)F̄ (

√
k2
‖ + k′2

‖ − 2k′
‖k‖ cos(α′))

×k′
‖dk′

‖dα′, (B9)

msin 2α (k‖)=
∫

mk (k′
‖) sin(2α′)F̄ (

√
k2
‖ + k′2

‖ − 2k′
‖k‖ cos(α′))

× k′
‖dk′

‖dα′, (B10)

mcos 2α (k‖)=
∫

mk (k′
‖) cos(2α′)F̄ (

√
k2
‖ + k′2

‖ − 2k′
‖k‖ cos(α′))

× k′
‖dk′

‖dα′. (B11)

In this way, for a definite frequency, k‖ dependence might
be calculated on a grid and then interpolated. The fact that

FIG. 8. Graph of the filtering function f̄ s(x).

angular dependence is determined analytically and all precal-
culations are conducted for a 1D grid as well as the possibility
not to calculate functions many times in closely spaced points
increase the speed of computations drastically. The strongest
speedup is observed when the angle dependence of a spec-
trum is considered. Moreover, for some filters, angular part
of integrals (B9)–(B11) and similar ones can be calculated
analytically, which additionally speeds the calculations up.

Hereinafter, we observe a specific filter of the following
shape f̄ s(x) = e−x2

(1 + x2 + x4/2) (see Fig. 8), which we use
in our calculations. This filter is convenient for a practical
utilization because of a high rate of decay and the possi-
bility to operate with it analytically, which is demonstrated
below. Its width can be roughly estimated as

∫∞
0 f̄ s(x)dx =

15
√

π/16 ≈ 1.66. Therefore, in order to obtain the filter of
the provided width, W (see Fig. 7), we should use f̄ (r‖) =
f̄ s(1.66r‖/W ). Since original Green’s function diverges as
r−3
‖ at the zero point and filter f (r‖) decays as r6

‖ , then the
filtered Green’s function has to have at least two derivatives
and therefore M̂f (k‖) = o(1/k2

‖ ) for k‖ → ∞.
Fourier image of the filter f̄ s(x) can be easily calculated

analytically:

F̄ s(y) = 1

4π2

∫ ∞

0
dx

[
x f̄ s(x)

∫ 2π

0
dϕe−xy cos ϕ

]

= e−y2/4(96 − 24y2 + y4)/(128π ). (B12)

At the same time, Fourier image of the original filter f̄ (r‖) is
subsequently derived as F̄ (k‖) = F̄ s(k‖W/1.66).

The following expressions are valid for the particular filter
utilized in this paper:

∫
F̄ (
√

k2
‖ + k′2

‖ − 2k′
‖k‖ cos(α′))dα′

= [(κ4
‖ + κ ′4

‖ + 6κ2
‖κ ′2

‖ − 24(κ ′2
‖ + κ2

‖ ) + 96)I0(κ‖κ ′
‖/2)

− 4κ‖κ ′
‖(κ2

‖ + κ ′2
‖ − 10)I1(κ‖κ ′

‖/2)]e−(κ2
‖ +κ ′2

‖ )/4/64,

(B13)
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∫
sin(2α′)F̄ (

√
k2
‖ + k′2

‖ − 2k′
‖k‖ cos(α′))dα′ = 0, (B14)

∫
cos(2α′)F̄ (

√
k2
‖ + k′2

‖ − 2k′
‖k‖ cos(α′))dα′

=
[

(κ4
‖ + κ ′4

‖ + 6κ2
‖κ ′2

‖ − 8(κ2
‖ + κ ′2

‖ ))I0(κ‖κ ′
‖/2)

− 4(κ4
‖ + κ ′4

‖ − 8(κ2
‖ + κ ′2

‖ ) + κ2
‖κ ′2

‖ (κ2
‖ + κ ′2

‖ − 4))

× I1(κ‖κ ′
‖/2)

κ‖κ ′
‖

]
e−(κ2

‖ +κ ′2
‖ )/4/64, (B15)

∫
sin(α′)F̄ (

√
k2
‖ + k′2

‖ − 2k′
‖k‖ cos(α′))dα′ = 0, (B16)

∫
cos(α′)F̄ (

√
k2
‖ + k′2

‖ − 2k′
‖k‖ cos(α′))dα′

= [(κ4
‖ + κ ′4

‖ + 6κ2
‖κ ′2

‖ − 32(κ2
‖ + κ ′2

‖ ) + 192)I1(κ‖κ ′
‖/2)

− 4κ‖κ ′
‖(κ2

‖ + κ ′2
‖ − 10)I2(κ‖κ ′

‖/2)]e−(κ2
‖ +κ ′2

‖ )/4/64,

(B17)

where I0, I1, and I2 are Bessel functions of corresponding
orders, κ = k‖W/1.66 and κ ′ = k′

‖W/1.66.
To conclude, in order to find a filtered Green’s function in

reciprocal space, M̂f (k‖), at any point, we should calculate just
several functions on a 1D grid and continue them analytically
to the whole plane. Precalculation of this auxiliary functions
on a grid and subsequent interpolation makes these compu-
tations much faster. Moreover, for specific filtering functions,
calculation of angular part of an integral can be conducted
analytically, which boosts calculations additionally.

Finally, this approach, allows us to calculate angle-
dependent spectra in a few minutes on a regular laptop,
which is more than enough for practical utilization. Moreover,
calculation of convolution is even not a bottleneck in our
calculations and does not limit the performance of the whole
program.

APPENDIX C: DETAILS ON RCWA MATRIX
CALCULATIONS

1. Combination of scattering matrices

The elements of the scattering matrix S which is a com-
bination of two scattering matrices S1 and S2 denoted as
S = S1 ⊗ S2 is given by the following formula:

S11 = S2
11

(
Î − S1

12S
2
21

)−1
S1

11, (C1)

S12 = S2
12 + S2

11

(
Î − S1

12S
2
21

)−1
S1

12S
2
22, (C2)

S21 = S1
21 + S1

22

(
Î − S2

21S
1
12

)−1
S2

21S
1
11, (C3)

S22 = S1
22

(
Î − S2

21S
1
12

)−1
S2

22. (C4)

2. Method of oscillating currents

The RCWA formalism allows to calculate the emission of
oscillating dipoles embedded in an arbitrary layer. The basic
principle to do that is to construct the amplitude discontinuity
vector which connects the vectors of amplitudes at coordinates
infinitesimally above and below the dipole plane [40]:[

�d
�u

]
zp+0

−
[
�d
�u

]
zp−0

=
[
�jd
�ju

]
= A

[
�d0

�u0

]
. (C5)

In this paper, we consider only examples, when the currents
are located in a section of homogeneous layer (which does not
exclude existence of other layers in near field slightly higher
and lower), therefore all the derivations below are conducted
under this assumption. Application of the material matrix F
[13] to Eq. (C5) gives us jumps of tangential components of
electric and magnetic fields:⎡

⎢⎣
Ex

Ey

Hx

Hy

⎤
⎥⎦

zp+0

−

⎡
⎢⎣

Ex

Ey

Hx

Hy

⎤
⎥⎦

zp−0

=

⎡
⎢⎣

JEx

JEy

JHx

JHy

⎤
⎥⎦ = J = F

[
�jd
�ju

]
, (C6)

where J is the vector of discontinuities of Fourier components
of electric and magnetic fields. The elements of this vector are
found from the Fourier components of the surface current i
[40]:[

JEx

JEy

]
= 4π

cε

(
K̂x

K̂y

)
iz,

[
JHx

JHy

]
= 4π

c

(
iy

−ix

)
, (C7)

where K̂x and K̂y are defined by formulas (20).
In this way, in order to find the matrix A, we should just

express harmonics of this current through the vector [�d0,�u0]T .
The first step is the application of the material matrix, which
gives us fields: ⎡

⎢⎢⎢⎢⎣
E0

x

E0
y

H0
x

H0
y

⎤
⎥⎥⎥⎥⎦ = F

[
�d0

�u0

]
. (C8)

This vector of electric and magnetic fields harmonics is con-
sequently transformed to the vector of Fourier harmonics of
all the components of electric field:

⎡
⎢⎣

E0
x

E0
y

E0
z

⎤
⎥⎦ =

⎡
⎢⎣

Î 0̂ 0̂ 0̂

0̂ Î 0̂ 0̂

0̂ 0̂ K̂y/ε −K̂x/ε

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎣

E0
x

E0
y

H0
x

H0
y

⎤
⎥⎥⎥⎥⎦. (C9)

In turn, this vector is used for calculation of electric field in
real space at the position of the ith particle:

E0 =

⎡
⎢⎣

E0
x

E0
y

E0
z

⎤
⎥⎦ =

⎡
⎢⎢⎣
�� �0 �0

�0 �� �0

�0 �0 ��

⎤
⎥⎥⎦
⎡
⎢⎣

E0
x

E0
y

E0
z

⎤
⎥⎦, (C10)
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where 1 × Ng hypervector �� is set by the following expres-
sion:

�� = exp(i(kx +�gx )x + i(ky +�gy)y), (C11)

where (x, y) is the coordinate of a nanoparticle in the unit cell
in a real space.

Thus, the current of the ith particle is determined as

I = −iωα̂eff E0. (C12)

Finally, according to the Poisson formula a grid of point
currents in real space corresponds to the following harmonics
in Fourier space:⎡

⎢⎣
ix

iy

iz

⎤
⎥⎦ = 1

s
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⎢⎢⎣
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Ix

Iy

Iz

⎤
⎥⎦, (C13)

where s is a surface of a unit cell in a real space and dagger
denotes Hermitian conjugate.

Combining Eqs. (C5)–(C13), we obtain the following ex-
pression for A tensor:

A = F−1ÂF, (C14)

where

Â = −4π ik0

s

⎡
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× α̂eff
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⎥⎦. (C15)
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