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Compton profile of VO2 across the metal-insulator transition: Evidence of a non-Fermi liquid metal
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Many-body diffusion Monte Carlo is used to obtain the first-principles momentum distribution and Compton
profile of vanadium dioxide. Our results for the Compton profile are in good agreement with the experimental
values, and we show that good qualitative agreement in the scaled Compton profile difference across the
monoclinic to rutile phase transition depends on an accurate description of electron correlation. The electron
momentum distribution enables new insights into the metal-insulator phase transition. For example, the
probability for electron scattering in the proximity of the Fermi surface (forward scattering) is suppressed in
the vanadium chain direction (rutile c axis) but enhanced in perpendicular directions. However, along the c axis
we observe an increase at ∼2kF in the momentum distribution, which is characteristic for Friedel oscillations
(backscattering). Our analysis of the momentum distribution supports experimentally observed anisotropies
and provides an explanation for the anomalously low electronic thermal conductivity observed recently in the
metallic phase [S. Lee et al., Science 355, 371 (2017)]. Moreover, our results indicate non-Fermi liquid behavior
as well as quasi-one-dimensional Friedel oscillations in the metallic rutile phase, which is reminiscent of a
Tomanaga-Luttinger liquid with impurities.
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I. INTRODUCTION

Vanadium dioxide (VO2) is an amphoteric oxide with func-
tional properties suitable for various solid-state applications,
including glass optics, ceramic applications, data storage, and
fast optical shutters [1]. It has also become known as a pro-
totypical strongly correlated electron material that challenges
theoretical and computational modeling [2–6]. For example,
despite its success with various materials, density functional
theory (DFT) has not been able to adequately capture the
electronic and magnetic structures of VO2 [7]. This is in part
due to electronic correlations that DFT does not capture ac-
curately [8]. In 2015 Zheng and Wagner [9] demonstrated the
need for a higher-accuracy many-body approach, i.e., quan-
tum Monte Carlo (QMC), to correctly describe the electronic
and magnetic structures of VO2. Accurate spectral properties,
however, have successfully been obtained by beyond DFT
approaches such as dynamical mean-field theory (DMFT)
[10–12] and many-body perturbation theory (GW) [13,14].

The wealth of interest in VO2 stems from its rich phase
diagram with desirable properties controllable, e.g., by tem-
perature, pressure, and doping [15–22]. Here we focus on
the thermally induced metal to insulator transition (MIT)
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from the insulating monoclinic phase (M1, T < Tc) into a
metallic rutile phase (R, T > Tc) [23–25]. This tunable MIT
is accompanied by a change in the underlying crystal lattice
structure, which at ambient pressure occurs at Tc ≈ 341 K for
pure unstrained VO2. This transition was very recently studied
with Compton profile measurements [26], which revealed
poor correspondence between the experiments and theoretical
DFT results. Moreover, the high-temperature metallic phase
was observed recently to exhibit a peculiar non-Fermi liquid
character and anomalously low electronic thermal conduc-
tivity [15]. Earlier experiments had already shown a strong
anisotropy in the metallic phase, with the conduction along
the rutile c axis suppressed compared to the perpendicular
directions [27]. We use the momentum distribution n(k) and
Compton profile J (q) to address the transition and the nature
of the metallic R phase: is it a normal Fermi liquid, and what
signatures do n(k) and J (q) reveal?

Both the momentum distribution and Compton profile are
powerful probes for understanding the ground-state properties
of materials. The momentum distribution of the electrons
can be experimentally studied by scattering methods such as
Compton scattering, positron annihilation, the (e, 2e) process,
and high-energy electron scattering [28–31]. In general, the
differential cross sections can be related to the momentum
distribution. For Compton scattering this requires an assump-
tion that the transferred energy and momentum are high
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compared to those characteristic of the ground-state proper-
ties and collective behavior. This assumption results in the
“impulse approximation” (IA) in which, e.g., the Compton
profile and the dynamical structure factor are proportional to
the projection of n(k) onto a scattering vector [32,33]. Within
the IA the directional Compton profile in the z direction is
given as

J (q) =
∫∫

n(kx, ky, kz = q)dkxdky. (1)

The IA is especially appropriate for x-ray Compton scattering
from electronic systems [30,32], and thus, it is capable of pro-
viding a unique perspective for understanding the electronic
structure of materials, the properties of the bulk, in particular.

In normal Fermi liquids, the electron momentum distri-
bution has a discontinuity at the Fermi momentum kF . In
three-dimensional systems this discontinuity defines the shape
of the Fermi surface, which is also related to the screening
properties of the electrons [34]. The magnitude of the dis-
continuity at the Fermi surface, on the other hand, quanti-
fies the strength of a quasiparticle excitation and is called
the renormalization factor Z [35,36]. For strongly coupled
systems Z tends to zero as the coupling strength increases,
which can be used as a measure of electron correlations. In the
case of superfluidity or superconducting behavior the Fermi
surface actually disappears, and the discontinuity is absent
also in some semimetals [32]. Interestingly, even the smallest
amount of interaction will destroy the discontinuity in n(k)
in one-dimensional (1D) chains according to the Tomanaga-
Luttinger theory [37–39]. Broadening of the sharp drop at
kF is also associated with the opening of a band gap [40].
To this end, the momentum distribution provides knowledge
complementary to, and possibly even more informative than,
other characterizations of many-body systems.

Here we will first motivate the use of our first-principles
approach, i.e., QMC, and discuss computational details. Sec-
ond, we will show that our QMC results are in excellent
qualitative agreement with recent experimental data [26] on
the scaled Compton profile difference across the MIT. Third,
we will address the origin of the quantitative discrepancy
between theory and experiment. Then we will consider the
subtle details of the momentum distribution across the MIT
and in individual phases (the R phase in particular) and explain
possible implications of the underlying physics. This analysis
is further tied to insights obtained from postprocessed electron
densities from Ref. [8].

II. METHODS AND COMPUTATIONAL DETAILS

Using continuum diffusion Monte Carlo (DMC) [41–43],
we are able to obtain the momentum distribution function
from first principles. This is accomplished by evaluation of
the expectation value

n(k) = �−1
N∑

j=1

〈∫
ds j

�(R + s j )

�(R)
e−ik·s j

〉
|�(R)|2

, (2)

where � is the volume containing N electrons, R includes the
coordinates of all the electrons, and s j is a displacement vector
acting on the jth electron. The DMC approach is known

for its accuracy in solving ground-state electronic structure
properties for both molecular and solid-state systems from
first principles [9,42,44–46]. In particular, DMC straightfor-
wardly and accurately includes electron correlations [47–49].
Importantly, in recent years it has been demonstrated that
the challenges introduced by electron correlation and the
description of 3d orbitals of transition-metal oxides are over-
come by DMC [49–64]. Therefore, QMC is regarded as an
excellent computational tool for validating and predicting
material properties. Use of QMC in periodic supercells results
in finite-size effects, but unexpectedly, we find that these are
small for n(k) in VO2, which differs from past experience with
the homogeneous electron gas [36,65].

Crystal structures for the M1 [66] and R [67] phases were
obtained from the Inorganic Crystal Structure Database [68].
All calculations were performed with the experimental lattice
constants. In both phases, the vanadium atoms are arranged
in quasi-1D chains, and as in Ref. [9], an antiferromagnetic
ordering was imposed by fixing alternating up and down spin
moments along the chains. More details on the experimental
lattice vectors and atomic coordinates of the M1 and R crystal
structures are given below regarding our DFT and QMC
calculations [69].

A. Density functional theory

Our DFT calculations were performed in the antiferromag-
netic (AFM) magnetic primitive cell of VO2 (four VO2 for-
mula units for M1 and R). We used experimental crystal struc-
tures [66,67] from the Inorganic Crystal Structure Database
(ICSD). See Table I for information on the axes and atomic
positions. In Table I we use V1 and V2 when referring to the
different magnetic orientations of the vanadium atoms (spin
up and spin down, respectively). We used plane-wave energy
cutoffs of 350 Ry with 12 × 12 × 24 and 24 × 12 × 12 k-
space grids for the R phase and M1 phase, respectively. The
DFT calculations were performed with QUANTUM ESPRESSO

[70] using hard norm-conserving pseudopotentials as in our
earlier study [8].

B. Quantum Monte Carlo

The quantum Monte Carlo simulations were carried out
with QMCPACK [43,71] in a supercell containing 16 VO2

formula units, that is, a 48-atom supercell. The experimental
crystal structures used in DFT calculations were tiled to give
the supercells described in Table II. For faster convergence
to thermodynamic limit, we used twist-averaged boundary
conditions [72] with a 4 × 4 × 4 supercell twist angle grid in-
stead of purely periodic boundary conditions. Twist-averaging
also results in better resolution of the momentum distribution.
In order to estimate the finite-size effects on the momen-
tum distribution we performed additional simulations for the
R phase for 72- and 96-atom supercells. We find that the
momentum distribution is well converged already with our
48-atom supercell, as can be seen in Fig. 1, where we show the
difference between the larger supercells and the 48-atom cell
along the rutile c axis. The differences show no consistency to
increase or decrease, and the magnitude is also small, roughly
zero within two standard deviations.
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TABLE I. Primitive-cell axes and atomic positions (in Å) used in density functional theory calculations. These are experimental structures:
for the M1 phase we use ICSD collection code entry 34033, and for the R phase we use ICSD entry 1504. Vanadium sites with up (down)
magnetic moment are labeled V1 (V2).

M1 phase (P21/c) R phase (P42/mnm)

x y z x y z

a 5.752000000 0.000000000 0.000000000 4.554600000 0.000000000 0.000000000
b 0.000000000 4.537800000 0.000000000 0.000000000 4.554600000 0.000000000
c −2.903573350 0.000000000 4.532170350 0.000000000 0.000000000 5.705600000
V1 1.300602890 4.442233932 0.119921229 0.000000000 0.000000000 0.000000000
V2 1.547823771 0.095566070 4.412249122 0.000000000 0.000000000 2.852799999
V1 −0.151183780 2.364466069 2.386006401 2.277299999 2.277299999 1.426399997
V2 2.999610442 2.173333934 2.146163949 2.277299999 2.277299999 4.279200001
O 0.005176999 0.961559820 0.945410729 1.366835461 1.366835461 0.000000000
O 2.843249652 3.576240182 3.586759611 3.187764536 3.187764536 0.000000000
O −1.446609671 1.307340179 3.211495912 3.644135460 0.910464538 1.426399997
O 4.295036333 3.230459824 1.320674439 0.910464538 3.644135460 1.426399997
O 1.436088279 3.188258280 1.354212500 1.366835461 1.366835461 2.852799999
O 1.412338372 1.349541722 3.177957851 3.187764536 3.187764536 2.852799999
O −0.015698391 3.618441721 3.620297683 3.644135460 0.910464538 4.279200001
O 2.864125042 0.919358281 0.911872668 0.910464538 3.644135460 4.279200001

The trial wave function �T used is of the standard Slater-
Jastrow [73,74] type:

�T = det{ψ↑} det{ψ↓}eJ . (3)

The purpose of the trial wave function is to guide the simu-
lation both more accurately and more rapidly to the ground
state. A trial wave function with a better nodal surface, arising
from the sets of orbitals above, leads to a more accurate
DMC result. A trial wave function with a better Jastrow
factor improves the time step and pseudopotential localization
approximations made in DMC and also reduces the statistical
variance, making the calculations more efficient. Since a good
trial wave function is important in improving the approxima-
tions made in DMC, we describe in more detail below how we
obtained an optimal wave function within the Slater-Jastrow
ansatz.

The product of spin-up and spin-down determinants of
spatial orbitals arises from a single determinant of spin or-
bitals after fixing the electron spins, while the overall state
is a spin-unrestricted antiferromagnet [51]. The determinants
are composed of single-particle orbitals taken from spin-

FIG. 1. Finite-size effects on the momentum distribution con-
sidered as the difference between 72-atom and 48-atom as well as
96-atom and 48-atom supercells.

unrestricted local-density approximation (LDA) + U (via
QUANTUM ESPRESSO), in which the correct magnetic struc-
ture was imposed by initializing the magnetic moments in
an antiferromagnetic configuration along the V-V chains.
Convergence to the AFM state was further confirmed after
the self-consistent density functional theory calculations by
analysis of the magnetic structure and spin-resolved Löwdin
charges.

In the Jastrow factor eJ we include terms up to two-body
(electron-electron) correlation functions, i.e.,

J = J1 + J2 =
∑
I,i

u1(|ri − RI |) +
∑
i< j

u2(|ri − r j |), (4)

where ri and RI refer to electron and ion coordinates, re-
spectively. The u1 and u2 correlation functions depend, as
appropriate, on both the ionic and spin species involved. The
functions u1 and u2 are parameterized in terms of radial B
splines [75].

The Jastrow parameters were optimized by making use
of the variational principle as applied to the total energy
and the energy variance. The optimization was performed by
minimizing a cost function containing a 95:5 ratio of energy
and variance with the linear method [76], which results in
a good balance between improvements in DMC pseudopo-
tential localization approximation [77–79] and the resulting
variance of the local energy [80]. We optimize the Jastrow part
only with variational Monte Carlo (VMC), which improves
the description of particle-particle correlations but does not
modify the nodal surface. The orbitals are instead optimized
directly with DMC, although within the restricted variational
freedom afforded by LDA+U .

In DMC the operator exp[−τ (Ĥ − ET)] is used to project
out the lowest eigenstate that has nonzero overlap with the
chosen fixed-node/trial wave function [42], where Ĥ is the
many-body Hamiltonian and ET is an estimate of the ground-
state energy, which is updated throughout the simulation.
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TABLE II. Supercell axes and atomic positions (in Å) used in quantum Monte Carlo simulations.

M1 phase R phase

x y z x y z

a 11.50400000 0.00000000 0.00000000 4.55460000 −4.55460000 0.00000000
b 2.90357335 4.53780000 −4.53217035 4.55460000 4.55460000 0.00000000
c −2.90357335 4.53780000 4.53217035 0.00000000 0.00000000 11.41120000
V1 1.30060289 4.44223393 0.11992123 0.00000000 0.00000000 0.00000000
V2 4.45139712 4.63336607 −0.11992123 0.00000000 0.00000000 2.85280000
V1 2.75238957 6.90226607 −2.14616395 4.55460000 0.00000000 0.00000000
V2 2.99961044 2.17333393 2.14616395 4.55460000 0.00000000 2.85280000
V1 7.05260289 4.44223393 0.11992123 0.00000000 0.00000000 5.70560000
V2 10.20339712 4.63336607 −0.11992123 0.00000000 0.00000000 8.55840000
V1 8.50438957 6.90226607 −2.14616395 4.55460000 0.00000000 5.70560000
V2 8.75161044 2.17333393 2.14616395 4.55460000 0.00000000 8.55840000
V1 4.20417624 4.44223393 −4.41224912 2.27730000 2.27730000 1.42640000
V2 1.54782377 4.63336607 4.41224912 2.27730000 2.27730000 4.27920000
V1 2.75238957 2.36446607 −2.14616395 2.27730000 −2.27730000 1.42640000
V2 2.99961044 6.71113393 2.14616395 2.27730000 −2.27730000 4.27920000
V1 9.95617624 4.44223393 −4.41224912 2.27730000 2.27730000 7.13200000
V2 7.29982377 4.63336607 4.41224912 2.27730000 2.27730000 9.98480000
V1 8.50438957 2.36446607 −2.14616395 2.27730000 −2.27730000 7.13200000
V2 8.75161044 6.71113393 2.14616395 2.27730000 −2.27730000 9.98480000
O 0.00517700 0.96155982 0.94541073 1.36683546 1.36683546 0.00000000
O 5.74682300 8.11404018 −0.94541074 3.18776454 3.18776454 0.00000000
O 1.45696368 5.84514018 −1.32067444 3.64413546 0.91046454 1.42640000
O 4.29503633 3.23045982 1.32067444 5.46506454 −0.91046454 1.42640000
O 1.43608828 3.18825828 1.35421250 1.36683546 1.36683546 2.85280000
O 4.31591172 5.88734172 −1.35421250 3.18776454 3.18776454 2.85280000
O 2.88787496 8.15624172 −0.91187267 3.64413546 0.91046454 4.27920000
O 2.86412504 0.91935828 0.91187267 5.46506454 −0.91046454 4.27920000
O 5.75717700 0.96155982 0.94541073 5.92143546 1.36683546 0.00000000
O 11.49882300 8.11404018 −0.94541074 3.18776454 −1.36683546 0.00000000
O 7.20896368 5.84514018 −1.32067444 3.64413546 −3.64413546 1.42640000
O 10.04703633 3.23045982 1.32067444 0.91046454 −0.91046454 1.42640000
O 7.18808828 3.18825828 1.35421250 5.92143546 1.36683546 2.85280000
O 10.06791172 5.88734172 −1.35421250 3.18776454 −1.36683546 2.85280000
O 8.63987496 8.15624172 −0.91187267 3.64413546 −3.64413546 4.27920000
O 8.61612504 0.91935828 0.91187267 0.91046454 −0.91046454 4.27920000
O 0.00517700 5.49935982 0.94541073 1.36683546 1.36683546 5.70560000
O 5.74682300 3.57624018 −0.94541074 3.18776454 3.18776454 5.70560000
O −1.44660967 5.84514018 3.21149591 3.64413546 0.91046454 7.13200000
O 7.19860968 3.23045982 −3.21149591 5.46506454 −0.91046454 7.13200000
O 4.33966163 3.18825828 −3.17795785 1.36683546 1.36683546 8.55840000
O 1.41233837 5.88734172 3.17795785 3.18776454 3.18776454 8.55840000
O 2.88787496 3.61844172 −0.91187267 3.64413546 0.91046454 9.98480000
O 2.86412504 5.45715828 0.91187267 5.46506454 −0.91046454 9.98480000
O 5.75717700 5.49935982 0.94541073 5.92143546 1.36683546 5.70560000
O 11.49882300 3.57624018 −0.94541074 3.18776454 −1.36683546 5.70560000
O 4.30539033 5.84514018 3.21149591 3.64413546 −3.64413546 7.13200000
O 12.95060968 3.23045982 −3.21149591 0.91046454 −0.91046454 7.13200000
O 10.09166163 3.18825828 −3.17795785 5.92143546 1.36683546 8.55840000
O 7.16433837 5.88734172 3.17795785 3.18776454 −1.36683546 8.55840000
O 8.63987496 3.61844172 −0.91187267 3.64413546 −3.64413546 9.98480000
O 8.61612504 5.45715828 0.91187267 0.91046454 −0.91046454 9.98480000

In our earlier work [8] the DMC fixed-node/phase error
[47,81,82] was minimized by using the Hubbard U value
as a variational parameter optimized directly in DMC, with
U = 3.5 eV yielding the lowest energy. In production runs,

the DMC time step was set to 0.005 Ha−1, resulting in an
acceptance ratio greater than 99.6%. Nonlocal pseudopoten-
tials were handled in the DMC projector within the variational
T-moves scheme [79,83].
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Since DMC provides a “mixed” estimate of the momentum
distribution (a mixture between the fixed-node estimate and
the VMC one), we have corrected the mixed estimates by
extrapolation to obtain “pure” estimates of the momentum
distribution, reflecting the fixed-node wave function � alone.
This is a general property of the DMC method for operators
that do not commute with the Hamiltonian. In order to obtain
pure estimates of the momentum distribution n(k), we used
the extrapolation formula [42]

nextrap = 2nDMC,mixed − nVMC + O((� − �T )2). (5)

C. Momentum distribution and Compton profile

Momentum distribution n(k) is obtained by taking the
Fourier transform of the one-body density matrix:

n(k) = N

�

∫
dRdr′

1 ei(r1−r′
1 )·kρ(r1, . . . , rN , r′

1, . . . , rN )

= N

�

∫
ds e−ik·sn(s),

where N is the number of electrons, R = {r1, . . . , rN }, s =
r′

1 − r1, and

n(s) =
∫

dR ρ(r1, . . . , rN , r1 + s, . . . , rN ).

In VMC and DMC

n(s) =
∫

dR �∗(r1, . . . , rN )�(r1 + s, . . . , rN )

=
∫

dR |�(R)|2 �(R′)
�(R)

,

which gives us

n(k) =
∫

dR |�(R)|2 N

�

∫
ds

�(R′)
�(R)

e−ik·s.

In practice, the above will be estimated through

n(k) =
〈

N

�

1

Ns

Ns∑
j=1

�(R′)
�(R)

e−ik·s j

〉
|�(R)|2

, (6)

where Ns refers to the number of samples used in the Monte
Carlo integral for

∫
ds. Notice that the momentum distribution

normalizes to the number of electrons,∑
k

n(k) = N = �

(2π )d

∫
dk n(k) =

∫
dk ñ(k), (7)

in which a finite system and a system at the thermodynamic
limit are described by summation and integration, respec-
tively, and ñ(k) = (2π )−d�n(k).

The Compton profile is obtained as an integral of the
momentum distribution [30]. For example, the directional
Compton profile in the z direction is given as

J (q) =
∫

dkxdky ñ(kx, ky, kz = q). (8)

In the spherically symmetrized (or isotropic) case we have

J (q) = 1

2

∫ ∞

|q|
dk

1

k
I (k)

= 1

2

∫ ∞

|q|
dk

1

k
4πk2ñ(k)

= 2π

∫ ∞

|q|
dk k̃n(k), (9)

with I (k) = 4πk2̃n(k). Also the Compton profile normalizes
to the number of electrons, i.e.,∫ ∞

−∞
dqJ (q) = N. (10)

In practice with periodic simulations we need to resort
to a finite number of k points in which we describe the
momentum distribution. This introduces a cutoff kc into our k
grid. Let’s consider this in the case of a spherically symmetric
(or angular-averaged) momentum distribution and the related
Compton profile. According to Eq. (7), we can write

N =
∫

dk ñ(k)

=
∫ kc

0
dk 4πk2ñ(k) + 	N. (11)

Considering large enough kc we can approximate the tail by a
decaying function such as A exp(−Bk)/k, and thus,

	N =
∫ ∞

kc

dk 4πk2ñ(k)

≈
∫ ∞

kc

dk 4πkAe−Bk

= 4πA

B2
[1 + Bkc]e−Bkc . (12)

Therefore, in optimizing the coefficients for the tail it is also
possible to use the accuracy in 	N as a constraint in addition
to the few points at the tail.

For the “isotropic” Compton profile this yields

J (q) = 2π

∫ ∞

|q|
dk k̃n(k) = 2π

∫ kc

|q|
dk k̃n(k) + 	J, (13)

where

	J = 2π

∫ ∞

kc

dk k̃n(k) ≈ 2πA

B
e−Bkc . (14)

Notice that for q � kc the tail of the isotropic Compton profile
can be approximated by Eq. (14). This can be used in the
calculation of the norm of the Compton profile in the range
(−∞,∞):

N =
∫ ∞

−∞
dqJ (q) = 2

∫ qc

0
J (q) + 2	N, (15)

where the “correction term” 	N to the norm is given by

	N =
∫ ∞

kc

dq	J ≈ 2πA

B2
e−Bkc . (16)
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Another aspect arising from periodic simulations might be
harder to notice, but it can be dealt with by converging the trial
wave function with a set of k points that includes the desired k
grid. That is, already at the DFT level the self-consistent-field
(SCF) calculation should include the k points that will be used
in the non-self-consistent-field (NSCF) calculation for the
trial wave function. Failing to do this would lead to some sort
of “interpolation” between the k points of the SCF calculation,
which can introduce subtle, but noticeable, inconsistencies, at
least in the momentum distribution. In the Compton profile
these small inconsistencies would, however, be suppressed
due to the integration, and thus, the Compton profile would
be less affected by this.

D. Einstein-like approximation for phonon contribution

Let us consider a model where the electron orbital on a site
fluctuates with noise characterized by a Gaussian distribution.
Then the modified orbital is given as

�̃νk(r) =
∫

dx�νk(r + x) f (x), (17)

where f (x) = (2πα)−3/2 exp(− x2

2α
), ν is the band index, and

�νk(r) is the original wave function. Taking the Fourier
transform and making a change of variable, r′ = r + x, we
get

�̃νk =
∫

dr�̃νk(r)e−ik·r

=
∫

dr′�νk(r′)e−ik·r′
∫

dx f (x)eik·x

= �νke−αk2/2. (18)

Therefore, the modified momentum distribution will
be n(k)e−αk2

since
∑

ν |�̃νk|2 = ∑
ν |�νke−αk2/2|2 =∑

ν |�νk|2e−αk2 = n(k)e−αk2
. The sum over ν includes

only occupied orbitals.

III. RESULTS AND DISCUSSION

As expected due to the prior success of QMC in VO2, our
results yield good agreement with the experimental Compton
profile data [1]. For example, at q = 0 our values including the
Hartree-Fock core contribution [84] are 10.456(4)ea−1

0 and
10.444(4)ea−1

0 for the R phase and M1 phase, respectively.
For the M1 phase an experimental value of 10.102(22)ea−1

0
and a DFT–linear combination of atomic orbitals value of
9.761 are reported in Ref. [1], and in Ref. [26] a value
of 10ea−1

0 was used for JR(0). However, in general a more
accurate measure both experimentally and computationally is
given by considering differences between the phases since,
e.g., the core contributions and some experimental uncertain-
ties will cancel. Considering the subtle changes across the
transition in a scaled difference profile [26], i.e., [JR(q) −
JM1(q)]/JR(0) × 100%, we find only a good qualitative corre-
spondence. This is shown in Fig. 2. The change in the scaled
difference profile is very delicate; for all q the scaled differ-
ence in J (q) between the M1 and R phases remains below
0.2%. The related experimental data in Fig. 2 are multiplied

FIG. 2. Scaled Compton profile difference across the phase tran-
sition. Experimental data [26] in green have been multiplied by
5 in order to account for the quantitative difference in the scaled
difference profile. Quantum Monte Carlo with 1σ statistical error is
shown in blue (on top of the experiment), and DFT from this work
(LDA+U with a DMC-optimized U value, U = 3.5 eV) is shown
as a black dashed line. Here we concentrate on the region in which
DFT, QMC, and the experiments have noticeable differences, i.e., the
region of valence electron contributions.

by a factor of 5 (as in Ref. [26]) in order to obtain good quanti-
tative correspondence in the scaled difference profile between
theory and experiment. As argued by Ruotsalainen et al. [26],
this effect is believed to derive from the electron-phonon
coupling, which would indicate small, uneven changes in the
Compton profile values for the high-temperature and low-
temperature phases. The change would need only to be less
than 0.1% in order to account for the observed quantita-
tive difference. Using our simple Einstein solidlike picture,
we derived an on-site approximation for the electron wave
function influenced by nuclear motion. Within this harmonic
model the momentum distribution would include an additional
phonon-related term, i.e., n(k) −→ n(k) exp(−αk2), in which
α is the variance of a Gaussian distribution in position space.
Already, αR − αM1 ≈ 0.0001a2

0 would be enough to remove
the quantitative discrepancy between theory and experiment.
Therefore, a slight increase in the thermal motion and/or soft-
ening of phonon modes when going from the M1 to R phase
is a likely explanation for the factor of 5 in the difference
profile. The softening of the phonon modes has been reported,
for example, in Ref. [22]. It should be pointed out that this
simple model removes the quantitative discrepancy only for a
limited range, i.e., roughly |q| < 1.0a−1

0 .
In Ref. [26] it was shown that DFT within LDA+U and

LDA approaches results in negative scaled Compton profile
differences for small momentum transfer values. In our pre-
vious study [8] we optimized the Hubbard U of LDA+U
with DMC. This procedure finds the optimal U value for the
trial wave function within our fixed-node DMC approach that
provides a rigorous upper bound for the total energy. Inter-
estingly, we find that this procedure also results in improved
agreement with experiments already at the DFT level by
increasing the small momentum values of 	J (q)/JR(0) close
to zero on the positive side. The agreement is further enhanced
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FIG. 3. Supercell crystal structures of R and M1 phases speci-
fying directions used in the analysis. The vanadium chain direction
(rutile c axis in general) is out of plane. Subtle structural changes
can be seen, e.g., the misalignment of the V atoms along the chain
direction (zigzag “chain”). On the right we show the momentum
distribution in the R phase along the vanadium chain direction. The
statistical error bars are smaller than the linewidth. Vertical lines are
estimates for the Fermi momentum kF and 2kF obtained from the
angular-averaged “isotropic” momentum distribution.

by the more accurate correlation description provided by
QMC, as shown in Fig. 2, where we show the challenging
region. Outside the limits of this region all the curves are in
very good agreement with each other.

In Fig. 3 we show our supercell crystal structures of the two
phases and define the general directions used in the analysis
of the momentum distributions. There the vanadium chain
direction (or rutile c axis) is out of plane. Subtle structural
changes can be seen, e.g., the misalignment of the V atoms
along the chain direction in the M1 phase. There the vanadium
atoms are arranged in a “zigzag”-type chain structure. Raising
the temperature above the transition temperature will lead to
a perfectly aligned chain along the V chain direction and
complementary changes also in the V-V and V-O directions
shown in Fig. 3. In addition, in the R phase along the V chain
direction the vanadium atoms are evenly spaced, in contrast to
the M1 phase, which increases the electron hopping amplitude
along the chain [85].

On the right in Fig. 3 we show the momentum distribution
in the metallic R phase along the vanadium chain direction.
The statistical error bars are smaller than the width of the line,
and the vertical lines are estimates of the Fermi momentum kF

and 2kF. Due to the absence of a clear discontinuity the Fermi
momentum is estimated by the position of the minimum value
in the first derivative of the angular-averaged momentum dis-
tribution. Importantly, this absence of a discontinuity indicates
non-Fermi liquid behavior in the metallic rutile phase. Our
result agrees with recent experimental findings [15], where
the violation of the Wiedemann-Franz law was attributed to
the formation of a strongly correlated, incoherent non-Fermi
liquid. There the charge and heat were considered to be
transported by distinct diffusive modes instead of long-lived
quasiparticles. For a more detailed view on the possible source
for this non-Fermi liquid behavior, we will next look into
the directional characteristics of the momentum distribution
in both phases and also across the transition.

In Fig. 4 we present DMC anisotropies in the momentum
distribution in two different planes for both phases: the R
phase and M1 phase are on a plane given by the rutile c
axis (V chain direction) and the V-O direction in Figs. 4(a)
and 4(b), respectively, whereas in Figs. 4(c) and 4(d) the R
phase and M1 phase are on a plane given by the rutile c
axis and the V-V direction indicated in Fig. 3. As a measure

FIG. 4. Anisotropies of the momentum distribution on two dif-
ferent planes. Plane 1: V chain direction (y axis) versus V-O direction
(x axis) for (a) the R phase and (b) M1 phase. Plane 2: V chain
direction (y axis) versus V-V direction (x axis) for (c) the R phase and
(d) M1 phase. The smaller circle is an estimate of Fermi momentum
kF from the angular-averaged “isotropic” momentum distribution,
and the larger circle is at ∼2kF.

of anisotropy we use the difference n(k) − n̄(k), where n̄(k)
is the angular-averaged momentum distribution. Comparing
Figs. 4(a) and 4(b) we can see that the anisotropy is, in
general, stronger in the R phase than in the M1 phase. This
is rather counterintuitive considering the differences in crystal
structures of the two phases; on the other hand, it is indicative
of the effects of electron-electron interactions and electron
correlations. Interestingly, based on quasiparticle wave func-
tions the GW approach would indicate an electronically more
isotropic R phase [13]. The Seebeck coefficient measure-
ments of Ref. [27], however, agree with our observations
of noticeably larger anisotropy in the R phase. The negative
Seebeck values indicate that the dominant current carriers are
electrons, but according to the simple model in Ref. [27], the
anisotropy can be explained if more than one type of current
carrier with different and anisotropic mobilities is present.
However, as we see here, the large anisotropy is present
already at the electronic level. The most noticeable differences
in Figs. 4(a) and 4(b) are manifested along the c axis where the
R phase appears isotropic up to ∼kF, with a large anisotropic
contribution at ∼2kF. In the V chain–V-V plane [Figs. 4(c)
and 4(d)], the anisotropy is stronger along the “x” axis than in
Figs. 4(a) and 4(b). Moreover, apart from the chain direction
the anisotropies between the planes are of different sign close
to the Fermi momentum. Expressed in a percentage measure
similar to that of the Compton profile difference in Fig. 2, i.e.,
[n − n̄]/nmax × 100%, these anisotropies would yield values
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FIG. 5. Difference in the momentum distribution across the phase transition on the same two planes as in Fig. 4: (a) V chain direction
(y axis) versus V-O direction (x axis) and (b) V chain direction (y axis) versus V-V direction (x axis). The smaller circle is an estimate of Fermi
momentum kF from the angular-averaged isotropic momentum distribution, and the larger circle is at ∼2kF. In (c) the differences are given in
four different directions and also for the angular-averaged momentum distributions. In (c) the V-V 1 direction corresponds to the x axis of (b),
and V-V 2 is the direction straight up in Fig. 3, i.e., perpendicular to V-V 1.

up to ∼10%, which is significantly larger than the anisotropies
in the Compton profile (<1.2% in Ref. [1]). Therefore, the
anisotropies should give a clear signal in the experimen-
tal momentum distributions obtainable, e.g., through triple-
differential cross-section measurements [31].

In Figs. 5(a) and 5(b) we consider the momentum distribu-
tion across the phase transition on the same two planes as in
Fig. 4, whereas in Fig. 5(c) we show the difference along a
few different directions as well as for the angular average. In
Figs. 5(a) and 5(b) we see that below k < kF the momentum
distribution (and therefore also the average electron momen-
tum) along the x axis is enhanced, while along the vanadium
chain direction (y axis) it is suppressed. Moreover, character-
istics similar to those of the anisotropies can be seen at 2kF

along the V-chain direction; however, in Fig. 5(b) this is more
spread out than in Fig. 4. The ∼2kF character across the phase
transition can be related to an increase in Friedel oscillations
as a result of backscattering, in which an electron is scattered
to the opposite side of the Fermi surface; this is typical, e.g.,
in the context of Luttinger liquid theory, spin density waves,
and electron-phonon scattering [34,37–39]. The spatial period
for Friedel oscillations would, however, be rather small to
observe, i.e., of the order of π/kF ≈ 2.5a0, but its major
contribution would be in the vanadium chain direction. In
general, the 2kF backscattering can lead to degradation of both
the electrical and thermal currents and is thus a likely reason
for the observed anomalously low electronic thermal conduc-
tivity found fairly recently for the R phase [15]. But where
does this 2kF character derive from, and why is it mainly
observable in the V chain direction? In the Luttinger liquid
model a short-range impurity will lead to Friedel oscillations
that are scaled by a term including the interaction strength.
Due to the absence of impurity atoms in our simulations the
interactions between the rutile c axis and directions perpen-
dicular to it are expected to induce impurities [86] resulting
in the quasi-1D ∼2kF character of these oscillations. In a
rough picture this would be formed of linked one-dimensional
chains, essentially comprising an anisotropic component of
the broader three-dimensional electronic structure, where the
links are responsible for the impurity effects. This picture is

supported by the electron density considerations addressed
below. The quasi-1D behavior was reported earlier based on
GW calculations considering the role of crystal local-field and
excitonic effects [14], where the quasi-1D nature was shown
to influence the optical properties of VO2. The increased prob-
abilities and the anisotropies observed here also support the
experimental results for the Seebeck coefficients [27], which
indicate an ∼9% smaller conductivity along the rutile c axis
compared to the directions perpendicular to it. Importantly,
Fig. 5 describes the electron momentum transfer in the MIT,
thus also providing new complementary knowledge of phase
transition.

To this end, Fig. 5 shows a considerable anisotropic shift
in the momentum distribution function and a change in its
character: along the V-V1, V-V2, and also V-O directions
there is a shift of weight towards momenta slightly larger
than kF, consistent with the formation of a more metalliclike
Fermi surface in these directions. In contrast, the momentum
distribution along the V-chain axis depletes weight from be-
low kF and adds considerable weight out towards 2kF. This
is indicative of both a large “smearing” of the momentum
distribution function and Friedel oscillations at 2kF, both
consistent with a non-Fermi liquid-like behavior along the
V-chain axis. In Fig. 6 we plot electron density isoconcen-
tration surfaces: the R phase in Figs. 6(a) and 6(b) and the
M1 phase in Figs. 6(c) and 6(d). Clear 1D chainlike isocon-
centration surfaces along the V-chain directions are observed
with real-space oscillations corresponding to the momentum
distribution peak near 2kF. These plots are also consistent
with 1D non-Fermi liquid-like behavior along the V-chain
direction. These observations lead to the following picture:
in the insulating M1 phase, dimerization along the V chains
driven by correlations prevents the formation of metallicity,
and the system is insulating. As the MIT is approached from
the M1 phase, correlation energy diminishes (relative to other
energies), allowing the formation of a Fermi surface. How-
ever, a remnant of strong correlations along the V-chain axis
leads to non-Fermi liquid-like behavior along this direction.
It is also insightful to consider the MIT from the metallic
side. Strong correlations along the V-chain axis prevent the
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FIG. 6. Electron density isosurfaces (atomic units, e/a3
0): (a) R

phase with an isovalue of 0.06, (b) R phase with an isovalue of
0.08, (c) M1 phase with an isovalue of 0.06, and (d) M1 phase with
an isovalue of 0.08. Quantum Monte Carlo electron densities are
from the Materials Data Facility related to Ref. [8]. For clarity the
atoms are not shown in (b) and (d). These figures were made with
XCRYSDEN [87,88].

formation of a clear Fermi surface in those directions, leading
to non-Fermi liquid-like behavior along the V chains. As the
MIT is approached from the R phase, correlation strengths
increase, leading to dimerization and the insulating M1 phase.
In other words, the MIT is driven primarily by electronic
correlations, not by structural instabilities.

In the R phase the oscillations in the electron density for
the 1D chains are identical, whereas in the M1 phase they
are not. Actually, in the M1 phase a nearest-neighbor 1D
chain has a phase shift of half the period, which changes
the positions of the maxima and minima. Slightly increasing
the isovalue, i.e., going from Fig. 6(a) to Fig. 6(b), we see a
formation of “links” between the chains. In the R phase the
number of these links is larger than in the M1 phase with
the same isovalue. This is likely related to the enhancement
of backscattering seen in the MIT and further supports the
Luttinger picture of connected/linked 1D chains introduced
earlier.

IV. CONCLUSIONS

In this study we used first-principles quantum Monte
Carlo to obtain the momentum distribution and Compton
profiles for the R and M1 phases of vanadium dioxide. Good

qualitative agreement with the experimental data was shown
for the Compton profile differences across the metal-insulator
transition. The quantitative differences are considered to arise
from electron-phonon coupling based on a simple theoretical
model and experimental observations [26]. Analysis of the
momentum distribution reveals the signature of the non-Fermi
liquid character of the metallic R phase proposed by recent ex-
periments [15]. Moreover, we observe that Friedel oscillations
in the R phase are mainly confined to one dimension, which
together with the observed ∼2kF characteristics is reminiscent
of a Luttinger liquid-type metal with impurities. These im-
purities could emerge as a consequence of the transverse di-
mensions. In addition, we believe that our findings provide an
explanation for the experimentally observed anomalously low
electronic thermal conductivity [15], as we observe backscat-
tering characteristics within the momentum distribution.

The Department of Energy will provide public access to
these results of federally sponsored research in accordance
with the DOE Public Access Plan [89].

In addition, full simulation inputs and outputs for all QMC
and DFT calculations performed in this work are available via
the Materials Data Facility [90].
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