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Singularity in entanglement negativity across finite-temperature phase transitions
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Phase transitions at a finite (i.e., nonzero) temperature are typically dominated by classical correlations,
in contrast to zero temperature transitions where quantum mechanics plays an essential role. Therefore, it
is natural to ask if there are any signatures of a finite-temperature phase transition in measures that are
sensitive only to quantum correlations. Here we study one such measure, namely, entanglement negativity, across
finite-temperature phase transitions in several exactly solvable Hamiltonians and find that it is a singular function
of temperature across the transition. Our results also lead to a mean-field argument that shows that negativity
can distinguish spontaneous symmetry breaking with local order parameter at finite temperature from that in the
ground state. Along the way, we prove certain general results which simplify the calculation of negativity for
commuting projector Hamiltonians and as an aside, we also calculate the entanglement of formation exactly in
an interacting model.
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I. INTRODUCTION

Interacting quantum systems with competing interactions
can exhibit phase transitions at both zero and nonzero tem-
peratures. Heuristically, the zero temperature phase transitions
result due to quantum fluctuations while the finite-temperature
phase transitions typically result from thermal fluctuations [1].
As an example, consider the 2 + 1-D transverse field Ising
model on a square lattice: H = − ∑

<i, j>
ZiZ j − h

∑
i

Xi. Here

the critical exponents associated with the zero temperature
phase transition belong to the three-dimensional Ising univer-
sality while those for the finite-temperature phase transition
belong to the two-dimensional Ising universality [1,2]. That
is, at any nonzero temperature, the universal critical exponents
are identical to those corresponding to the purely classical
Hamiltonian H = − ∑

<i, j>
ZiZ j . Given this observation, it is

natural to ask are there any singular correlations at a finite-
temperature transition that are intrinsically quantum mechan-
ical? For a pure state, von Neumann entanglement entropy is
a good measure of quantum correlations, but since we are in-
terested in finite-temperature transitions, we need to consider
measures of mixed state entanglement. With this motivation,
in this paper we will introduce certain quantum models which
exhibit finite-temperature transitions, and we will analytically
study mixed state entanglement measures in these models,
with a particular focus on entanglement negativity [3].

One way to motivate mixed state entanglement measures
is via the notion of ‘separable’ states—these are states that
can be prepared from any other state using only local oper-
ations and classical communications (LOCC) and therefore
are not entangled. A bipartite mixed state is separable if it
can be written as ρ =∑i pi ρA,i ⊗ ρB,i where pi > 0 while
ρA,i, ρB,i are valid density matrices [4,5]. For pure states,
the von Neumann entropy S = −tr(ρA log(ρA)), where ρA is
the reduced density matrix on Hilbert space A, is a faithful

measure of quantum correlations. However, S is rather in-
effective at capturing mixed state quantum correlations. For
example, even a thermal density matrix corresponding to a
purely classical Hamiltonian will have a rather substantial
von Neumann entropy S that equals the thermal entropy for
region A. Several measures of mixed state entanglement have
been proposed (see, e.g., Ref. [6] for an overview) includ-
ing entanglement of formation, entanglement of distillation,
entanglement of purification, squashed entanglement, and
entanglement negativity. As yet, all of these measures, with
the exception of entanglement negativity, require optimizing
a function over all possible quantum states, making their
calculation rather challenging (see, e.g., Ref. [7]). Therefore,
below we will primarily focus on the entanglement negativity
with one exception; for a specific many-body model we will
also calculate the entanglement of formation.

The entanglement negativity (henceforth, just ‘negativ-
ity’ for brevity) is defined as follows [3,8]: Given a
bipartite density matrix ρ acting on the Hilbert space
HA ⊗ HB, one first performs a partial transpose only
on the Hilbert space HB to obtain a matrix ρTB . Ex-
plicitly, if ρ = ∑

A,B,A′,B′
ρAB,A′B′ |A〉|B〉〈A′|〈B′|, then ρTB =∑

A,B,A′,B′
ρAB,A′B′ |A〉|B′〉〈A′|〈B|. The matrix ρTB is Hermitian but

is not necessarily positive semidefinite. The negativity EN

is defined as EN = log (‖ρTB‖1). As shown in Ref. [9] it is
an entanglement monotone despite not being convex. The
utility of negativity becomes apparent when one notices that
it is zero for separable mixed states [3,5,10–12]. This is
because for separable states, ρTB is a valid density matrix, and
therefore, ‖ρTB‖1 = 1. The main drawback of negativity is that
it can be zero even for nonseparable states [13]. Heuristically,
this means that although negativity is insensitive to classical
correlations, it does not capture all quantum correlations. As a
proper entanglement measure for mixed states, negativity has
been studied in various contexts including fermionic systems
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[14,15], disordered systems [16], gapped one-dimensional
models [17], and one-dimensional conformal field theories
[18]. It has also been applied to study the quantum dynamics
in integrable systems [19].

Since we will also briefly discuss entanglement of for-
mation, denoted as EF , let us also recall its definition. EF

for a bipartite mixed state ρAB is defined as follows [20]:
decomposing ρAB as a convex sum of pure states, ρAB =∑

i pi|ψi〉〈ψi| where pi > 0 with
∑

i pi = 1, EF is given by
EF = inf

∑
i piS(TrB|ψi〉〈ψi|) where S is the von Neumann

entropy. Therefore, EF is the least possible entanglement of
any ensemble of pure states that realizes a given mixed state.
In contrast to negativity, EF is zero if and only if a state is
separable.

To begin with, we note one feature of negativity shared by
all Hamiltonians considered here, as well as in several other
lattice models (see, e.g., Refs. [21–25]) and continuum field
theories [26,27]: above a certain temperature, the negativity
for the corresponding thermal (Gibbs) state becomes exactly
zero. This temperature is called ‘sudden death temperature’
denoted as Td . One of the central questions we will ask is
the following. Consider an interacting system which exhibits
spontaneous symmetry breaking below a critical temperature
Tc. Assuming that negativity EN is nonzero in the vicinity
of the transition (i.e., the condition Td > Tc is satisfied), is
EN a singular function of the tuning parameter (e.g., the
temperature) across the transition?

We now state our main result. We find that in all models
considered in this paper, whenever negativity is nonzero in
the vicinity of the transition, it is always singular across the
transition. This result is at variance with expectations from
Ref. [23] where numerical calculations on finite sized systems
for the 2 + 1-D quantum Ising model suggested that negativity
is analytic across the corresponding Tc. We will return to a
comparison with Ref. [23] after discussing our results.

II. MEAN-FIELD MODELS

As a starting point, consider a single site mean-field Hamil-
tonian for the transverse field Ising model: HMF

1 site = −mzZ −
hX , where z is the coordination number. The corresponding
thermal state is indeed separable, which might lead one to
expect that perhaps negativity is always an analytic function
across finite-temperature transitions. However, a single site
mean field is too crude an approximation: Within such a mean-
field approximation, even the ground state is unentangled and
shows no singularity in the quantum entanglement across a
T = 0 quantum phase transition (QPT), in contrast to the
known exact results (see, e.g., Refs. [28–30]). To improve
upon this, we next consider a two-site mean-field theory:

HMF
2 sites = −m(z − 1)(Z1 + Z2) − Z1Z2 − h(X1 + X2) (1)

and study the negativity for a bipartition that runs across the
two sites. A straightforward calculation shows that whenever
Td > Tc, the critical temperature for the phase transition, the
negativity is a singular function of the temperature across
the transition, see Fig. 1. Incidentally, since an analytical
expression for entanglement of formation EF is available for
any state acting on two qubits [31], we calculate EF as well for
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FIG. 1. The derivative of entanglement negativity dEN
dT and the

derivative of entanglement of formation dEF
dT corresponding to the

thermal state for a two site mean-field theory of the transverse field
Ising model, Eq. (1) with h = 3.8 and z = 4. Inset: EN and EF for
the two site mean-field theory for the same problem. The vertical
dashed gray line in both plots indicates the location of the critical
temperature.

this mean-field model and find that it is also singular across
the transition (Fig. 1).

III. A NONLOCAL COMMUTING PROJECTOR MODEL

Motivated by the two-site mean-field result and the models
studied in Ref. [32], we next consider a Hamiltonian which
exhibits a finite-temperature transition and where negativity is
calculable exactly in the thermodynamic limit. The model is
defined on a one-dimensional lattice with L sites where each
lattice site has four qubits:

H = − 1

4L

(∑
i

(Zi1Zi2 + Zi3Zi4)

)2

− gz

∑
i

Zi1Zi2Zi3Zi4

− gx

∑
i

(Xi1Xi2 + Xi3Xi4). (2)

The most notable feature of this Hamiltonian is that it is a sum
of commuting terms, and it supports a finite-temperature tran-
sition where the Ising symmetry corresponding to Zi1Zi2 →
−Zi1Zi2, Zi3Zi4 → −Zi3Zi4 gets spontaneously broken. The
first term in the Hamiltonian makes it nonlocal and leads
to a finite-temperature Ising transition in the mean-field uni-
versality class. Defining the order parameter m = 〈Zi1Zi2〉 =
〈Zi3Zi4〉, one finds that in the thermodynamic limit, the crit-
ical temperature is given by the solution of the equation
2β = 1 + e−2βgz while the order parameter m is determined
via sinh(2βm)

cosh(2βm)+e−2βgz = m which implies that close to Tc, m =
a
√

Tc − T , as expected. Next, we calculate the negativity
of this model for the bipartition that runs across the four
qubits on a chosen site, i.e., A = {iα, i < 0, α = 1, 2, 3, 4} ∪
{i = 0, α = 1, 3} and B = A where we have chosen the cut
across the site 0 for convention. One finds that for all T �
Tc, and for 0 � (Tc − T )/Tc 
 1, the negativity is given by
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FIG. 2. Negativity as a function of temperature for the nonlocal
commuting projector model, Eq. (2), for gx = 2, gz = 1. Inset: Tem-
perature dependence of the magnetization. The vertical dashed gray
line in both plots indicates the location of the critical temperature.

EN = log(1 + F ), where

F = eβgz sinh(2βgx ) cosh(2βm) − e−βgz cosh(2βgx )

2(cosh(βgx ))2(eβgz cosh(2βm) + e−βgz )
(3)

assuming F > 0 (see Appendix B 1 for derivation); otherwise
negativity is zero which also yields an expression for Td

by setting F = 0. Since the critical temperature Tc depends
only on gz, one can always tune gx, so that the sudden
death temperature is higher than Tc. Since m is a singular
function of temperature so is negativity. In fact EN simply
inherits the cusp singularity of m across the phase transition,
i.e., dEN

dT |T =T −
c

�= dEN
dT |T =T +

c
, see Fig. 2 which also shows the

temperature dependence of negativity for all temperatures
including T < Tc.

One drawback of the model just discussed is that it is
nonlocal and relatedly exhibits mean-field scaling exponents.
Therefore, it would be worthwhile to study negativity in ther-
mal states of local Hamiltonians that host a finite-temperature
transition.

IV. LOCAL COMMUTING PROJECTOR MODELS

A. A general result regarding negativity

Before considering local models, we notice a property
specific to commuting projector models that will simplify our
subsequent discussion. Let’s decompose a commuting pro-
jector Hamiltonian as H = HA + HB + HAB so that HA(HB)
denotes the interaction between spins in A(B) and HAB de-
notes the interaction between A and B. We further denote
the Hilbert space of spins of region A(B) that interact with
B(A) by ∂A(∂B), and define A′ = A − ∂A, B′ = B − ∂B, i.e.,
spins strictly in the ‘bulk’ of A(B). Given a thermal density
matrix ρ = e−βH/Z , one can show that (see Appendix A 3 for
derivation)

‖ρTB‖1 = ‖ρ∂A,∂B‖1, (4)

where ρ∂A,∂B is a density matrix defined on ∂A
⋃

∂B:

ρ∂A,∂B = 1
Z (e−βHAB )

T∂B TrA′,B′e−β(HA+HB ). This property results
from the fact that partial transpose affects operators only at the
boundary (i.e., only in the factor e−βHAB in the expression for
ρ), and furthermore one can always find a basis in which HA,
HB, and (e−βHAB )

T∂B can all be simultaneously diagonalized. If
we further assume that

{e−βHAB}T∂B TrA′,B′e−β(HA+HB ) = {e−βHAB TrA′,B′e−β(HA+HB )}T∂B ,

(5)

then one can show that the negativity between A and B is
exactly the same as the negativity between ∂A and ∂B:

‖ρTB‖1 = ∥∥ρT∂B
∂A,∂B

∥∥
1, (6)

where ρ∂A,∂B = 1
Z TrA′,B′e−βH = 1

Z e−βHAB TrA′,B′e−β(HA+HB ) is
the reduced density matrix for the boundary spins. Note that
the assumption Eq. (5) fails only if there exist constraints
between commuting operators. For instance, given a two-
dimensional (2D) toric code on a torus [33], the product of
all plaquette (star) operators is an identity operator. Con-
sequently, TrA′,B′e−β(HA+HB ) generates the plaquette and star
operators supported on the bipartition boundary, and Eq. (5)
does not hold true. If one instead considers the 2D toric
code on a plane, no constraint among different commuting
operators exists, and Eqs. (5) and (6) are correct. For the
models considered in this paper, Eq. (6) continues to hold, and
we will report results on models which violate this assumption
elsewhere.

B. An explicit calculation of negativity

With the aforementioned property specific to commuting
projector Hamiltonian, we now turn our attention to the nega-
tivity in a local Hamiltonian defined on a square lattice, with
two species of spins, a and b, on each lattice site:

H = −
∑
〈i j〉

ZiaZibZ jaZ jb − g
∑

i

XiaXib. (7)

This model exhibits a finite-temperature phase transition in
the 2D Ising universality class, and due to the commuting
projector property, the corresponding Tc is exactly the same
as the Onsager’s solution [34] to the classical Ising model
on the square lattice, H = −∑<i, j> sis j , irrespective of the
value of g. Let us first consider the negativity between one
spin on a single site, say, ‘a’ spin on site 0, and the rest of the
system. Since all local commuting operators are independent,
to calculate the negativity, we only need the reduced density
matrix for spins at the boundary [as stated in Eq. (6)], which
in this case are the spins on sites 0 and four neighbors of site
0. For simplicity, we present the result of the negativity only
for a specific range of g, namely, e−8β < tanh(βg) < e−4β

where the calculation is technically simpler, see Appendix B 2
for details. This is sufficient to illustrate the singular nature
of negativity across the finite-temperature transition hinted
above. One finds that the negativity EN is given by:

EN = log{1 − 4A[cosh(βg)e−4β − sinh(βg)e4β](1 + 4c1

+ 2c2 + c3)}, (8)
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where A−1 = 25 cosh(βg)(cosh[4](β ) + (c1 + 1
2 c2) sinh[2]

(2β ) + c3 sinh[4](β )) and {ci|i = 1, 2, 3} are given by the
expectation values of certain local operators measured by
the bulk density matrix ρbulk ∼ exp −β(HA + HB) so that
they are all singular functions of the tuning parameters g, T
across the critical point. Inheriting the singularity of ci, the
negativity between the single spin and the rest of the system
is also singular. Note that there is no symmetry reason for the
singularity to cancel out in the particular combination of ci’s
that enter the expression for A. To confirm this, we calculated
the coefficients ci within the mean field approximation and
checked that EN is indeed singular across the transition (see
Appendix B 2).

C. A general argument for singularity in negativity

By exploiting the general result in Eq. (4), we can now
argue rather generally that negativity will be singular across a
phase transition in a commuting projector Hamiltonian for an
arbitrary bipartition scheme. To begin with, we write the bulk
Hamiltonian as HA + HB = −∑m αmPm, where {Pm} is the set
of local commuting operators supported only on A or B. For
brevity of the discussion, Pm is chosen from the Pauli group
and is thus a tensor product of Pauli matrices over sites with
P2

m = 1. To utilize the result from Eq. (4), we first calculate
the following:

1

Z
TrA′,B′e−β(HA+HB )

= 1

Z
TrA′,B′

∏
m

(cosh(βαm) + Pm sinh(βαm)) (9)

= 1

Z

[∏
m

cosh(βαm)

]∑
{τm}

TrA′,B′

[∏
m

(Pm tanh(βαm))τm

]
,

where τm ∈ {0, 1} indicates whether Pm is present or not. Due
to the presence of the trace over the bulk region, among
all possible

∏
m Pτm

m , only those operators acting on the bulk
trivially survive, which we call {Qk}. Also note that Qk can
be expressed as tensor products of local commuting operators
{O′

m} supported on the boundary region ∂A
⋃

∂B. Therefore,
Eq. (4) gives

‖ρTB‖1 =
∥∥∥∥∥(e−βHAB )T∂B

∑
k

ckQk

∥∥∥∥∥
1

. (10)

The coefficients ck are proportional to the expectation value
of Qk with respect to the bulk density matrix ρbulk and are
therefore a singular function of the tuning parameter across
Tc, similar to the coefficients c1, c2, c3 discussed above for the
case of a single site negativity appearing in Eq. (8). Since
the matrix inside the one-norm from Eq. (10) consists of
commuting operators O′

m, its eigenvalues can be obtained
by treating them as numbers. Therefore, it follows that the
negativity is

EN = log

(∑
k

ck fk

)
, (11)

where fk = g
∑

{O′
m} |(e−βHAB )

TB |Qk . Here the factor g takes
care of the possible degeneracy from transforming the trace
in Hilbert space to summing commuting operators, i.e.,
Tr∂A,∂B = g

∑
O′

m
. Also, the summation over O′

m should take
care of the potential constraints for O′

m. For instance, given
a three-dimensional toric code, summing each plaquette op-
erator cannot be treated independently since the product of
six plaquette operators on a cubic unit cell is an identity
operator.

A key observation from Eq. (11) is that, in contrast to
ck , the coefficients fk are determined only by the matrix
defined on the boundary spins via the above expression and
are oblivious to the bulk criticality. Therefore, the negativity
inherits the singularity associated with the bulk criticality due
to its dependence on coefficients ck .

V. QUANTUM SPHERICAL MODEL

Finally, we consider a completely different class of models
which are also exactly solvable and in which one again finds
that the negativity is singular across the phase transition. In
particular, consider the quantum spherical model [35]:

H = 1

2
g

N∑
i=1

p2
i − 1

2N

N∑
i, j=1

xix j + μ

[
N∑

i=1

x2
i − N

4

]
, (12)

where xi and p j satisfy the canonical commutation relation
[xi, p j] = iδi j , while the constraint 〈∑N

i=1 x2
i 〉 = N

4 is imposed
only on average via the Lagrange multiplier μ. The above
model shows a phase transition associated with spontaneous
breaking of the Ising symmetry xi → −xi at temperature
β−1

c determined via
√

gc = 1
2 tanh ( 1

2βc
√

gc). In the ordered
phase, μ is pinned to 1/2. The negativity of this model
can be calculated analytically using the correlation matrix
technique of Ref. [36]. Dividing the system into two equal
halves, one finds that (see Appendix B 3) the negativity
EN = Max{0,− 1

2 log(ν)} where ν = 2
β
√

g coth( 1
2β

√
g) in the

ordered phase, while ν = 1
2

√
2μ−1

g coth( 1
2β

√
(2μ − 1)g) in

the disordered phase where the chemical potential is given

by the equation
√

2g
μ

= tanh ( 1
2β

√
2gμ). Using these equa-

tions, one finds that the first derivative of the negativity
across the phase transition is discontinuous: ∂EN

∂g |g+
c

= 1
2gc

+
β2

c
24 (1 − 8

4+βc−4βcgc
) while ∂EN

∂g |g−
c

= 4+βc−4βcgc

16gc
. As shown in

Fig. 3, the first derivative of EN clearly exhibits a discontinuity
at the thermal critical point.

VI. EXACT CALCULATION OF ENTANGLEMENT OF
FORMATION IN COMMUTING PROJECTOR MODELS

The models introduced in this paper allowed for a rather
straightforward evaluation of negativity while illustrating non-
trivial features. It is natural to wonder whether one can
calculate any other measures of mixed state entanglement for
similar models. To that end, we now present a result on the
entanglement of formation EF , a quantity which is generally
rather hard to calculate since it requires optimization over all
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FIG. 3. First derivative of the negativity as a function of the
parameter g [see Eq. (12)] at T = 0.15 for the spherical model. The
inset shows the negativity as a function of g, where the red dot labels
the critical point.

possible states. Consider the following Hamiltonian which is
closely related to the Hamiltonians in Eqs. (2) and (7):

H = − 1

2L

(
L∑

i=1

Zi1Zi2

)2

− g
L∑

i=1

Xi1Xi2. (13)

This Hamiltonian exhibits a finite-temperature phase transi-
tion at Tc = 1. For defining the entanglement of formation EF ,
similar to our earlier discussion, we choose a bipartition for
the subsystem A and its complement B that cuts through the
two spins 1 and 2 on a chosen site s. For such a bipartition
scheme, we prove that in the thermodynamic limit (L → ∞),
EF between A and B is exactly given by that between two
spins in the mean-field density matrix defined as ρMF ∝
e−βHs where Hs = −mZs1Zs2 − gXs1Xs2 and m satisfies the
mean-field equation tanh(βm) = m. Using the exact result by
Wooters on EF for two qubits [31], this yields an analytical
expression for EF .

Our strategy is to find an upper bound and a lower bound
on EF that happen to match each other. Here we briefly outline
the proof (see Appendix C for details). For calculating an
upper bound, we perform an Hubbard-Stratonovich transfor-
mation to decompose the density matrix ρ:

ρ = 1

Z
e−βH = 1

Z

√
βL

2π

∫
dme− 1

2 βLm2−β
∑L

i=1 Hi (m), (14)

where a local Hamiltonian Hi(m) for the i site of two spins is
defined as Hi(m) = −mZi1Zi2 − gXi1Xi2. By decomposing the
matrix e−βHi (m) =∑ki

wi
ki

(m) |ki(m)〉 〈ki(m)|, one can upper
bound the entanglement of formation EF (A, B) between A, B
in ρ by the entanglement of formation EF (s1, s2) between two
spins s1, s2 in the mean-field density matrix ρMF ∝ e−βHs :

EF (A, B) � EF (s1, s2). (15)

For the lower bound, since any entanglement measure is
nonincreasing under a partial trace [37], EF (A, B) is bounded

by the entanglement of formation between two spins at site s
from below. By calculating the reduced density matrix on site
s, we show that

EF (s1, s2) � EF (A, B). (16)

Combing Eqs. (15) and (16), we complete the proof. Unfortu-
nately, in this model, the entanglement of formation exhibits
a sudden death temperature which is lower than Tc for all
values of g, and therefore, EF is zero in the vicinity of the
transition.

VII. DISCUSSION AND SUMMARY

So far we have shown that finite-temperature transitions in
quantum systems can show singular features in entanglement
negativity, despite the fact that the universal critical exponents
associated with these transitions are still given by classical
statistical mechanics. Therefore, it is legitimate to ask whether
negativity can at all distinguish the spontaneous symmetry
breaking at finite temperature with spontaneous symmetry
breaking at zero temperature? The answer is in the affirmative.
For concreteness, again consider the exactly solvable model
in Eq. (2) although the argument is rather general. Below
Tc, and in the absence of an infinitesimal symmetry breaking
field, the partition function gets equal contribution from both
positive and negative values of the order parameter. On the
other hand, in the thermodynamic limit, and in the presence of
an infinitesimal symmetry breaking field, only one of the two
sectors contribute, and therefore, the thermal entropy with and
without field satisfies S(h = 0) − S(h = 0+) = log(2). This is
why the spontaneous symmetry breaking at a finite tempera-
ture is an example of ergodicity breaking [38] or relatedly, a
‘self-correcting classical memory’ [39]. Since this is a classi-
cal phenomenon, a faithful measure of quantum correlations
should be insensitive to it. One may now explicitly calculate
the negativity with and without infinitesimal symmetry break-
ing field for the Hamiltonian in Eq. (2) and show that EN (h =
0) = EN (h = 0+) (see Appendix B 1). Schematically, at a
mean-field level, ρ(h = 0) = (ρ(m∗) + ρ(−m∗))/2 where
m∗ is the mean-field value of the order parameter, and
therefore |ρTB |1(h = 0) = (|ρ(m∗)TB |1 + |ρ(−m∗)TB |1)/2 =
|ρ(m∗)TB |1 = |ρTB |1(h = 0+). In strong contrast, for sponta-
neous symmetry breaking at T = 0, when h = 0, the ground
state wave function (and not the density matrix) is a sum of
the ground state wave functions corresponding to positive and
negative order parameters (a ‘cat state’) while at h = 0+, only
one of the two sectors contribute. Therefore, all measures
of quantum entanglement, including von Neumann entan-
glement entropy and in particular negativity satisfy EN (h =
0) − EN (h = 0+) = log(2).

To summarize, we analytically demonstrated that nega-
tivity is singular across finite-temperature phase transitions
for several models. This may seem counterintuitive since the
universal properties associated with transitions are controlled
by a purely classical Hamiltonian with the same symmetries.
One way to resolve this apparent tension is to note that
negativity is sensitive to short-distance quantum correlations
close to the bipartition boundary. Since even local properties,
such as magnetization or energy density, are singular across
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the transition, one expects that the area law associated with
negativity will generically pick up a singular contribution as
well. In contrast to our results, Ref. [23], based on small
scale numerics (L � 10 sites), concluded that negativity for
the 2 + 1-D quantum Ising model has no singularity across
the finite-temperature transition. Although we don’t have any
analytical results for the negativity of the 2 + 1-D quantum
Ising model, for the general reasons just mentioned, we sus-
pect that negativity will be singular in this model as well.
As is evident from the insets of Figs. 1 and 3, it can be
rather hard to detect the singularity in negativity unless one
has access to an analytical expression or precise numerical
data on very large system sizes. We hope that our results
will prompt further in-depth numerical and field-theoretic
calculations of entanglement negativity in systems that exhibit
finite-temperature transitions.

The singularity in negativity for the local models discussed
in this paper is somewhat analogous to the singular area-
law contribution at a zero-temperature QPT discussed in
Ref. [29]. At the same time, the absence of finite-temperature
topological order [40] in our models suggests that unlike the
zero temperature case, there is no additional subleading O(1)
constant. If so, then one might be able to cancel out the sin-
gular contribution completely via an appropriate subtraction
scheme, perhaps similar to that in Ref. [41]. Relatedly, it
would be also interesting to find models where the singularity
associated with negativity cannot be canceled out in any
subtraction scheme and is therefore related only to universal,
long-distance quantum correlations. On a more practical front,
it would be interesting to devise models where the singularity
in negativity can be measured experimentally, using quantum
state tomography [42], or via swap-based methods on multiple
copies of a system [43–45].
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APPENDIX A: GENERAL RESULTS REGARDING
COMMUTING PROJECTOR HAMILTONIANS

1. Partial Transposition Preserves the Set of Eigenvectors

Consider a commuting projector Hamiltonian H = HA +
HB + HAB, where HA and HB denote the part of H with support
only in real space region A and B, and HAB denotes the
interaction between A and B. Define {Om} as the set of local
commuting operators, a commuting projector Hamiltonian
can be written as H =∑m cmOm. The thermal density matrix,
ρ = e−βH/Z with Z = Tre−βH , can be expanded as: ρ =∑

α dαQα , where each {Qα} is a tensor product of operators
from the set {Om}. Since all operators in H commute, H ,
ρ, and {Om} share the same eigenvectors. Under the partial
transpose over the Hilbert space in B, one obtains ρTB =∑

α dαQTB
α . If Qα only acts on A or B, then QTB

α = Qα . Only

when the support of Qα involves A and B simultaneously
is it possible for Qα to receive a minus sign under partial
transpose. This implies that the operators basis for ρTB is still
{Qα}, and thus the eigenvectors of ρTB are exactly the same
as those of ρ, and the eigenvalues of ρTB can be obtained by
replacing {Om} by their eigenvalues. In the argument above
we implicitly assumed that all matrix elements of {Qα} are
real in the basis where we perform a partial transpose. If
there exists complex matrix elements instead, {Qα} might get
a minus sign even when {Qα} acts only on A or B. Never-
theless, one can check that ρTB is still generated by tensor
products of {Om}, and therefore the conclusion remains the
same.

2. Partial Trace Preserves the Set of Eigenvectors

Here we show that for commuting projector Hamiltonians,
the thermal density matrix ρ and the reduced density matrix
ρA obtained by tracing out all the degrees of freedom in B
share the same set of eigenvectors. As discussed above, ρ =∑

α dαQα , where {Qα} collects all possible operators from
the product of commuting operators {Om}. By tracing out all
the degrees of freedom in B for ρ, basis operators in {Qα}
which act nontrivially on B vanish. This implies that the
operator basis of reduced density matrix ρA is generated by
those operators in {Qα} which act on B trivially, and thus ρA

commutes with all local commuting operators.

3. Bipartite Negativity from a Density Matrix on Boundary

Here we show that the negativity between two spatial
regions of a thermal density matrix of a commuting projector
Hamiltonian is given by the negativity of a density matrix
localized on the boundary of the bipartition. Following the
notation in the main text, we define ∂A(∂B) as the collection
of spins on the boundary of A(B) that interacts with B(A), and
define A′(B′) as the collection of spins in the bulk of A(B)
that only couples to spins in A(B). The set of local commuting
operators {Om} in the Hamiltonian can be written as {Om} =
{O∂

m}⋃{OA
m}⋃{OB

m} with O∂
m supported on both ∂A, ∂B and

OA
m(OB

m) supported on A(B). We decompose a Hamiltonian
as H = HA + HB + HAB, so that HA(HB) involving OA

m(OB
m)

denotes the interaction between the spins in A(B), and HAB

involving O∂
m denotes the interaction between the boundary

spins in ∂A
⋃

∂B. For simplicity, we also assume that the
system is time reversal invariant, so that for ρ = e−βH/Z , the
partial transpose over the Hilbert space in B acts nontrivially
only on HAB:

ρTB = 1
Z (e−βHAB )T∂B e−β(HA+HB ). (A1)

The one-norm of ρTB can be obtained via the replica trick

‖ρTB‖1 = lim
ne→1

Tr(ρTB )ne

= lim
ne→1

1

Zne
Tr∂A,∂B{[(e−βHAB )T∂B ]ne TrA′,B′e−neβ(HA+HB )},

(A2)

where ne is first treated as an even integer, but is analytically
continued to 1 at the end. Since the argument inside the
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trace Tr∂A,∂B involves only commuting operators, we have
Tr∂A,∂B = g

∑′
{Om}, where the prefactor g accounts for degen-

eracy and the prime above the summation symbol restricts the
summation over only Om supported on ∂A

⋃
∂B. Therefore,

‖ρTB‖1 = g

Z

′∑
{Om}

{|(e−βHAB )T∂B |TrA′,B′e−β(HA+HB )}. (A3)

This result implies that one can equivalently start from a den-
sity matrix ρ∂A,∂B = 1

Z (e−βHAB )
T∂B TrA′,B′e−β(HA+HB ), and show

that

‖ρTB‖1 = ‖ρ∂A,∂B‖1. (A4)

Suppose that TrA′,B′e−β(HA+HB ) does not involve local commut-
ing operators across the bipartition boundary, i.e., operators in
{O∂

m}, then

{e−βHAB}T∂B TrA′,B′e−β(HA+HB ) = {e−βHAB TrA′,B′e−β(HA+HB )}T∂B .

(A5)
This result implies that

‖ρTB‖1 = ∥∥ρT∂B
∂A,∂B

∥∥
1, (A6)

where ρ∂A,∂B is the reduced density matrix from ρ on
∂A
⋃

∂B: ρ∂A,∂B = TrA′,B′ρ. In other words, the negativity
of two spatial regions is given by the negativity between
boundary spins. In fact with a similar calculation, one can
show that the above results [Eq. (A4), Eq. (A6)] also hold
true for any commuting projector Hamiltonian without time
reversal symmetry.

APPENDIX B: CALCULATIONAL DETAILS OF
NEGATIVITY FOR VARIOUS MODELS

DISCUSSED IN THE MAIN TEXT

1. Infinite-Range Commuting Projector Hamiltonian

Consider a one-dimensional lattice of size L where each
lattice site has four qubits, the model Hamiltonian is

H = − 1

4L

(
L∑

i=1

(Zi1Zi2 + Zi3Zi4)

)2

− gz

L∑
i=1

Zi1Zi2Zi3Zi4

− gx

L∑
i=1

(Xi1Xi2 + Xi3Xi4). (B1)

The density matrix at inverse temperature β is ρ =
1
Z e−βH with Z = Tre−βH . Since every local term commutes,
we can perform Hubbard-Stratonovich transformation for
e−βH :

e−βH =
√

βL

π

∫
dme−βLm2−β

∑L
i=1 Hi (m), (B2)

where a local Hamiltonian Hi(m) for the i site of four spins is
defined as:

Hi(m) = −m(Zi1Zi2 + Zi3Zi4) − gzZi1Zi2Zi3Zi4

− gx (Xi1Xi2 + Xi3Xi4). (B3)

Equation (B2) implies that all sites are separable since ρ

manifestly takes the form ρ =∑k pkρ
1
k ⊗ · · · ⊗ ρL

k where

pk � 0, ρ i
k is a local density matrix on the ith site. As a result,

to have nonzero negativity, an entanglement cut should be
made across one of the sites (say the sth site) such that four
spins on the sth site are not in the same subsystem. In the
following calculation, A comprises all the lattice sites with site
index i < s and two spins labeled by 1,3 on the sth site while
B comprises all the lattice sites with site index i > s and two
spins labeled by 2,4 on the sth site. The negativity EN can be
calculated via a replica trick:

EN = log ‖ρTB‖1 = lim
ne→1

Tr[((e−βH )TB )ne ]

Tr[e−βH ]
. (B4)

Notice that ne is an even number as performing trace, but
analytic continuation ne → 1 is taken in the end. First we
calculate the thermal partition function:

Z = Tre−βH =
(

βL

π

) 1
2
∫

dme−βLm2
Tre−β

∑L
i=1 Hi (m)

=
(

βL

π

) 1
2
∫

dme−βL f (m) (B5)

where

β f (m) = m2 − log[eβgz cosh(2βm) + e−βgz ]

− log[8 cosh[2](βgx )]. (B6)

The integral over m is dominated by the saddle point m∗,
which satisfies ∂ f (m)

∂m |m∗ = 0:

sinh(2βm∗)

cosh(2βm∗) + e−2βgz
= m∗. (B7)

The critical behavior of m∗ can be determined by expanding
Eq. (B7) to O(m∗3):

2βm∗

1 + w
+ 4(w − 2)

3(1 + w)2
β2m∗3 = m∗, (B8)

where w(β ) ≡ e−2βgz . Define βc ≡ 1+w(βc )
2 , for β > βc, we

can have nonzero solution for m∗ = ±m0:

m0 =
√

3βc(β − βc)

β3(3 − 2βc)
∼ √

Tc − T (B9)

while for β < βc, m∗ = 0 is the only allowed solution. No-
tice that the critical inverse temperature βc is determined by
solving the transcendental equation:

2βc = 1 + e−2βcgz . (B10)

On the other hand, for the calculation of Tr[((e−βH )TB )
ne ],

since each site is separable, taking partial transpose over B
amounts to only taking the partial transpose on the two spins
labeled by 2,4 on the sth site:

[e−βH ]TB =
√

βL

π

∫
dme−βLm2−β

∑
i �=s Hi (m)[e−βHs (m)]TB .

(B11)
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By introducing ne replicas, we have

Tr[(e−βH )TB ]ne =
(

βL

π

) ne
2
∫ ne∏

a=1

dmae−βL
∑ne

a=1 m2
a Tri �=s{e−β

∑ne
a=1

∑
i �=s Hi (ma )}Trs

{
ne∏

a=1

[e−βHs (ma )]TB

}

=
(

βL

π

) ne
2
∫ ne∏

a=1

dmae−βLFne ({ma}) Trs
{∏ne

a=1[e−βHs (ma )]TB
}

Trs
{∏ne

a=1 e−βHs (ma )
} ,

(B12)

where

βFne ({ma}) =
n∑

a=1

m2
a − log

[
eβnegz cosh

(
2β

ne∑
a=1

ma

)
+ e−βnegz

]
− log[8 cosh[2](βnegx )]. (B13)

This multidimensional integral is again dominated by saddle points {m∗
a|a = 1, 2, · · · , ne}, which can be obtained from

∂Fne ({ma})
∂ma

|m∗
a
= 0:

sinh
(
2β
∑ne

a=1 m∗
a

)
cosh

(
2β
∑ne

a=1 m∗
a

)+ e−2βnegz
= m∗

a ∀a. (B14)

Assuming replica symmetry is preserved, we have m∗
ne

= m∗
a∀a with

sinh(2neβm∗
ne

)

cosh
(
2neβm∗

ne

)+ e−2βnegz
= m∗

ne
. (B15)

As ne → 1, the above equation is exactly the saddle point equation for the thermal partition function [Eq. (B7)]. This implies
limne→1 m∗

ne
= m∗. By plugging Eq. (B5) and Eq. (B12) into Eq. (B4), one finds

‖ρTB‖1 =
∫

dme−βL f (m,gz,gx )
∥∥ρTB

s (m)
∥∥

1∫
dme−βL f (m,gz,gx )

, (B16)

where

ρs(m) ≡ e−βHs (m)

Trs{e−βHs (m)} . (B17)

For T > Tc, there is a unique saddle point m∗, and

‖ρTB‖1 = ∥∥ρTB
s (m∗)

∥∥
1

∫
dme−βL f (m,gz,gx )∫
dme−βL f (m,gz,gx )

= ∥∥ρTB
s (m∗)

∥∥
1. (B18)

For T < Tc, there are two saddle points m∗ = ±m0, and thus we arrive at

‖ρTB‖1 =
∥∥ρTB

s (m0)
∥∥

1

∫
aroundm0

dme−βL f (m,gz,gx ) + ∥∥ρTB
s (−m0)

∥∥
1

∫
around−m0

dme−βL f (m,gz,gx )∫
aroundm0

dme−βL f (m,gz,gx ) + ∫around−m0
dme−βL f (m,gz,gx )

. (B19)

Since ‖ρTB
s (m0)‖1 = ‖ρTB

s (−m0)‖1, we have

‖ρTB‖1 = ∥∥ρTB
s (m∗)

∥∥
1. (B20)

This result implies that to calculate the bipartite negativity between A and B, it is sufficient to calculate the reduced density
matrix for the sth site (ρs) where we made an entanglement cut. Incidentally, the above calculation explicitly demonstrates the
claim EN (h = 0) = EN (h = 0+) mentioned in the main text where EN (h = 0) is the negativity in the absence of an infinitesimal
symmetry breaking field (so that it receives contribution from both m0 and −m0) while EN (h = 0+) is the negativity in the
presence of such a field so that it receives contribution only from one saddle point (say, m0). From now on, we suppress lattice
site index s in the calculation since only four qubits on a single site is relevant. Meanwhile, m will replace m∗ as the mean-field
order parameter for brevity. The local density matrix is

ρs = 1
Zs

e−βHs = 1
Zs

eβm(Z1Z2+Z3Z4 )+βgzZ1Z2Z3Z4+βgx (X1X2+X3X4 ), (B21)

where the partition function Zs is

Zs = Tre−βHs = 8(cosh(βgx ))2(eβgz cosh(2βm) + e−βgz ). (B22)

By taking partial transpose over {2, 4} ∈ B, we have

(e−βHs )T24 = eβgzZ1Z2Z3Z4 [(cosh(βgx ))2eβm(Z1Z2+Z3Z4 ) + (sinh(βgx ))2e−βm(Z1Z2+Z3Z4 )X1X2X3X4]

+ 1
2 sinh(2βgx )e−βgzZ1Z2Z3Z4 [eβm(−Z1Z2+Z3Z4 )X1X2 + eβm(Z1Z2−Z3Z4 )X3X4].

(B23)

075157-8



SINGULARITY IN ENTANGLEMENT NEGATIVITY ACROSS … PHYSICAL REVIEW B 99, 075157 (2019)

Due to the simple form of (e−βHs )
T24 , we are able to obtain all the eigenvalues of ρT24

s and exploit the following formula to
calculate the negativity:

EN = log

[∑
i

|νi|
]

= log

[
1 − 2

∑
νi<0

νi

]
, (B24)

where {νi} denotes eigenvalues of ρT24
s . Since Z1Z2, Z3Z4, X1X2, X3X4 commute with each other, the corresponding eigenvalues

of these operators z12, z34, x12, x34 = ±1 completely specify an eigenvector of (e−βHs )
T24 , which takes the following form

|ψ〉 = 1
2 (|s1, s2〉 ± |−s1,−s2〉) ⊗ (|s3, s4〉 ± |−s3,−s4〉), (B25)

with si = ±1 for i = 1, 2, 3, 4. With this observation, the eigenvalues of (e−βHs )
T24 can be obtained by replacing operators by

their eigenvalues:

λ(z12, z34, x12, x34) = eβgzz12z34 [(cosh(βgx ))2eβm(z12+z34 ) + (sinh(βgx ))2e−βm(z12+z34 )x12x34]

+ 1
2 sinh(2βgx )e−βgzz12z34 [eβm(−z12+z34 )x12 + eβm(z12−z34 )x34].

(B26)

For T > Tc, m = 0, one finds

λ(z12, z34, x12, x34) =eβgzz12z34 [(cosh(βgx ))2 + (sinh(βgx ))2z12z34] + 1
2 sinh(2βgx )e−βgzz12z34 [x12 + x34]. (B27)

When

z12 = 1, z34 = −1, x12 = −1, x34 = −1
z12 = −1, z34 = 1, x12 = −1, x34 = −1,

(B28)

we can have negative λ:

λ = e−βgz cosh(2βgx ) − eβgz sinh(2βgx ). (B29)

Thus, for T > Tc, the twofold degenerate negative eigenvalue of ρT24
s is

ν = e−βgz cosh(2βgx ) − eβgz sinh(2βgx )

16(cosh(βgx ))2 cosh(βgz )
, (B30)

and the negativity can be obtained by using Eq. (B24):

EN = log

[
1 + max

{
0,

eβgz sinh(2βgx ) − e−βgz cosh(2βgx )

4(cosh(βgx ))2 cosh(βgz )

}]
. (B31)

Note that at Tc, one requires

e−2βcgz < tanh(2βcgx ) (B32)

to have nonzero negativity. This is always achievable by tuning gx since βc is only determined by gz. For T < Tc, depending on
the values of m, there could be more choices of (z12, z34, x12, x34) that can give negative eigenvalues of ρT24

s . For simplicity, we
consider T → T −

c , where m ∼ √
Tc − T → 0+, and only the configurations in Eq. (B28) can possibly give negative eigenvalues.

This is sufficient for our purpose since we only concern the possibly nonanalytic behavior of the negativity. Therefore, as
T → T −

c , the twofold degenerate negative eigenvalue of ρT24
s is

ν = e−βgz cosh(2βgx ) − eβgz sinh(2βgx ) cosh(2βm)

8(cosh(βgx ))2(eβgz cosh(2βm) + e−βgz )
. (B33)

Finally, the negativity valid for T > T −
c is given by

EN = log

[
1 + max

{
0,

eβgz sinh(2βgx ) cosh(2βm) − e−βgz cosh(2βgx )

2(cosh(βgx ))2(eβgz cosh(2βm) + e−βgz )

}]
(B34)
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Due to the singular behavior of m(T ):

m =
{

a
√

Tc − T for T → T −
c

0 for T > Tc,
(B35)

the negativity EN is also a singular function across Tc.

2. Two-dimensional Commuting Projector Hamiltonian

Consider a two-dimensional lattice, where each site has two spins labeled by ‘a’ and ‘b’ respectively, the model Hamiltonian
is

H = −
∑
〈i j〉

z̃ĩz j − g
∑

i

x̃i, (B36)

where z̃i ≡ ZiaZib, x̃i ≡ XiaXib. Consider a thermal density matrix ρT ∼ exp −βH , here we present the calculation of the
negativity between one spin on a single site, say, ‘a’ spin in site 0 (subsystem A), and its complement (subsystem B). As
discussed above, to calculate the negativity, we only need the reduced density matrix for spins at the boundary which in this
case are the spins at site 0 and its neighboring sites (labelled as 1,2,3,4 clockwise). The corresponding reduced density matrix
on these five sites is

ρ = A′e−βg(̃x1+̃x2+̃x3+̃x4 )[cosh(βg)eβ̃z0 (̃z1+̃z2+̃z3+̃z4 ) + sinh(βg)eβ̃z0 (̃z1+̃z2+̃z3+̃z4 )x̃0]

[1 + c1(̃z1̃z2 + z̃2̃z3 + z̃3̃z4 + z̃4̃z1) + c2 (̃z1̃z3 + z̃2̃z4) + c3̃z1̃z2̃z3̃z4].
(B37)

Here A′ is determined by demanding Trρ = 1 and c1 = 〈̃z j̃z j+1〉; c2 = 〈̃z j̃z j+2〉; c3 = 〈̃z1̃z2̃z3̃z4〉, where the expectation values
are taken with respect to the bulk thermal density matrix ρbulk ∼ exp −β(HA + HB). In fact, due to the property of commuting
local terms, ci can be obtained by considering the thermal state of a bulk classical Hamiltonian, i.e., g = 0, with one spin per
site, and one just needs to replace the composite operator z̃i by a Pauli Z operator at site i (i.e., Zi). For instance,

c1 = 〈̃z j̃z j+1〉 = Tr̃z j̃z j+1eβ
∑

〈i j〉 z̃ĩ z j +βg
∑

i x̃i

Treβ
∑

〈i j〉 z̃ĩ z j +βg
∑

i x̃i
= TrZjZ j+1eβ

∑
〈i j〉 ZiZ j

Treβ
∑

〈i j〉 ZiZ j
. (B38)

Under the partial transposition over B, the density matrix is

ρTB = A′e−βg(̃x1+̃x2+̃x3+̃x4 )[cosh(βg)eβ̃z0 (̃z1+̃z2+̃z3+̃z4 ) + sinh(βg)e−β̃z0 (̃z1+̃z2+̃z3+̃z4 )x̃0]

[1 + c1(̃z1̃z2 + z̃2̃z3 + z̃3̃z4 + z̃4̃z1) + c2 (̃z1̃z3 + z̃2̃z4) + c3̃z1̃z2̃z3̃z4].
(B39)

The eigenvalues of ρTB can be obtained by just replacing x̃i, z̃i by ±1. In fact, e−βg(̃x1+̃x2+̃x3+̃x4 ) is irrelevant since it just provides
a multiplicative factor when summing negative eigenvalues, which got canceled out by the normalization factor. Effectively, it is
sufficient to consider the eigenvalues

λ = A[cosh(βg)eβ̃z0 (̃z1+̃z2+̃z3+̃z4 ) + sinh(βg)e−β̃z0 (̃z1+̃z2+̃z3+̃z4 )x̃0]

[1 + c1(̃z1̃z2 + z̃2̃z3 + z̃3̃z4 + z̃4̃z1) + c2 (̃z1̃z3 + z̃2̃z4) + c3̃z1̃z2̃z3̃z4],
(B40)

where x̃0 and each z̃i takes ±1, which gives 26 = 64 eigenvalues, and A is chosen such that the sum of these 64 eigenvalues
remains unity. [1 + c1 · · · ] part is always non-negative since it is obtained by performing partial trace for a density matrix
(positive semidefinite). As a result, λ can be negative only when x̃0 = −1 and e2β̃z0 (̃z1+̃z2+̃z3+̃z4 ) < tanh(βg). For a given g, there
are many choices of z̃i that can result in negative eigenvalues. As our purpose is to check whether the negativity picks up a
singularity at a thermal critical point, it is sufficient to restrict g in a range such that only a few eigenvalues are negative. We set
g in the range e−8β < tanh(βg) < e−4β , and there are only two negative eigenvalues given by

z̃0 = 1, z̃1 = z̃2 = z̃3 = z̃4 = −1
z̃0 = −1, z̃1 = z̃2 = z̃3 = z̃4 = 1.

(B41)

Finally, as

e−8β < tanh(βg) < e−4β, (B42)

we obtain the expression of the negativity:

EN = log{1 − 4A[cosh(βg)e−4β − sinh(βg)e4β](1 + 4c1 + 2c2 + c3)} . (B43)

A−1 = 25 cosh(βg)
[

cosh[4](β ) + (c1 + 1
2 c2
)

sinh[2](2β ) + c3 sinh[4](β )
]

(B44)

Due to the singularity of ci at the thermal critical point, the negativity EN is expected to be singular. To confirm this intuition,
we now adopt a mean-field approach to calculate the coefficient c1, c2, c3. The exact nature of singularities associated with ci for
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our model would of course be determined by the critical exponents of the 2D Ising model. As shown in Eq. (B38), ci is exactly
given by the corresponding classical Hamiltonian with one spin per site. As a result, we consider the mean-field Hamiltonian

H = −(3m + Z0)(Z1 + Z2 + Z3 + Z4), (B45)

we determine m from m = 〈Zi〉 = TrρZi for i = 1 to 4, where ρ is a density matrix associated with H . It is straightforward to
obtain the mean-field equation for m:

m = cosh[4](β(3m + 1)) tanh(β(3m + 1)) + cosh[4](β(3m − 1)) tanh(β(3m − 1))

cosh[4](β(3m + 1)) + cosh[4](β(3m − 1))
. (B46)

Tc can be determined from this equation, and it is straightforward to show that m = 0 as T → T +
c , and m ∼ √

Tc − T as T → T −
c .

Finally, c1, c2, c3 can be obtained:

c1 = c2 = 〈Z1Z2〉 = cosh[2](β(3m + 1)) sinh[2](β(3m + 1)) + cosh[2](β(3m − 1)) sinh[2](β(3m − 1))

cosh[4](β(3m + 1)) + cosh[4](β(3m − 1))

c3 = 〈Z1Z2Z3Z4〉 = sinh[4](β(3m + 1)) + sinh[4](β(3m − 1))

cosh[4](β(3m + 1)) + cosh[4](β(3m − 1))
.

(B47)

Plug the coefficients into Eq. (B43), and expand it for small m,

EN = log

{
1 − 4[cosh(βg)e−4β − sinh(βg)e4β ]

{
16 cosh(4β )

1 + 4 cosh(4β + cosh(8β ))
+ 1728β2[1 + 6 cosh(4β ) + cosh(8β )]m2

[1 + 4 cosh(4β + cosh(8β ))]2

}}
.

(B48)
There the negativity EN is manifestly singular at Tc due to the singularity from m.

3. Quantum Spherical Model

Consider the Hamiltonian for a quantum spherical model: H = 1
2 g
∑N

i=1 p2
i − 1

2N

∑N
i, j=1 xix j + μ[

∑N
i=1 x2

i − N
4 ] where

[xi, p j] = iδi j . μ is chosen so that 〈∑N
i=1 x2

i 〉 = N
4 where the expectation value is taken with respect to the thermal density

matrix. Define xk = 1√
N

∑
j eik jx j , pk = 1√

N

∑
j eik j p j and introduce ak, a†

k : pk = −i
√

ωk
2g (ak − a†

−k ), xk =
√

g
2ωk

(ak + a†
−k ) the

Hamiltonian can be diagonalized:

H =
∑

k

ωk
(
a†

kak + 1
2

)− μ

4
N, (B49)

where the single particle energy ωk is

ωk =
⎧⎨⎩ω0 =

√
2g
(
μ − 1

2

)
for k = 0

ω1 = √
2gμ for k �= 0.

(B50)

Note that in order to have a stable theory, μ � 1
2 . From Eq. (B49), the free energy density f can be calculated:

f = 1

Nβ
log
[
2 sinh

(
1
2βω0

)]+ N − 1

Nβ
log
[
2 sinh

(
1
2βω1

)]− μ/4. (B51)

μ is determined from 〈∑N
i=1 x2

i 〉 = N
4 , which is equivalent to ∂ f

∂μ
= 0:

1

2N

√
g

2
(
μ − 1

2

) coth
(

1
2β

√
2g
(
μ − 1

2

))+ N − 1

2N

√
g

2μ
coth

(
1
2β
√

2gμ
) = 1

4
. (B52)

In the thermodynamic limit N → ∞, μ is a singular function of β, g. For 2
√

gcoth( 1
2β

√
g) > 1, the system is in a disordered

phase, with μ determined from √
g

2μ
coth

(
1
2β
√

2gμ
) = 1

2
, (B53)

while the condition 2
√

gcoth( 1
2β

√
g) < 1 gives the ordered phase, and μ is pinned to 1

2 . Here we briefly describe the covariance
matrix formalism for calculating the negativity of a Gaussian state ρ for N degrees of freedom. First we calculate the covariance
matrix in displacements (γx )i j = 〈{xi − xi, x j − x j}〉 and the covariance matrix in momenta (γp)i j = 〈{pi − pi, p j − pj}〉, where
xi = trρxi, pi = trρpi, and {A, B} = AB + BA is the anticommutator. Define the subsystem A composed by degrees of freedom
for site i = 1, 2, · · · , NA and the complement B composed by the rest of sites, we calculate γ̃ = γxRγpR, where R is diagonal
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matrix with 1 for the first NA diagonal entries and −1 for the rest of the diagonal entries. By diagonalizing γ̃ , we obtain its
eigenvalues {νi|i = 1, 2, · · · , N}, from which the negativity EN can be calculated

EN (ρ) =
N∑

i=1

max
{
0,− 1

2 log νi
}
. (B54)

For the thermal state of the spherical model, a straightforward calculation shows that

(γx )i j = 2〈xix j〉 = mx + δi jdx

(γx )i j = 2〈pi p j〉 = mp + δi jdp,
(B55)

with

mx ≡ 1

N

[√
g

2μ − 1
coth

(
1

2
β
√

(2μ − 1)g

)
−
√

g

2μ
coth

(
1

2
β
√

2μg

)]
dx ≡

√
g

2μ
coth

(
1

2
β
√

2μg

)

mp ≡ 1

N

[√
2μ − 1

g
coth

(
1

2
β
√

(2μ − 1)g

)
−
√

2μ

g
coth

(
1

2
β
√

2μg

)]

dp ≡
√

2μ

g
coth

(
1

2
β
√

2μg

)
.

(B56)

Thus we have

γ̃ = γxRγpR = dxdp1N + mxdpJN + mpdx

(
JN/2 −JN/2

−JN/2 JN/2,

)
(B57)

where we define JN as an N × N all-ones matrix. All three matrices on the right-hand side commute with each other so they can
be diagonalized with the same set of eigenvectors. Since both the second and the third matrix are rank-1 matrix, it is easy to
calculate the eigenvalues. Finally, the eigenvalues of γ̃ are

νk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dxdp = [coth

(
1
2β

√
2μg

)]2
for k = 1, 2, · · · N − 2

dxdp + Nmxdp =
√

2μ

2μ−1 coth
(

1
2β

√
(2μ − 1)g

)
coth

(
1
2β

√
2μg

)
for k = N − 1

dxdp + Nmpdx =
√

2μ−1
2μ

coth
(

1
2β

√
(2μ − 1)g

)
coth

(
1
2β

√
2μg

)
for k = N

(B58)

One can check that νk > 1 for k = 1, 2, · · · , N − 1 for all values of parameters in the model, and only νN can be less than 1 to
contribute to the entanglement negativity:

EN = Max
{
0,− 1

2 log ν
}

(B59)

where

ν ≡ νN =
√

2μ − 1

2μ
coth

[
1
2β
√

(g(2μ − 1))
]

coth
[

1
2β
√

2gμ
]
. (B60)

By using Eq. (B53) in the disordered phase, and μ = 1
2 in the ordered phase, ν can be further simplified:

ν =
⎧⎨⎩

2
β
√

g coth
(

1
2β

√
g
)

for ordered phase

1
2

√
2μ−1

g coth
(

1
2β

√
(2μ − 1)g

)
for disordered phase.

(B61)

To study the singularity of EN at the critical point, we calculate the first derivative of EN with respect to g to observe its
discontinuity at a critical point:

∂EN

∂g
|g+

c
= 1

2gc
+ β2

c

24

(
1 − 8

4 + βc − 4βgc

)
∂EN

∂g
|g−

c
= 4 + βc − 4βcgc

16gc
.

(B62)
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APPENDIX C: ENTANGLEMENT OF FORMATION IN AN INFINITE-RANGE COMMUTING PROJECTOR HAMILTONIAN

To begin with, we recall the definition of the entanglement of formation: A density matrix ρ acting on a bipartite Hilbert
space H = HA ⊗ HB can be decomposed as a convex sum of pure states

ρ =
∑

k

Pk |k〉 〈k| , (C1)

and for each |k〉, we can calculate the reduced density matrix on A: ρA
k = TrB |k〉 〈k|, from which the entanglement entropy

SA(|k〉) is obtained: SA(|k〉) = −TrAρA
k log ρA

k . The entanglement of formation EF (A, B) is defined as

EF (A, B) = min
∑

k

PkSA(|k〉), (C2)

where minimization over all possible pure state decomposition is taken. Here we provide a model, where the entanglement of
formation can be calculated analytically by showing its upper and lower bound coincide in the thermodynamic limit. Consider a
one-dimensional lattice of size L where each lattice site has two qubits, the model Hamiltonian is

H = − 1

2L

(
L∑

i=1

Zi1Zi2

)2

− g
L∑

i=1

Xi1Xi2. (C3)

The density matrix at inverse temperature β is ρ = 1
Z e−βH with Z = Tre−βH . We make an entanglement cut across one of the

sites (say the sth site) such that the two spins on the sth site are not in the same subsystem. In the following calculation, A
comprises all the lattice sites with site index i < s and the spin labeled by 1 on the sth site while B comprises all the lattice sites
with site index i > s and the spin labeled by 2 on the sth site. For such a bipartition scheme, we prove that the entanglement of
formation EF between A and B is exactly that from a mean-field density matrix for just two spins, where a closed form expression
for EF is available. Our strategy is to find an upper bound and a lower bound on EF that happen to match each other.

1. Upper Bound

Entanglement of formation EF requires a minimization scheme over all possible pure state decompositions. By considering a
particular way of decomposition, we thus give an upper bound for EF . First we perform the Hubbard-Stratonovich transformation
for ρ:

ρ = 1

Z
e−βH = 1

Z

√
βL

2π

∫
dme− 1

2 βLm2−β
∑L

i=1 Hi (m), (C4)

where a local Hamiltonian Hi(m) for the i site of two spins is defined as:

Hi(m) = −mZi1Zi2 − gXi1Xi2. (C5)

Each e−βHi (m) can be decomposed: e−βHi (m) =∑ki
wi

ki
(m) |ki(m)〉 〈ki(m)|. As a result,

ρ =
∑
{ki}

∫
dm

1

Z

√
βL

2π
e− 1

2 βLm2

(∏
i

wi
ki

(m)

)
|k1, · · · , kL〉 〈k1, · · · , kL| . (C6)

The entanglement entropy between A and B in |k1, · · · , kL〉 〈ki, · · · , kL| is given by the entanglement entropy between just two
spins at site s due to the product state structure for different sites. Therefore,

EF (A, B) � min
{ki}

∑
{ki}

∫
dm

1

Z

√
βL

2π
e− 1

2 βLm2

(∏
i

wi
ki

(m)

)
Ss1(|ks(m)〉), (C7)

where Ss1(|ks(m)〉) is the entanglement entropy between spins at s1 and s2 in the state |ks(m)〉, and the minimum is taken
among all possible pure state decomposition of e−βHi (m). Since Ss1(|ks〉) is independent of how we decompose e−βHi for i �= s.
The summation over ki∀i �= s can be performed on wi

ki
:∑

{ki|i �=s}

∏
i �=s

wi
ki

= (Trie
−βHi (m) )L−1 = e−β(L−1) f (m), (C8)

where f (m) is a mean-field free energy density. Consequently,

EF (A, B) � min
ks

∫
dme−βL f (m)∑

ks

1
Zs

ws
ks

(m)Ss1(|ks(m)〉)∫
dme−βL f (m)

, (C9)
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with Zs ≡ Trse−βHs (m). In the L → ∞ limit, the argument inside the summation over ks is dominated only by saddle points, and
thus

EF (A, B) � min
∑

ks

1

Zs
ws

ks
(m∗)Ss1(|ks(m

∗)〉), (C10)

where m∗ is a saddle point obtained by minimizing f (m). Define the mean field density matrix on a single site of two spins:

ρs(m
∗) = 1

Zs
e−βHs (m∗ ), (C11)

we show

EF (A, B) � EF (s1, s2), (C12)

i.e., the entanglement of formation between A and B is upper bounded by the entanglement of formation between two spins in
the mean field density matrix.

2. Lower Bound

As a bona fide entanglement measure, entanglement of formation is nonincreasing under a partial trace. This implies that
EF (a, b) � EF (A, B), where a and b denote a subsystem in A and B, respectively. Here we choose two spins at the sites s as a
and b. A calculation shows that the reduced density matrix at site s is

ρs = 1

Z
Tri �=se

−βH =
∫

dme−βL f (m) 1
Zs

e−βHs (m)∫
dme−β f (m)

=
∫

dme−βL f (m)ρs(m)∫
dme−β f (m)

(C13)

where f (m) = − 1
β

log Zs = − 1
β

log Trse−βHs (m) is the free energy density. In L → ∞ limit, ρs is exactly given by ρs(m∗) where
the saddle point m∗ is the location of the global minimum of f (m). One way to see this is to expand ρs in a complete operator
basis on site s and show that expectation value of any operator on site s is precisely given by ρs(m∗). This calculation shows that

EF (s1, s2) � EF (A, B). (C14)

By combining Eq. (C12) and Eq. (C14), one finds that the bipartite entanglement of formation between A and B is exactly that
between two spins in the mean field density matrix which can be calculated analytically using the result of Ref. [31].
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