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Eigenenergies of excitonic giant-dipole states in cuprous oxide
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In this work we present the eigenspectra of a novel species of Wannier excitons when exposed to crossed
electric and magnetic fields. In particular, we compute the eigenenergies of giant-dipole excitons in Cu2O in
crossed fields. In our theoretical approach, we calculate the excitonic spectra within both an approximate as
well as a numerically exact approach for arbitrary field configurations. We verify that stable bound excitonic
giant-dipole states are only possible in the strong magnetic field limit, as this is the only regime providing
sufficiently deep potential wells for their existence. Comparing both analytic as well as numerical calculations,
we obtain excitonic giant-dipole spectra with level spacings in the range of 0.6–100 μeV.
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I. INTRODUCTION

In a semiconductor environment, excitons are the quanta
of the fundamental optical excitation which consist of a
negatively charged electron in the conduction band and a
positively charged hole in the valence band [1,2]. As the inter-
action between them can be modeled as a screened Coulomb
interaction, excitons are often considered to be a solid-state
quasiparticle analog to the hydrogen atom [3–5]. In recent
times, the measurement of hydrogenlike absorption spectrum
of these quasiparticles up to principal quantum numbers of
n = 25 in cuprous oxide (Cu2O) have attracted attention [6].
However, the hydrogenlike model of excitons is generally too
simplistic, and has been expanded by taking into account the
complex valence band structure and the cubic symmetry Oh

of Cu2O [7–12]. This ansatz has been both theoretically and
experimentally successfully applied for describing the correct
level structure due to fine- and hyperfine splitting of excitonic
states [13].

The addition of external electric and magnetic fields further
reduces the symmetry of the exciton states, thereby leading to
level structures possessing numerous complex splittings of ex-
citonic absorption lines [14–16]. For instance, high-resolution
transmission spectroscopy of excitons in cuprous oxide sub-
ject to an external electric field increases the complexity of the
measured spectra with increasing field strength. In particular,
excitonic states with different parity become mixed, leading
to optical activation of states which remain dark in zero ex-
ternal field [17,18]. Furthermore, recent high-resolution spec-
troscopy and theoretical modeling of excitons in Cu2O have
provided a fundamental understanding of complex absorption
spectra in external magnetic fields for field strengths of up
to 7 T and excitonic states with principal quantum numbers
n � 7 [19,20]. As the cubic lattice and the external magnetic
field break all antiunitary symmetries, several studies have
shown that magnetoexcitons in Cu2O obey GUE (Gaussian
unitary ensemble) statistics [21–23].
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In the case of field-dressed excitonic species, the total
momentum of the system is not conserved, and an exact sep-
aration of the relative and center-of-mass degrees of freedom
is impossible [24]. There exists, however, an alternative con-
served quantity, the so-called pseudomomentum, with whose
help one can carry out a pseudoseparation of the center-of-
mass and relative motion for neutral systems. In a recent
article, a theoretical description of field-dressed excitons in
Cu2O has been developed [25]. There, it has been shown that
the effect of the center-of-mass degrees of freedom on the
internal motion is an effective potential that gives rise to a
number of outer potential wells for certain values of the pseu-
domomentum and applied field strengths. Potentially bound
states in these outer potential wells are of decentered character
with an electron-hole separation of up to several microm-
eters, leading to huge permanent electric dipole moments,
thereby justifying the label excitonic giant-dipole states. Its
counterpart in atomic physics, i.e., atomic giant-dipole states,
have been predicted theoretically [24,26–30] and explored
experimentally in the early 1990s [31,32].

Although the first study on excitonic giant-dipole potential
surfaces has provided strong indications for the existence of
excitonic giant-dipole states, a systematic analysis of their
bound-state properties, such as binding energies and energy
spectra, is still missing. In this work, we extend previous
studies by deriving the irreducible tensor representation of
field-dressed excitons, and calculating the eigenenergies of
giant-dipole states in Cu2O. Here, we employ both approxi-
mate as well as numerically exact approaches.

This paper is organized as follows. In Sec. II, we present
the Hamiltonian of excitons in crossed electric and magnetic
fields in its irreducible representation. Following this, in
Sec. III A, we analyze the possibility of bound excitonic giant-
dipole states in the limit of strong electric fields. Within this
regime, we perform an adiabatic approximation that provides
us with the possibility to derive analytic results. We find
that, in this limiting regime, no bound states are present due
to insufficiently deep potential energy surfaces. Following
the adiabatic approach, we perform a similar analysis for
arbitrary electric and magnetic field strengths in Sec. III B.
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We find that, in the strong magnetic field limit, the potential
surfaces are sufficiently deep to provide bound states within
the local potential minima. In Sec. IV, we finally consider
full couplings between the potential surfaces and calculate
the excitonic eigenspectra within an exact diagonalization
approach for various field strengths and field orientations.

II. THE EXCITONIC GIANT-DIPOLE HAMILTONIAN

The Wannier excitons in Cu2O analyzed in this work are
formed by an electron in the lowest �+

6 -conduction band and
a positively charged hole in the uppermost (triply degenerate)
�+

7 ⊕ �+
8 -valence band. The energy gap between the two

bands is Eg = 2.17208 eV [6]. In contrast to the conduction
band, the three uppermost valence bands are deformed due to
interband interactions and the nonspherical symmetry of the
crystal. These properties can be represented by an effective
I = 1 quasispin representation in the hole degrees of freedom
[11].

In crossed electric and magnetic fields, the excitonic sys-
tem possesses a constant of motion, the so-called pseudomo-
mentum K̂ with

K̂ = P − 1
2 B × r, r = re − rh, (1)

and eigenvalues K [33–35]. As it has been discussed in detail
previously, the excitonic Hamiltonian Hex can be transformed
into a single-particle Hamiltonian [20,25],

Hex = H0 + Hso + HB, (2)

with

H0 = π2

2me
+ Hh(π) + V (r), Hso = 2

3
�(1 + I · Sh),

HB = μB

[(
3κ + gs

2

)
I · B − gsSh · B

]
. (3)

The first term in H0 stems from the kinetic energy of the elec-
tron whose effective mass me = 0.985m0 is almost identical
to the free electron mass m0. The second term is the hole
Hamiltonian,

Hh(π) = π2

2m0
(γ1 + 4γ2) − 3γ2

m0

({
π2

x , I2
x

}+ c.p.
)

− 6γ3

m0
[{{πx, πy}, {Ix, Iy}} + c.p.], (4)

which is more complex due to the three coupled valence
bands. The material parameters γi, i = 1, 2, 3 are the so-
called Luttinger parameter and characterize the consid-
ered material [36,37]. The values for Cu2O are given in
Appendix A. The mapping {a, b} = (ab + ba)/2 is the sym-
metric product and c.p. denotes cyclic permutations [11]. If
not stated otherwise, we use excitonic Hartree units through-
out this work, i.e., e = h̄ = m0/γ

′ = 1/4πε0ε = 1 (see Ap-
pendix A). Here, ε = 7.5 is the static dielectric constant of
the bulk material and γ ′

1 ≡ m0/me + γ1.
The term Hso denotes the spin-orbit coupling of the hole-

spin Sh with the pseudospin I, while HB includes the coupling
of the hole spins to the external magnetic field. Because of the
spin-orbit coupling, the degenerate valence band splits into
one single higher-lying doubly degenerate �+

7 and two doubly

degenerate lower-lying �+
8 bands separated by an amount of

� = 133.8 meV. As we do not include any kind of electronic
spin-orbit coupling or spin-spin interaction, the electron spin
Se is not considered throughout this work.

The quantity π is a generalized kinetic momentum which
contains, besides the configuration space degrees of freedom p
and r, the spin-1 matrices Ii, i = 1, 2, 3. In an arbitrary gauge,
its components πi are given by [25]

πi = 1I pi − qAi(r) + ∂i f −
∑

k

(
mh

M
1Iδki − 
ki

)
K̃k, (5)

with M = me + mh and

q = me − mh

M
, A(r) = 1

2
B × r, K̃ = K + B × r,

where mh ≡ m0/γ1 denotes the hole mass. The matrices

ki, (k, i) = 1, 2, 3 act on the spin-1 Hilbert space and are
defined in Ref. [25]. Throughout this work, we apply the
symmetric gauge, i.e., we no longer consider the function f
as it can be eliminated via a simple gauge transformation.
Together with the first term in Eq. (3), one can define a kinetic
energy Hamiltonian,

T (π) = π2

2me
+ Hh(π), (6)

which parametrically depends on the pseudomomentum K.
The last term in H0 represents a potential term V that reads
as

V (r) =
(


1K̃2 + E · r − 1

r

)
1I − 
2

∑
i

K̃2
i Iii

−2

3

3

∑
i j, j<i

K̃iK̃ j Ii j, K̃ = K + B × r (7)

with 
i=1,2,3 ∈ R (see Ref. [20]). It describes an effective
two-body potential including the electron-hole Coulomb in-
teraction, the Stark coupling, and magnetic field terms. To-
gether with Hso and HB, it defines the exact electron-hole
potential,

Vgd(r) = V (r) + Hso + HB, (8)

for field-dressed excitons in cuprous oxide [25].
Using the vector components πi and K̃i, one can define the

symmetric and trace-free Cartesian tensor operators,

Ii j = 3{Ii, I j} − 2δi j, �i j = 3{πi, π j} − π2δi j, (9)

K̃i j = 3K̃iK̃ j − K̃2δi j, (10)

�i j =
(

�i j + m0

(

2

γ2
δi j + 
3

3γ3
(1 − δi j )

)
K̃i j

)
. (11)

Using these tensor operators we derive the irreducible repre-
sentation of the excitonic Hamiltonian given by Eq. (2), and

075205-2



EIGENENERGIES OF EXCITONIC GIANT-DIPOLE … PHYSICAL REVIEW B 99, 075205 (2019)

- 10 - 8 - 6 - 4 - 2

- 150

- 100

- 50

50

100

150

- 3.10 - 3.09 - 3.08 - 3.07 - 3.06 - 3.05 - 3.04
- 153.394
- 153.392
- 153.390
- 153.388
- 153.386
- 153.384
- 153.382
- 153.380

FIG. 1. Potential curves for B = 1 T, E = 1 kV/cm. The specific
field configurations are B||[100] and E||[001]. The inset shows the
adjacent potential curves V (1)

gd and V (2)
gd where the spacing �1 is

indicated as well.

we obtain

Hex = π2

2
− μ′

6
{�(2) · I (2)}

+ δ′

6

(∑
k=±4

{
[�(2) × I (2)](4)

k

} +
√

70

5
{[�(2)×I (2)](4)

0 }
)

+
(


1K̃2 + E (1) · r (1) − 1

r

)
+ Hso + HB, (12)

with μ′ = (6γ3 + 4γ2)/5γ
′
1 and δ

′ = (γ3 − γ2)/γ
′
1. The map-

ping,

{
[�(2) × I (2)](4)

k

} ≡ 1

2

(
[�(2) × I (2)](4)

k + [I (2) × �(2)](4)
k

)
,

(13)

reflects the fact that the Cartesian tensor components �i j and
Ikl do not necessarily commute. We note that this Hamilto-
nian is the most compact irreducible tensor representation of
excitons in external electric and magnetic fields for arbitrary
field strengths and field directions. Obviously, one can derive
irreducible representations for kinetic and potential energy
terms separately. These can be found in Appendix C.

III. ADIABATIC APPROXIMATION

After deriving the irreducible tensor representation of the
field-free excitonic Hamiltonian, we now turn to the determi-
nation of the properties of a special kind of excitonic species.
Because of the six-dimensional spin space the diagonalization
of the potential Vgd provides six distinct potential energy
surfaces V (α)

gd (r), α = 1, . . . , 6 with energetic separations in
the range of a few hundred μeV up to 100 meV [25]. The
larger energetic separation is related to the spin-orbit cou-
pling Hso, while the smaller splitting is caused by HB. In
Fig. 1, we show typical potential curves for field strengths
B = 1 T and E = 1 kV/cm. One clearly observes local poten-
tial minima at distances several micrometers away from the
Coulomb center. As it has been discussed in Ref. [25], poten-
tially bound excitonic states in the outer potential wells are

characterized by a large electron-hole separation. This leads
to huge permanent electric-dipole moments, justifying the
expression “giant-dipole states.”

For each potential surface provided by the exact diago-
nalization of Vgd, we obtain the corresponding eigenvector
|φα (r)〉, α = 1, . . . , 6 including their spatial dependence on
the electron-hole separation r.We can define the following
quantities that characterize the individual giant-dipole poten-
tial curves.

The potential depth V (α)
d given by

V (α)
d = lim

x→∞ V (α)
gd

(
x, 0, z(α)

min

)− V (α)
gd

(
r(α)

min

)
.

The quantity �α defining the energetic separation be-
tween two adjacent potential surfaces, i.e.,

�α = V (α+1)
gd

(
r(α+1)

min

)− V (α)
gd

(
r(α)

min

)
.

We emphasize that all six potential surfaces possess local
minima. This is in contrast to previous work [25], where
only four out of six surfaces possessed minima, which results
from a different choice of Luttinger parameters which were
only published recently [19]. Indeed, the potential surfaces’
topologies sensitively depend on the specific values of the
Luttinger parameters [36,37]. For this reason, a precise de-
termination of excitonic giant-dipole properties such as level
spacings and binding energies might provide the possibility
of determining the specific Luttinger parameters with a higher
degree of accuracy.

Although the giant-dipole potential is diagonal within this
basis, the set {|φi(r)〉i=1,...,6} is not suitable to diagonalize
the total excitonic Hamiltonian Hex as the kinetic part of
Eq. (2) does not commute with the potential. More precisely,
the coupling between different eigenstates |φi(r)〉 generated
by the kinetic energy operator induces transitions between
the potential energy surfaces V (i)

gd (r). This feature is well
known in molecular physics where these kinds of nonadiabatic
transitions between electronic eigenstates are induced by the
kinetic energy of the nuclei [38].

In a first perturbative approach, we follow the adiabatic
ansatz from molecular physics by neglecting all excitonic
transitions between a set of different potential surfaces. In
particular, we define effective Hamiltonians,

H (α)
eff ≡ 〈φα (r)|Hex|φα (r)〉spin, α = 1, . . . , 6 (14)

by introducing

I (α)
i (r) ≡ 〈φα (r)|Ii|φα (r)〉spin, i = x, y, z, (15)

〈
ki〉α (r) ≡ 〈φα (r)|
ki|φα (r)〉spin, (16)

π
(α)
i (r) ≡ 〈φα (r)|πi|φα (r)〉spin. (17)

In these expressions, the expectation values 〈. . .〉spin are only
computed with respect to the spin-1 and spin-1/2 degrees of
freedom I and Sh, respectively. This means that the effective
quantities H (α)

eff and I (α)
i (r) are functions of the canonical

conjugated variables p and r, respectively. In particular, the
components πi of the kinetic momentum are now given by

π
(α)
i = pi − qA(α)

i (r), (18)
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with

A(α)
i = Ai(r) + g(α)

i (r), (19)

and

g(α)
i (r) = 1

q

∑
k

(
mh

M
δki − 〈
ki〉α

)
K̃k . (20)

Obviously, in the adiabatic approximation the homogeneous
magnetic field is replaced by a spatially dependent field that
can be computed from

B(α)(r) = ∇ × A(α)(r). (21)

By defining spatially dependent Luttinger parameters,

γ
(α)

2,i ≡ γ2I (α)2
i (r), γ

(α)
3,i j ≡ γ3I (α)

i (r)I (α)
j (r), (22)

we can write the effective Hamiltonians H (α)
eff as

H (α)
eff = π2

2μ
− 3

γ ′
1

(
γ

(α)
2,x (r)π (α)2

x + c.p.
)

− 6

γ ′
1

(
γ

(α)
3,xy(r)π (α)

x π (α)
y + c.p.

)+ V (α)
gd (r) (23)

with μ−1 ≡ 1 + 4γ2/γ
′
1 [see Eq. (14)].

A. Strong electric-field limit

Before we analyze the excitonic system in adiabatic ap-
proximation, we consider the limit of strong electric fields.
In this limit, one can neglect the spin-orbit coupling Hso as
well as the magnetic field coupling HB. In this approximation,
the excitonic Hamiltonian reduces to the direct sum Hex =
H0 ⊕ 1s=1/2. Hence, the problem of determining the excitonic
giant-dipole states is equivalent to the eigenvalue problem of
a 3 × 3 matrix, which can be solved analytically for arbitrary
electric and magnetic field configurations. However, as it has
been shown in Ref. [25], for a magnetic field oriented along
the [100] and an electric field in the [001] direction, the
expressions for the potential energy surfaces Vα (r) and the
corresponding eigenstates |φα (r)〉 are more compact and given
by

V1(r) = (
1 − 
2)K̃2 + Ez − 1

r
,

V2,3(r) = (
1 − 
2)K̃2 + Ez − 1

r
+ 3

2

2
(
K̃2

2 + K̃2
3

)
±1

2

√
9
2

2

(
K̃2

2 − K̃2
3

)2 + 4
2
3K̃2

2 K̃2
3 , (24)

and

|φ1(r)〉 = |1〉,
|φ2(r)〉 = cos(γ )|2〉 − sin(γ )|3〉,
|φ3(r)〉 = sin(γ )|2〉 + cos(γ )|3〉, (25)

where the mixing angle γ (r) is defined as

tan(2γ (r)) = 2
3K̃2K̃3

3
2
(
K̃2

2 − K̃2
3

) . (26)

Interestingly, the mixing angle does not depend on the external
electric field. In the case that also K = 0, even the dependence
on the magnetic field strength cancels out.

In order to quantify the condition for the strong electric
field regime, we compare the energetic shift of the ionization
threshold of the lowest potential curve V1 due to the electric
field with the spin-orbit coupling �. It has been shown pre-
viously that the giant-dipole potential surfaces Vα (r) possess
minima at r(α)

min = (0, 0, z(α)
min ); for V1(r) this is approximately

given by

z(1)
min ≈ − E

2(
1 − 
2)B2
. (27)

Using this expression, we can determine the shift of the
ionization limit to be given as

lim
x→∞ −V1(x, 0, z(1)

min ) = E2

4(
1 − 
2)B2
. (28)

As this shift should be much larger than the spin-orbit
splitting, the electric field strength has to fulfill E �
2B

√
�(
1 − 
2). For instance, in the case of B = 1 T, one

obtains E � 895 V/cm.
If we calculate the quantities from Eq. (17) in the strong

electric field limit, we obtain

I (α)
i (r) = 0, 〈
ki〉α = (

C1 − 2
3C2

)
δki,

and

πi = pi − qÃ(i)
sym(r) − m̃h

M
K̃i, (29)

with

m̃h = mh − M
(
C1 − 2

3C2
)
, (30)

and

Ã(i)
sym(r) = 1

2
B̃ × r, B̃ =

(
1 + 2

m̃h

qM

)
B. (31)

Here, the constants Ci=1,2 ∈ R are defined in Ref. [20]. The
K̃-dependent term in Eq. (29) can be written as ∂iK̃ixi, i.e.,
it can be eliminated by a simple gauge transformation. In
addition, the giant-dipole Hamiltonian is determined by an
effective magnetic field B̃ that is parallel to the initial B
field, but possesses a different magnitude B̃ with B̃/B = 1 +
2m̃h/qM ≈ 1.6, which is an enhancement of around 60%.
We note that both quantities m̃h and B̃ do not depend on the
specific potential surface.

We finally obtain in the strong electric field approximation
the following excitonic Hamiltonian,

H (α)
eff = π2

2μ
+ Vα (r), (32)

whereby the potentials Vα (r) are given by Eq. (24). The set
of effective excitonic Hamiltonians H (α)

eff is identical to the
Hamiltonian discussed previously [25]. Although Eq. (32) is
very similar to the atomic Hamiltonian discussed in Ref. [28],
we stress that in the present case the potential Vα (r) is deter-
mined by the bare external magnetic field B, while the kinetic
energy term in Eq. (32) depends on the effective field B̃.
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In order to obtain the energies and wave functions of the
excitonic giant-dipole species, we expand the potential sur-
faces around their local minima. Including terms up to second
order, we find the harmonically approximated potentials,

V (α)
h (r) = μ

2
ω(α)

x x2 + μ

2
ω(α)

y y2 + μ

2
ω(α)

z z2, (33)

with the frequencies,

ω(α)
x =

√
− 1

μz(α)3
min

, α = 1, 2, 3,

ω(1)
y = ω(3)

y =
√√√√ 1

μ

(
2(
1 − 
2)B2 − 1

z(1)3
min

)
,

ω(2)
y =

√√√√ 1

μ

(
2(
1 + 2
2)B2 − 1

z(2)3
min

)
,

ω(1)
z = ω(3)

z =
√√√√ 2

μ

(
(
1 − 
2)B2 + 1

z(1)3
min

)
,

ω(2)
z =

√√√√ 2

μ

(
(
1 + 2
2)B2 + 1

z(2)3
min

)
. (34)

As it has been discussed in Ref. [25], the eigenenergies
and eigenstates can be obtained analytically via a unitary
transformation which decouples the (y, z) degrees of freedom
leading to a set of three decoupled harmonic oscillators. Apart
from the frequencies ω(α)

z , the remaining energy spacings are
equidistant with frequencies,

ω
(α)
1,2 = 1√

2

[
ω(α)2

z + ω(α)2
y + ω2

c

±
√

(ω(α)2
z + ω

(α)2
y + ω2

c )2 − 4ω
(α)2
z ω

(α)2
y
]1/2

,

and ωc = qB̃/μ.
Although the excitonic eigenenergies and eigenstates are

given analytically, one has to remember that these results have
been derived within an harmonic approximation in the vicinity
of the outer potential well. However, the exact potential sur-
faces possess an ionization limit in the direction of the external
magnetic field. For this reason, one has to ensure that for a
certain field configuration the calculated ground state still lies
deep within the outer potential well. To analyze this issue in
more detail we define the quantity,

η(α) ≡ V (α)
d − (ε000 − Vmin)

V (α)
d

= 1 −
∣∣z(α)

min

∣∣(ω(α)
x + ω

(α)
1 + ω

(α)
2

)
2

, (35)

which accounts for the energy difference between the po-
tential depth V (α)

d and the spacing between the ground state
and the potential minimum, i.e., ε000 − Vmin. In Fig. 2, we
show the quantity η(1) for electric and magnetic fields of
2 kV/cm � E � 3.5 kV/cm and 1 T � B � 2 T, respectively.
One observes that in the considered field strength regime

FIG. 2. Density plot of η(1) for 2 kV/cm � E � 3.5 kV/cm and
1 T � B � 2 T. We see that in this strong-field limit we have η(1) <

0, i.e., no bound states are found in this regime.

η(1) < 0, which means that the giant-dipole ground state lies
above the ionization limit of the potential surface. The same
results are obtained for the remaining potential surfaces, i.e.,
η(2,3) < 0. As a consequence, we expect no bound excitonic
giant-dipole states in the limit of strong electric fields.

B. Arbitrary field strengths

In a next step, we keep the adiabatic approximation but
leave the limit of strong electric fields in order to analyze
arbitrary field strengths. Again, we consider B||[100] and
E||[001]. In this case, a rigorous analysis is rather complicated
as the adiabatic Hamiltonians H (α)

eff do not only depend on spa-
tially varying magnetic fields, but also on spatially dependent
Luttinger parameters defined in Eq. (22). However, we may
employ the fact that we are mainly interested in the bound
states localized around the minima of the outer potential
wells. For this reason, we make use of the approximation
that the eigenstates do not strongly vary in the vicinity of a
certain potential minimum. To illustrate that in more detail,
we go back to the strong-field limit discussed in the previous
section. According to Eq. (25), the spatial dependence of the
eigenvectors are given by the mixing angle γ determined by
Eq. (26). If we consider K = 0, we directly see that γ (r(α)

min ) =
0 ∀α, which gives∣∣φ1

(
r(α)

min

)〉 = |1〉, ∣∣φ2
(
r(α)

min

)〉 = |2〉, ∣∣φ3
(
r(α)

min

)〉 = |3〉.
(36)

Obviously, the eigenstate |φ1(r)〉 = |φ1(r(α)
min ) = |1〉 ∀ r ∈ R3.

To analyze the deviation of the remaining eigenstates from the
corresponding eigenstates at the minimum positions, we need
to look at the spatial dependence of cos(γ (r)) in more detail.

In Fig. 3, we show the mixing angle cos(γ (y, z))
for applied field strengths B = 1 T and E = 1 kV/cm in
the spatial range 0 � y � 5 μm and −5 μm � z � 0. For
these field strengths, the potential minima are located at
z(1)

min = −3.07 μm, z(3)
min = −3.25 μm, and z(5)

min = −2.8 μm,
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FIG. 3. Density plot of cos(γ (y, z)). For applied field strengths
of B = 1 T and E = 1 kV/cm one finds cos(γ (y, z)) ≈ 1 in the
vicinity of the potential minima z ≈ −3 μm. This means that the
corresponding eigenvectors only slightly differ from the eigenstate
at the potential minimum.

respectively. We see that, in the vicinity of the potential
minima (z ≈ 3 μm), cos(γ ) remains close to unity, which
means that the deviations from the pure eigenstates of the
giant-dipole potential term Eq. (7) close to the minimum
positions remain negligible. This result is not only valid for
strong electric fields, but also for all field strengths considered
throughout this work. This means that for the calculation of
the matrix elements of the kinetic energy we can use the eigen-
vectors at the minimum position, i.e., I (α)

i (r) → I (α)
i (r(α)

min ).
Analogous to the strong electric-field limit, we now define

a renormalized vector potential using Eq. (17), from which the
effective magnetic field B̃

(α)
is obtained as B̃

(α) = ∇ × Ã
(α)

.
However, it turns out that∑

k

〈
ki〉α ≈ 〈
ii〉α, (37)

which means that the components B̃(α)
i of the effective mag-

netic field are given by

B̃(α)
i =

[
1 + 2

q

(
mh

M
− 〈
ii〉α

)]
Bi. (38)

The magnetic field B̃
(α)

is, in general, no longer parallel to the
incident field B as it now points into the direction of the unit
vector,

e(α)
B̃

= 1

|B̃(α)|
(
B̃(α)

1 , B̃(α)
2 , B̃(α)

3

)T
, (39)

with the magnitude |B̃(α)| =
√

B̃(α)2
1 + B̃(α)2

2 + B̃(α)2
3 . In con-

trast to the strong electric-field limit discussed in Sec. III A,
the effective magnetic field now depends on the specific
potential surface under consideration via the matrix elements
of the 
ii matrices.

FIG. 4. Effective magnetic field component B̃(1)
1 /B for external

field strengths 1 kV/cm � E � 4 kV/cm, 1 T � B � 4 T.

In Fig. 4, we show B̃(1)
1 /B as a function of the external

field parameters for applied field strengths in the range of
1 T � B � 4 T and 1 kV/cm � E � 4 kV/cm. In contrast to
the approximation discussed in Sec. III A we now find that,
depending on the specific field strengths, not only positive-
valued effective magnetic field strengths, but also fields with
negative values. In particular, for strong external magnetic
fields one finds B̃(1)

1 < 0, which means that not only the mag-
nitude of the magnetic field is modified but also its direction
with respect to the external field is changed. However, for
sufficiently strong electric fields the sign of the magnetic field
becomes positive and reaches a maximum value of around
1.5B. As expected, this is quite close to the effective B-field
B̃ = 1.6B obtained in the strong electric-field approximation
derived in Eq. (31).

In order to calculate the excitonic spectrum within this
approximation, we use the renormalized Luttinger parameters
to define effective masses μ

(α)
i , i = x, y, z, as

1

μ
(α)
i

≡ 1 + 4
γ2

γ
′
1

[
1 − 3

2
γ

(α)
2,i

(
r(α)

min

)]
,

γ
(α)

i j ≡ −6γ3

γ
′
1

γ
(α)

3,i j

(
r(α)

min

)
. (40)

This means that for all three potential curves we obtain
effective Hamiltonians H (α)

eff with

H (α)
eff =

∑
i

π
(α)2
i

2μ
(α)
i

+
∑
i �= j

γ
(α)

i j π
(α)
i π

(α)
j + Vα (r),

π
(α)
i = pi − qÃ(α)

i . (41)

Analogous to the strong electric-field approximation, the ex-
act interaction potentials Vα (r) can be expanded around their
minimum positions r(α)

min. By defining the frequencies

C(α)
i j ≡ ∂2

∂xi∂x j
Vα (r)

∣∣∣∣
r=r(α)

min

, (42)
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the exact potentials can be approximated by

V (α)
h (r) = V (α)

min + 1
2

(
C(α)

xx x2 + C(α)
yy y2 + C(α)

zz z2

+C(α)
xy xy + C(α)

xz xz + C(α)
yz yz

)
with V (α)

min ≡ Vα (r(α)
min ). Together with the π

(α)
i -dependent terms

in Eq. (41), the effective excitonic Hamiltonian is bilinear
in the spatial and canonical momentum coordinates r and p,
respectively, and can thus be written as

H (α)
eff = xTH(α)

eff x, x = (x y z px py pz )T , (43)

in which H(α) is a (6 × 6)-dimensional real, symmetric, and
positive definite matrix (see Appendix B). We note that, if the
terms γ

(α)
i j ,C(α)

i j , i �= j are negligible, the effective Hamilto-

nians H (α)
eff are sums of three harmonic oscillators of charge

q and masses μ
(α)
i in external effective magnetic fields. This

problem can be solved by applying a unitary transformation
that decouples the different degrees of freedom, and where
the spectrum is determined by the coefficients C(α)

ii [24,28].
In order to calculate the eigenenergies of Eq. (43) exactly,

we apply Williamson’s theorem [39,40] which states that there
exists a symplectic matrix S(α) ∈ Sp(6,R) such that

H(α)
eff = S(α)D(α)S(α)T , (44)

with D(α) = diag(λ(α)
1 , λ

(α)
2 , λ

(α)
3 , λ

(α)
1 , λ

(α)
2 , λ

(α)
3 ), λ

(α)
i=1,2,3 >

0. Importantly, the components of the transformed coordinate
vector q(α) = S(α)x fulfill the same commutation relation as
the xi, i.e.,

[q(α)
i , q(α)

j ] = iJi j, J =
[

0 13

−13 0

]
, (45)

where 13 denotes the 3 × 3 unit matrix. In the new coordi-
nates, the Hamiltonian H (α)

eff is given by

H (α)
eff =

3∑
i=1

λ
(α)
i

[
q(α)2

i + q(α)2
i+3

]
, (46)

i.e., we find three uncoupled harmonic oscillators with
frequencies ω̃

(α)
i = 2λ

(α)
i , i = 1, 2, 3. This means that the

eigenenergies of H (α)
eff are

ε(α)
n1n2n3

=
3∑

i=1

ω̃
(α)
i

(
ni + 1

2

)
, ω̃

(α)
i ≡ 2λ

(α)
i , ni ∈ N0.

(47)
Similar to a three-dimensional harmonic oscillator, the energy
spectrum is determined by three separate energy spacings
ω̃

(α)
i , i = 1, 2, 3.

Analogous to the strong electric-field limit, we define the
quantity η̃(α) that measures the energy difference between the
potential depth and the ground-state energy, and obtain

η̃(α) = 1 − 1

2V (α)
d

3∑
i=1

ω̃
(α)
i . (48)

In Fig. 5, we show the energy difference η̃(1) for applied field
strengths of 1 kV/cm � E � 2 kV/cm and 1 T � B � 4 T. As
before, one observes that, for increasing electric field strength,
η̃(1) becomes negative, which means that the ground-state
energy lies above the potential depth, i.e., no bound state is

FIG. 5. Density plot of η̃(1) for 1 kV/cm � E � 2 kV/cm and
1 T � B � 4 T. For large electric fields, η̃(1) < 0, while for strong
magnetic fields one finds η̃(1) > 0. This region is indicated by the
shaded box.

present. However, for low electric fields and high magnetic
fields of around B = 4 T, we find a regime in which η̃(1)

is positive. In Fig. 5, this region is indicated by the shaded
box. This result is reasonable as for increasing magnetic field
strengths the potential depth increases as well. This means
that, for sufficiently strong magnetic fields, the potential wells
are deep enough to support bound excitonic giant-dipole
states.

In Table I, we present the frequencies ω̃
(α)
k for the first,

third, and fifth potential surface for field strengths of B = 4 T
and E = 1 kV/cm. The frequencies for α = 2, 4, 6 are not
explicitly shown as they can be found within the vicinity of
10 μeV close to the adjacent potential surface. One observes
that, for all potentials one obtains two frequencies with values
in the range of 87–242 μeV. The third frequency is always
larger and lies between 949 μeV for the third and 1.58 meV
for the first potential curve. Compared to the potential depths
of the corresponding surfaces, e.g., V (1)

d = 1.05 meV, the
frequencies with k = 3 are rather large, meaning that it is
only possible to excite one state in the corresponding mode
before one exceeds the potential depth and the harmonic
approximation breaks down. However, as the frequencies of
the remaining modes are smaller, one can easily excite a few
states that are still bound deep within the potential surfaces.

TABLE I. Excitonic frequencies ω̃
(α)
k in μeV for B = 4 T, E =

1 kV/cm.

�������α

k
1 2 3

1 87 142 1580
3 102 161 1366
5 114 242 949
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If we compare the frequencies ω̃
(α)
k with the energetic spacing

�α , we find that min(ω̃(α)
k=1,2,3) � �α ∀α, i.e., the frequencies

are much larger than the spacing between adjacent potential
surfaces. For this reason, we expect a strong mixing between
the potential surfaces in the case we include intrasurface
couplings.

Finally, we can determine the eigenstates by using the
fact that the transformed effective Hamiltonian, Eq. (46), is
a sum of three decoupled harmonic oscillators. Thus, we can
construct ladder operators a(α)(†)

k , k = 1, 2, 3 as

a(α)(†)
k = 1

2

(
q(α)

k ± iq(α)
k+3

)
. (49)

From here, the giant-dipole eigenstates |n1n2n3〉 are con-
structed via

|n1n2n3〉α = 1√
n1!n2!n3!

(
a(α)†

1

)n1
(
a(α)†

2

)n2
(
a(α)†

3

)n3 |0〉. (50)

Using the transformation matrix S(α) from Eq. (44), both the
spatial and momentum coordinates can be expressed in terms
of the ladder operators and vice versa.

IV. FULL EXCITONIC SPECTRA

After having analyzed the giant-dipole energies within the
adiabatic approximation, we next provide a full analysis of
the excitonic spectra. In particular, we consider a full diago-
nalization approach to calculate the corresponding excitonic
eigenenergies and states. Here, we are mostly interested in
the determination of the ground state and the lowest lying
giant-dipole states. In order to compute them most efficiently,
one has to choose a basis set adapted to the properties of the
system. As we are interested in the properties of the poten-
tially bound excitonic giant-dipole states that are localized in
the outer potential wells, it is clear that one should choose a
set of basis functions that are also localized around the outer
potential minima of the giant-dipole potential surfaces. As we
have seen in Sec. III in case of the adiabatic approximation,
one obtains a set of effective giant-dipole Hamiltonians that
can be diagonalized separately from one another. In this case,
one obtains a set of basis functions that inherently possess the
desired properties required for them to be a good choice for
the diagonalization procedure. However, as we are interested
in the lowest lying giant-dipole states, we use the fact that
for the considered field strength regime the lowest potential
energy surface is mostly determined by the first term in the
expression of the excitonic giant-dipole potential [see Eq. (7)].
Expanding this term up to second order around the minimum
position zmin, i.e.,


1B2(y2 + z2) + Ez − 1

r

≈ Vmin + 1

2
ω2

x x2 + 1

2
ω2

y y2 + 1

2
ω2

z (z − zmin)2, (51)

we define the basis functions |ψnx,n1,n2〉 for our diagonalization
procedure to be the giant-dipole eigenfunctions of a single
particle of mass μ = 1, charge q, trapping frequencies ωi=x,y,z,
and external fields B and E, respectively. Together with the

- 0.30 - 0.25 - 0.20 - 0.15 - 0.10

FIG. 6. Bound excitonic states in the energetically lowest poten-
tial surface (x, y = 0) (not to scale). The ground state possesses a
binding energy of 144.55 μeV; we find four bound states in total.
The external field parameters are B = 4 T and E = 1 kV/cm.

basis states of the spin-1 and spin-1/2 Hilbert space |1, m〉 ⊗
|1/2, ms〉, we define the following basis states:

|γ , m, ms〉 ≡ |ψnx,n1,n2〉 ⊗ |1, m〉 ⊗ ∣∣ 1
2 , ms

〉
, (52)

ni = 0, 1, 2, . . . , m = 0,±1, ms = ± 1
2 . (53)

For the exact diagonalization scheme we have calcu-
lated the matrix elements of the excitonic Hamiltonian (12),
where the giant-dipole potential is approximated by Eq. (51).
Together with the six-dimensional spin space, one obtains
a 6(Nx,max + 1)(N1,max + 1)(N2,max + 1)-dimensional matrix
representation for the excitonic giant-dipole Hamiltonian,
where Ni,max denote the maximal number of basis functions
used within the chosen basis set. Throughout our analysis,
we obtained sufficient numerical convergence using Nx,max =
N1,max = 15, N2,max = 5, which yields a basis set of 9216
states.

A. Magnetic field in [100] direction

In Fig. 6, we show the lowest bound excitonic giant-dipole
states for B = 4 T and E = 1 kV/cm, respectively. For these
field strengths, the ground state possesses an approximate
binding energy of W0 ≈ 144.55 μeV. In our analysis, we esti-
mate the binding energy of a certain state to be the energetic
separation of the eigenenergy to the ionization limit of the
lowest potential surface. The binding energies of the excited
states are of similar order of magnitude, namely in the range
between 144 and 68 μeV. In total, we find four bound states.

For all applied field strengths, the series of binding energies
of the giant-dipole states can be cast into the form,

Wn,m = W0 − n
 − mω, n ∈ N0, m ∈ {0, 1}, (54)

where 
,ω > 0, 
 � ω, and W0 denotes the ground-state
binding energy. In Fig. 7, we show the magnetic-field de-
pendence of the binding energy (blue dots) and the larger
energy scale 
 (green dots) for 3.4 T � B � 4.5 T for fixed
electric field strength E = 1 kV/cm. One observes that the
ground-state binding energy increases nearly linearly with
increasing magnetic field strength from W0 = 1.92 μeV (B =
3.4 T) to W0 = 297.05 μeV (B = 4.5 T). The same holds
for 
, which increases from 
 = 47.67 μeV (B = 3.4 T) to
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FIG. 7. Binding energy W (blue dots) and energy scale 
 (green
dots) as a function of the magnetic field B. The inset shows the
smaller energy scale ω as a function of B.


 = 110.491 μeV (B = 4.5 T). The inset in Fig. 7 shows
the magnetic-field dependence of the smaller energy scale
ω, with an almost linear increase from ω = 0.63 μeV to
ω = 1.55 μeV. This can be explained by the fact that, with
increasing magnetic-field strength, the spatial confinement
within the potential surface increases as well, which leads to
larger energetic separation of adjacent energy levels.

The level structure can be understood by considering the
results obtained in the adiabatic approximation approach dis-
cussed in Sec. III. Here it was shown that the eigenenergies are
determined by the frequencies ω̃

(α)
k ≈ ω̃

(α+1)
k � �α, ∀α, k.

Only considering the smallest frequencies ω̃
(1)
1 , ω̃

(2)
1 for the

energetically lowest potential surfaces V (1,2)
gd , we obtain the

situation depicted in Fig. 8. There, we sketch how the two
lowest energy levels of the two potential curves are related

FIG. 8. Sketch of the two energetically lowest potential curves V1

and V2, respectively (not to scale). For both curves, the lowest levels
are indicated and possess spacings of ω̃

(1)
1 and ω̃

(2)
1 , respectively.

For the considered field strengths we always find ω̃
(α)
k ≈ ω̃

(α+1)
k �

�α, ∀α, k.

3.4 3.6 3.8 4 4.2
0

1

2

3
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5

6

FIG. 9. The number of bound excitonic giant-dipole states as a
function of the magnetic field strength B for E = 1 kV/cm. For B <

3.4 T no bound states are present; from there the number of bound
states increase up to six for B � 4.1 T.

to one another. As the magnitude of the two frequencies are
comparable and are much larger that the separation �1, we
obtain two pairs of levels that possess an energetic separation
of the order of the frequency ω

(1)
1 . In the case of B = 4 T, E =

1 kV/cm we have ω̃
(1)
1 ≈ ω̃

(2)
1 ≈ 87 μeV (see Table I). This

energy scale is of the same magnitude as 
 = 77.6 μeV. The
smaller energy scale ω = 1.1 μeV of the exact eigenenergies
[see Eq. (54)] is related to the spacing �1. We see that in case
of the full diagonalization approach, the energetic spacings
are slightly reduced due to the coupling between the potential
surfaces. An additional effect due to the coupling between all
potential surfaces is that the eigenenergies are reduced, i.e.,
that compared to the adiabatic approximation approach more
bound states are localized within a single potential well.

The number of bound states depends on whether the large
energy scales W0,
, and ω are related to the potential depth
of the energetically lowest potential surface. In Fig. 9, we
show the number of bound states as a function of the magnetic
field strength for E = 1 kV/cm. Below B � 3.4 T, the poten-
tial well is too shallow and no bound excitonic giant-dipole
states can be formed. At B = 3.4 T, the potential becomes
slightly deeper than W0, which means that one bound state
fits into the well. Increasing B leaves the number of bound
states unchanged as long as the potential well is smaller than
W0 + ω which is true for 3.4 T � B � 3.5 T. Beyond that,
we find two bound states. This sequence continues until the
maximal number of six bound states is reached for B � 4.3 T.
Note that one cannot arbitrarily increase the magnetic field
strength to further increase the number of bound states, as the
outer potential wells cease to exist when the magnetic field
contributions are stronger than the Stark term provided by the
electric field in Eq. (7).

One effect of the relatively strong magnetic field is that
the bound states imply an electron-hole separation well below
one micrometer, namely of around 200 nm for B = 4 T. In
this case, the excitonic dipole moment can be estimated to
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50 100 150 200

6.×10- 6

FIG. 10. Cuts through the scaled ground-state probability density
along the x, y, and z direction, respectively. Due to the different spa-
tial confinement (ωy/ωx ≈ 4.4, ωz/ωx ≈ 4.1), the spatial extension
differs along the different directions.

be around 120 Debye, which is less than expected from the
analysis performed in Ref. [25] but still large compared to
normal atomic and excitonic dipole strengths.

Apart from the excitonic eigenenergies, the exact diagonal-
ization scheme also provides the excitonic eigenfunctions. For
instance, in Fig. 10 we show the scaled (Gaussian) ground-
state probability density along the x, y, and z directions,
respectively. While the spatial extension is nearly equal in the
y and z directions, the extension in the x direction is much
larger. In particular, for B = 4 T and E = 1 kV/cm we find
that ωy/ωx ≈ 4.4 and ωz/ωx ≈ 4.1, a slightly smaller spatial
confinement in the y direction than in the z direction, which is
reflected in the ground-state probability density in Fig. 10.

B. Fields in arbitrary directions

So far, we have analyzed the case of the magnetic and
electric field being parallel to the [100] and [001] directions,
respectively. In order to provide some insight into different
field configurations, we now consider the case that both
the magnetic and electric fields are oriented along arbitrary
directions, while still being perpendicular with respect to one
another. Introducing the spherical angles φB and θB of the
magnetic field vector B, the unit vectors b and e for the
magnetic and electric fields can be expressed as

b =

⎛
⎜⎝

cos(φB) sin(θB)

sin(φB) sin(θB)

cos(θB)

⎞
⎟⎠, (55)

e =

⎛
⎜⎝

− cos(φB) cos(θB)

− sin(φB) cos(θB)

sin(θB)

⎞
⎟⎠. (56)

For arbitrary field directions, the potential minimum is still
to be found in the direction of the electric field. In order to
introduce local giant-dipole states for the exact diagonaliza-
tion procedure, one would have to introduce a set of local
coordinates. However, this inconvenience can be overcome
by rotating the coordinate system in such a way that the
magnetic field direction coincides with the quantization axis
of the system. In particular, we rotate the coordinate system

3.4 3.6 3.8 4 4.2 4.4 4.6
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FIG. 11. Relative deviation of the energies scales 
, ω, and W0

for magnetic field orientations B||[110] and B||[111], respectively.
The largest deviation of around 9% is found for ω [110] and ω [111]
in the case of B = 0. For W0 deviation is smaller, namely 2% and
less. In the case of 
 the smallest relative deviations are found with
0.005% and much less.

by

R =

⎡
⎢⎣

cos(φB) sin(θB) sin(φB) sin(θB) cos(θB)

− sin(φB) cos(φB) 0

− cos(φB) cos(θB) − sin(φB) cos(θB) sin(θB)

⎤
⎥⎦.

The rotation of the system is performed by rotating the exci-
tonic Hamiltonian, in particular, the irreducible tensor repre-
sentation given by Eq. (2) transforms by applying Wigner D
matrices. In Appendix E, we give details of the transformed
excitonic Hamiltonians for magnetic fields along the [110]
and [111] directions, respectively.

The calculation of the excitonic giant-dipole eigenener-
gies for the different field configurations has been performed
analogously to the magnetic field along [100]. In particular,
the giant-dipole potential surfaces were expanded around the
potential minimum up to second order, then appropriate basis
sets were defined in order to perform an exact diagonalization
for the numerical determination of the eigenenergies. We find
that for all considered field configurations the excitonic spec-
tra are determined by two distinct energy scales as observed in
Sec. IV. In particular, we find that for all field orientations the
energy scales 
,ω as well as the ground-state binding energy
W0 differ only slightly from another.

In Fig. 11, we show the relative deviation of the energies

,ω, and W0 for B||[110] and B||[111] from their values
obtained in the case of B||[100] (see Fig. 7). The largest
deviation is found for ω with relative deviations between 7%
and 9%. For increasing magnetic field strength the deviations
are monotonically decreasing. The relative deviations of W0

are even smaller; they are found to be around 2% for B = 0
and nearly vanish for B � 4 T. Furthermore, we see that there
are hardly any deviations for the energy scales W0 ([110])
and W0 ([111]). Finally, the smallest relative deviations are
found for 
 ([110]) and 
 ([111]), with the largest deviation
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of merely 0.005% for 
 ([110]), and around 0.001% for

 ([111]).

V. SUMMARY AND CONCLUSIONS

In the present article, we have calculated the eigenspectra
of giant-dipole excitons in Cu2O subject to crossed electric
and magnetic fields. In particular, we have derived the irre-
ducible tensor representation of excitons in crossed electric
and magnetic fields in cuprous oxide. In this way, the analysis
of the excitonic systems for arbitrary field strength and arbi-
trary field configurations is straightforward as the irreducible
representations can be used to transform the system in such
a way that the magnetic field coincides with the quantization
axis.

In particular, we have calculated the eigenenergies of giant-
dipole excitons in Cu2O for arbitrary field strengths and
orientations by applying both an adiabatic approximation as
well as an exact diagonalization approach. We verify that, in
order to find bound excitonic giant-dipole states, one requires
sufficiently deep potential surfaces. As the depths of the
considered potential surfaces strongly depend on the applied
field strengths, bound states are only possible in the limit of
weak electric and strong magnetic fields. For instance, we find
bound states for field strengths of around E ≈ 1 kV/cm and
3.4 T � B � 4.3 T. For all field orientations, the correspond-
ing level spacings are determined by two energy scales which
are of the order of 1 − 2 μeV and 100 μeV, respectively.
The number of bound states is comparably small; for the
considered field strengths we find between one and six bound
states for all field orientations.

An open question is the experimental preparation and veri-
fication of the existence of these excitonic giant-dipole states.
The latter could, in principle, be achieved via spectroscopic
measurements of the excitonic resonances which should be
visible in microwave spectroscopy. An alternative approach
might be the direct measurement of the comparable large
electric-dipole moment which can be estimated to be of the
order of several tens of thousand Debye.

Another yet unsolved question is how to prepare those
exotic excitonic states. Due to the large spatial separation
between the outer potential wells and the Coulomb-dominated
region, a direct radiative transfer via external lasers is unlikely
as the overlap between the giant-dipole wave functions and
low-lying exciton states in the inner region is very small.

However, one possible approach may be to use the field-
free excitation of highly excited Rydberg excitons. Applying
time-dependent external fields hereafter, one might be able
to adiabatically transfer the Rydberg state into the desired
field-dressed giant-dipole configuration. For the determina-
tion of a possible propagation scheme one has to consider that,
although classical trajectory simulations has already provided
some understanding for a possible preparation scheme for
atomic giant-dipole states [41], the setup for excitonic states
is more complicated due to the complex spin structure. In
particular, one has to consider six distinct coupled potential
surfaces, causing nonadiabatic state transfer among those. In
order to include nonadiabatic transitions between the potential
surfaces, one may adapt a method from molecular dynamics
calculations known as surface hopping [42,43] which partially

TABLE II. Excitonic Hartree energy Hex, Bohr radius aex, ex-
ternal field strengths (Bex, Eex ), and momentum Pex. In addition, the
spin-orbit and magnetic coupling (�,μB ) is presented as well as the
Luttinger parameters used throughout this work.

Luttinger parameters γ1, γ2, γ3 1.818, 0.803, −0.397

γ
′
1, κ 2.83, −0.5

Hartree energy Hex 171 meV
Bohr radius ((excitonic) aex 1.15 nm
Magnetic flux density Bex 520.6 T
Electric field strength Eex 1.518 MV/cm
Momentum Pex 4.8 × 10−2 h̄/a0

Gap energy Eg 2.17208 eV
Spin-orbit coupling � 133.8 meV
Bohr magneton μB 57.88 μeV/T

incorporates the nonadiabatic effects by including excited adi-
abatic surfaces in the calculations, and allowing for transitions
between these surfaces. Furthermore, finite lifetimes of the
excited Rydberg states may be a limit for this excitation
scheme as well. Roughly speaking, the switching-on time
of the electric field should be shorter than the lifetime of
the highly excited exciton. An alternative approach might be
to perform a full quantum mechanical analysis to achieve
an optimal state transfer starting from an appropriate initial
excitonic state. This belongs to a general class of problems
known as control theory [44,45], where one is interested in
finding a protocol to change addressable system parameters
such that a certain optimal criterion is achieved.

Yet another possibility to create excitonic giant-dipole
states might be to directly start in the field-dressed con-
figuration and to excite ground-state excitons directly into
the continuum, that may recombine into states localized in
the outer potential wells due to radiative decay, interspecies
scattering events, or phonon-induced de-excitation. Especially
the last decay channel might be of particular interest as it
is induced by the solid-state environment and which is not
present in ultracold atomic gases. In summary, the prepara-
tion of excitonic giant-dipole states provides a plethora of
interesting research directions that can be addressed in future
theoretical as well as experimental studies.
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APPENDIX A: EXCITONIC PARAMETERS

In Table II we list the excitonic parameters used throughout
this work.

APPENDIX B: WILLIAMSON’S THEOREM

Let M be a positive-definite symmetric real 2n × 2n ma-
trix. In this case the following theorem holds [39].

(i) There exists S ∈ Sp(2n,R) such that

M = ST DS, D = diag(�,�),

� = diag(λ1, ..., λn), with λi ∈ R>0.
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(ii) The entries λi of � are defined by the condition that
±iλi is an eigenvalue of JnM where

Jn =
[

0 1n

−1n 0

]
.

(iii) The sequence λ1, ..., λn does not depend, up to a
reordering of its terms, on the choice of S diagonalizing M.

We introduce q = Sx with S ∈ Sp(6,R). In this case, the
canonical commutator relations are preserved, i.e., [qi, q j] =
iJ3,i j .

APPENDIX C: IRREDUCIBLE REPRESENTATION OF KINETIC AND POTENTIAL ENERGY

The irreducible tensor representation of the kinetic energy term T and the potential energy V for a magnetic field orientation
of B||[100] discussed in Sec. II is given by

T = π2

2
− μ′

6
{(�(2) · I (2) )} + δ′

6

(∑
k=±4

{
[�(2) × I (2)](4)

k

}+
√

70

5

{
[�(2) × I2](4)

0

})
,

V =
(


1K̃2 + E (1) · r (1) − 1

r

)
− λ′

3
(K̃ (2) · I (2) ) + ξ ′

3

(∑
k=±4

[K̃ (2) × I (2)](4)
k +

√
70

5
[K̃ (2) × I2](4)

0

)
+ Hso + HB,

with λ′ = 2
5 (
3 + 
2), ξ ′ = 
3/3 − 
2/2 and

Hso = 2
3�
(
1 + S(1)

h · I (1)), HB = μB

[(
3κ + gs

2

)
I (1) · B(1) − gsS

(1)
h · B(1)

]
.

APPENDIX D: THE EXCITONIC HAMILTONIAN IN ADIABATIC APPROXIMATION

In Eq. (43), we introduced the matrix representation of the excitonic Hamiltonian,

H (α)
eff = xTH(α)

eff x, with H(α)
eff = AT MA, x = (x y z px py pz )T .

The matrices,

M = diag(P, Q) and A =
[

I3 0
W I3

]
,

are given in block form, the submatrices P, Q,W , and I3 are given by

P = 1

2

⎡
⎢⎣

C(α)
xx C(α)

xy C(α)
xz

C(α)
xy C(α)

yy C(α)
yz

C(α)
xz C(α)

yz C(α)
zz

⎤
⎥⎦, Q =

⎡
⎢⎣

1
2μ

(α)
x

γ (α)
xy γ (α)

xz

γ (α)
xy

1
2μ

(α)
y

γ (α)
yz

γ (α)
xz γ (α)

yz
1

2μ
(α)
z

⎤
⎥⎦, W = 1

2

⎡
⎢⎣

0 0 0

0 0 qB̃(α)
z

0 −qB̃(α)
z 0

⎤
⎥⎦, I3 =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦.

APPENDIX E: FIELD-DRESSED EXCITONIC HAMILTONIANS

The irreducible tensor representations of field-dressed excitonic Hamiltonians for B||[110] and B||[111], respectively, are
listed below.

1. Magnetic field in [110] direction

Hex = π2

2
− μ′

6
{(�(2) · I (2) ) + δ′

8

(∑
k=±4

{
[�(2) × I (2)](4)

k

})−
√

7

12
δ′
(∑

k=±2

{
[�(2) × I (2)](4)

k

}+
√

1

10

{
[�(2) × I (2)](4)

0

})

+
(


1K̃2 + E (1) · r (1) − 1

r

)
+ Hso + HB.

2. Magnetic field in [111] direction

Hex = π2

2
− μ′

6
{�(2) · I (2) )} + 2

27
δ′
(∑

k=±3

k
{
[�(2) × I (2)](4)

k

}−
√

63

10

{
[�(2) × I (2)](4)

0

})

+
(


1K̃2 + E (1) · r (1) − 1

r

)
+ Hso + HB.
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