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Optical properties and electromagnetic modes of Weyl semimetals
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We present systematic theoretical studies of both bulk and surface electromagnetic eigenmodes, or polaritons,
in Weyl semimetals in the minimal model of two bands with two separated Weyl nodes. We derive the tensors of
bulk and surface conductivity taking into account all possible combinations of the optical transitions involving
bulk and surface electron states. We show how information about electronic structure of Weyl semimetals, such
as the position and separation of Weyl nodes, Fermi energy, and Fermi arc surface states, can be unambiguously
extracted from measurements of the dispersion, transmission, reflection, and polarization of electromagnetic
waves.
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I. INTRODUCTION

Weyl semimetals (WSMs) have attracted a lot of inter-
est as a new class of gapless three-dimensional topological
materials. Their Brillouin zone contains an even number of
band-touching points, or Weyl nodes, that can be described
by topological invariants defined as integrals over the two-
dimensional Fermi surface. For each pair of Weyl nodes,
these invariants can be viewed as topological chiral charges
of opposite sign of chirality [1]. The electron dispersion near
each Weyl node corresponds to three-dimensional massless
Weyl fermions. For crystals with broken time-reversal or
inversion symmetry (or both), the Weyl nodes of opposite
chirality are separated in momentum space. The separation
makes them stable against small perturbations and also gives
rise to surface states with Fermi arcs. For reviews of WSMs
discovered so far and their properties, see Refs. [2–7].

So far, the bulk of the research has been focused on
measuring and modeling the electronic structure of WSMs
and topological signatures in electron transport. However,
it is becoming increasingly clear that optical methods (e.g.,
Ref. [8]) can provide a sensitive and sometimes more selective
probe into the unique properties of these materials as com-
pared to other approaches. Furthermore, analogies between
light propagation in materials and topological effects in propa-
gation of massless Weyl fermions in WSMs have been pointed
out [9,10]. For a WSM in a magnetic field several proposals
explored the signatures of the chiral anomaly in the interband
optical absorption and plasmon mode properties; see, e.g., the
calculations of the magnetooptical conductivity in the quasi-
classical limit [11–17] and the quantum-mechanical theory in
a strong magnetic field [18,19]. Note that these studies did
not include finite separation of Weyl nodes in a microscopic
Hamiltonian.

Here we study electromagnetic eigenmodes of WSMs in
the presence of finite separation between Weyl nodes in
momentum space and without an external magnetic field.
To calculate the optical response, one needs to determine a
realistic low-energy Hamiltonian that captures the essential

topological structure of WSMs. While many WSMs discov-
ered in experiment have a complicated arrangement of several
pairs of Weyl nodes, essential physics and electronic prop-
erties of WSMs are already revealed in a model containing
only two Weyl nodes separated in momentum space. Such
models serve as a usual starting point for theoretical studies
of transport and optical phenomena. Probably the simplest
approach is to add a Zeeman-like constant shift term to the
Hamiltonian for a Dirac semimetal, which preserves the linear
form of the Hamiltonian with respect to momentum operators
[20]. The bulk optical conductivity for this model was calcu-
lated in Ref. [21]. In another approach, developed in Ref. [22]
and used in many optical response studies to date, a phe-
nomenological axion θ term is introduced in the action for the
electromagnetic field. This gives rise to the gyrotropic terms
in the dielectric permittivity tensor and associated effects of
Faraday and Kerr rotations, linear dichroism, modification of
surface plasmon dispersion etc.; see, e.g., Refs. [7,23–25].

In yet another approach, Burkov and Balents [26] derived a
minimal 2 × 2 Hamiltonian (one conduction and one valence
bands) containing one parameter, which describes the transi-
tion from the normal insulator to the WSM with two Weyl
nodes separated in momentum space. In the WSM phase,
this Hamiltonian allows for surface state solutions with Fermi
arcs. Therefore a single microscopic Hamiltonian can be used
to describe optical transitions between the bulk, surface, and
surface-to-bulk states. As a result, both bulk and surface
tensors of the optical conductivity can be derived. Subsequent
studies [27] explored the dispersion of bulk and surface states
within the minimal Hamiltonian model and their evolution
from the WSM phase to bulk insulating phases including
topological insulators. The Hamiltonian of Ref. [27] has been
recently used to develop a quantum-mechanical theory of
surface plasmons (Fermi arc plasmons) and their dissipation
[28].

Here we use a slightly more general Hamiltonian, which is
free of certain surface state pathologies, to perform quantum-
mechanical derivation of the tensors of both bulk and surface
conductivity. We take into account all possible combinations
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of transitions between bulk and surface electron states. We
then proceed to determine the properties of bulk and surface
electromagnetic eigenmodes, or polaritons. We show how in-
formation about the electronic structure of WSMs, such as the
position and separation of Weyl nodes, Fermi energy, surface
states, Fermi arcs, etc. can be extracted from the transmission,
dispersion, reflection, and polarization of electromagnetic
modes. We identify the most sensitive optical signatures of
the electronic properties of WSMs and discuss the potential
use of WSM thin films for optoelectronic applications.

Since our model includes only two Weyl nodes of opposite
chirality, it describes WSMs with time reversal symmetry
breaking, i.e., the materials with some kind of magnetic order-
ing. Examples discovered so far include pyrochlore iridates
[29], ferromagnetic spinels [30], and Heusler compounds
[31]. WSMs with the crystal structure which breaks the in-
version symmetry but preserves the time-reversal symmetry
should have a minimum of four Weyl nodes, and in some
cases show much more than four [32], see, e.g., recent reviews
cited above. Therefore our quantitative results below can be
applied only to magnetic WSMs. However, some qualitative
conclusions for inversion-symmetry breaking WSMs can be
still made, as discussed in Sec. VIII. Another limitation
stems from an effective two-band model, which neglects
higher bands. This limits the frequency range by the onset
of the optical transitions to higher bands, typically at sev-
eral hundred meV. Finally, we limit ourselves to the linear
optical response, assuming that the electromagnetic field is
weak enough and neglecting any strong-field modification of
electron states.

Section II describes the effective Hamiltonian, or rather
a family of Hamiltonians used in this study and derives the
properties of corresponding bulk and surface electron states.
Section III gives the classification of possible optical transi-
tions and outlines all steps in the derivation of tensors of bulk
and surface optical conductivity. The explicit expressions for
the tensor elements are given in the Appendix. Section IV
provides a detailed description of the electromagnetic normal
modes (polaritons) in bulk WSMs. Section V provides bound-
ary conditions which are then used in Sec. VI to calculate the
reflection of incident radiation from the surface of a WSM.
Section VII describes surface electromagnetic eigenmodes,
i.e., surface plasmon-polaritons. Conclusions are in Sec. VIII.
Appendix contains matrix elements of the current density
operator, general expressions for elements of the bulk and
surface conductivity tensor, their low-frequency limit and the
limit of small Weyl node separation.

II. EFFECTIVE HAMILTONIAN

In this section, we describe the family of Hamiltonians
that serve as a microscopic basis in this study. We derive the
properties of bulk and surface electron states and use them
to calculate the optical conductivity. Consider a family of
Hamiltonians of the type

Ĥ = vF

(
Q̂2 − h̄2m(z)

2h̄b
σ̂x + p̂yσ̂y + p̂zσ̂z

)
, (1)

where the function m(z) takes into account that the system
may be nonuniform along z and, in particular, has boundaries.

Here, σ̂x,y,z are Pauli matrices and the operator Q̂2 is defined
by one of the following three expressions:

(1) Q̂2 = p̂2
x,

(2) Q̂2 = p̂2
x + p̂2

y,

(3) Q̂2 = p̂2
x + p̂2

y + p̂2
z .

The first option is the Hamiltonian in Refs. [26,27].
To make the derivation of surface states more convenient

[27], we apply the unitary transformation Ĥ =⇒ Ŝ−1Ĥ Ŝ to
Eq. (1), where Ŝ = 1√

2
(1 − iσ̂x ). This gives

Ĥ = vF

(
Q̂2 − h̄2m(z)

2h̄b
σ̂x + p̂zσ̂y − p̂yσ̂z

)
. (2)

One can check that this Hamiltonian violates time-reversal
symmetry due to the term proportional to σ̂x. The gyrotropy
axis is the x axis. In k representation, the Hamiltonian of
Eq. (2) becomes

Ĥk = h̄vF (Kx(k)σ̂x + kzσ̂y − kyσ̂z ), (3)

where Kx(k) for the same three Hamiltonians is given by

(1) Kx = k2
x − m

2b
,

(2) Kx = k2
x + k2

y − m

2b
,

(3) Kx = k2
x + k2

y + k2
z − m

2b
.

In all three cases, the Weyl nodes are located at kx = ±√
m

assuming that m > 0. We have found bulk and surface eigen-
states for all three Hamiltonians. Below is a summary of main
results related to electron states.

A. Hamiltonians 1 and 2

1. Bulk states

The stationary spinor eigenstate of the Hamiltonian in
Eq. (3) is

|�k〉 =
(

�1

�2

)
eikr−i E

h̄ t , (4)

where the components are determined from(
−ky − E

h̄vF
Kx(k) − ikz

Kx(k) + ikz ky − E
h̄vF

)(
�1

�2

)
= 0. (5)

From Eq. (5), one can get the eigenenergy of the bulk states
E (k)

E = sh̄vF

√
K2

x + k2
y + k2

z , (6)

and corresponding components of the spinor eigenstate in
Eq. (4) (

�1

�2

)
= 1√

2V

(√
1 − s cos θke−iφk

s
√

1 + s cos θk

)
, (7)
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FIG. 1. Bulk energy dispersion for Hamiltonian 2 on the surface
kz = 0. Here the energy is normalized by h̄vF b and kx,y are normal-
ized by b.

where cos θk = ky√
K2

x +k2
y +k2

z

, eiφk = Kx+ikz√
K2

x +k2
z

; s = ±1 denotes

the conduction and valence bands, and V is the quantization
volume.

To visualize the dispersion of electron states, we take for
simplicity m = b2. The 3D plot for one projection of 3D
dispersion of Hamiltonian 2 is shown in Fig. 1. For small
energies | E

h̄vF
| � b, the constant energy surface consists of

two disconnected spheres, each of them enclosing a corre-
sponding Weyl point; see Fig. 2. At | E

h̄vF
| = b

2 , a separatrix

isoenergy surface is a 3D “figure of eight.” For | E
h̄vF

| > b
2 , the

constant energy surface is simply connected and encloses both
Weyl points. Figures 2(a) and 2(b) shows contours of constant
energy surfaces on the plane kz = 0 for Hamiltonians 2 and 1,
respectively. The electron dispersion is strongly anisotropic.
This will result in different values for the diagonal elements of
the bulk dielectric permittivity tensor, as in two-axial crystals.
The dotted circle in Fig. 2(a) is the boundary of a region that
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FIG. 2. (a) Contours of constant energy surfaces for Hamiltonian
2 on the surface kz = 0. The dotted circle is the boundary of a region
k2

x + k2
y � b2 where surface states exist. (b) Contours of constant

energy surfaces for Hamiltonian 1 on the surface kz = 0. Here, x, y =
kx,y/b. The dotted lines indicate the boundary of a region k2

x � b2

where surface states exist.

contains surface states. For Hamiltonian 1 in Fig. 2(b), the
surface states exist between the dotted lines.

2. Reflection from the boundary. Surface states and Fermi arcs

Following [27], we define the boundary as a jump in the
parameter m, so that m = b2 inside the WSM and m = −m∞
outside. Then Eqs. (3) and (5) will contain the parameter m
as a function of the coordinate r j orthogonal to the boundary,
and the corresponding component of the quasimomentum k j

is replaced by k j =⇒ −i ∂
∂r j

.
For the boundary parallel to the gyrotropic axis x, we

assume that it coincides with the surface z = 0 and the WSM
fills the half-space z < 0. In this case, m = b2 for z < 0 and
m = −m∞, m∞ → ∞ for z > 0.

For Hamiltonian 3, the Schrödinger equation given by
Eq. (5) is a fourth-order differential equation, since its matrix
elements contain ∂2

∂z2 . For Hamiltonians 1 and 2, we get a
second-order set of equations. The velocity operator v̂z =
i
h̄ [H, z] for Hamiltonian 3 is v̂z = −i vF

b σ̂x
∂
∂z + vF σ̂y, i.e., it

depends on the coordinate derivative. In contrast, the velocity
operator v̂z = vF σ̂y for Hamiltonians 1 and 2 does not depend
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on the coordinate derivative. Therefore, for Hamiltonian 3 at
z = 0, the continuity of both the eigenstate and its derivative
is required, whereas one only needs the continuity of the
eigenstates for Hamiltonians 1 and 2.

Using Eq. (5) one can find that the eigenstate of Hamil-
tonians 1 and 2 in the region z > 0 at m∞ → ∞ is |�∞〉 ∝
(1
0)eikxx+ikyy− m∞

2b z. In the region z < 0, we take the eigenstate
|�B〉, which is given by Eq. (7). Stitching together these
two eigenstates |�∞〉 and |�B〉 at the boundary yields the
following expression for the bulk state:

|�B〉 = eikxx+ikyy

2
√

V

[(√
1 − s cos θke−iφk

s
√

1 + s cos θk

)
eikzz

−
(√

1 − s cos θkeiφk

s
√

1 + s cos θk

)
e−ikzz

]
, (8)

where the quantization volume is limited from one side by the
z = 0 plane. The eigenenergy is still given by Eq. (6), and the
angles θk and φk are defined below Eq. (7).

If E2

h̄2v2
F

< k2
y + K2

x , the value of kz in Eq. (6) is imaginary:

kz = ±iκ . In order to connect the eigenstate |�∞〉 ∝ (1
0) in

z > 0 with the eigenstate localized at z < 0, which is eκz,
the localized eigenstate should be also a spinor (1

0). After
replacing kz ⇒ −iκ in Eq. (5), we obtain the following
eigenenergies and eigenvectors for surface states in the limit
m∞ → ∞:

E

h̄vF
= −ky, |�S〉 =

√
2κ

S

(
1
0

)
�(−z)eκz+ikxx+ikyy, (9)

where � is a step function, S is the quantization area, κ =
−Kx > 0. For Hamiltonian 2, the surface states exist inside a
dashed circle b2 > k2

x + k2
y in Fig. 2(a). For Hamiltonian 1, the

surface states exist in the region b2 > k2
x in Fig. 2(b).

If a WSM occupies the region z > 0, instead of Eqs. (9) we
obtain

E

h̄vF
= +ky, |�S〉 =

√
2κ

S

(
0
1

)
�(z)e−|κ|z+ikxx+ikyy, (10)

where κ = +Kx < 0. Equations (9) and (10) can be easily
generalized to the case of a parameter m(z) which varies con-
tinuously between the values b2 and −m∞ [27]. For example,
instead of Eqs. (9) we get

E

h̄vF
= −ky, |�S〉 = N

(
1
0

)
eikxx+ikyy

×
{

e
∫ z

0
m(z)−k2

x
2b dz for Hamiltonian 1,

e
∫ z

0

m(z)−k2
x −k2

y
2b dz for Hamiltonian 2,

(11)

where N is a normalization factor.
Note that the constant surface energy lines ky = const are

tangent to the points where the bulk-state constant energy
surface intersects the boundary of the surface states, shown
as dotted lines in Figs. 2(a) and 2(b). The union of these ky =
const lines and the bulk-state constant energy surface is a set
of bulk and surface energy states with the same energy. In
particular, at the energy equal to the Fermi energy EF the
ky = EF /(h̄vF ) line forms a Fermi arc.

B. Hamiltonian 3

For a fourth-order set of differential equations the con-
struction of electron states including their interaction with a
boundary is more complicated. First, we use Eq. (6) to find the
value of kz for given kx,y and E . Consider the parameter range
m � b2, including both positive and negative values of m.

If E2

h̄2v2
F

> k2
y + (k2

x +k2
y −m)

2

4b2 , one always has two real solutions

kz1 = −kz2 > 0 together with two imaginary solutions corre-
sponding to evanescent states: kz3,4 = iκ3,4, where 0 < κ3 =
−κ4. If E2

h̄2v2
F

< k2
y + (k2

x +k2
y −m)

2

4b2 , all four solutions are imagi-

nary and correspond to evanescent states: kz1,2,3,4 = iκ1,2,3,4,
where 0 < κ1 = −κ3, 0 < κ2 = −κ4. In the region z > 0 (i.e.,
outside the sample, where m = −m∞ ), it is reasonable to take
the solution as a superposition of two localized modes e−|κ3,4|z.
In this case for z < 0, i.e., inside the sample where m = b2,
there could be two options.

(i) A superposition of two counterpropagating waves with
quasimomenta kz1 = −kz2 together with a localized wave eκ3z.
The localized solution cannot be discarded, since without it
the number of constants becomes smaller than the number of
the boundary conditions.

(ii) A superposition of two localized waves, i.e., the surface
state. In this option, the number of constants is always smaller
than the number of the boundary conditions, so such a state
can exist only at certain values of energy.

The procedure of stitching the spinor components and
their derivatives is simplified if m∞ → ∞ since in this limit
the continuity of the derivative is equivalent to setting both
components of a spinor �1,2 equal to zero in the cross section
z = 0.

1. Bulk states near the boundary

In case (i), we obtain

|�B〉 ≈ eikxx+ikyy

2
√

V

[(√
1 − s cos θke−iφk

s
√

1 + s cos θk

)
eikzz

+ r

(√
1 − s cos θkeiφk

s
√

1 + s cos θk

)
e−ikzz

+ l

(√
1 − s cos θkeακ

−s
√

1 + s cos θk

)
eκz

]
, (12)

where

kz =
√√√√2b

√
E2

h̄2v2
F

+ k2
x − (

k2
x + k2

y + b2
)
,

κ =
√√√√2b

√
E2

h̄2v2
F

+ k2
x + (

k2
x + k2

y + b2
)
,

r = −eακ +e−iφk

eακ +eiφk
, sinh ακ = κ√

E2

h̄2v2
F

− k2
y

, l = 2i
sin φk

eακ + eiφk
.

Clearly, |r|2 = 1, which corresponds, as expected, to the total
reflection from the boundary. The quantization volume in
Eq. (12) is chosen in such a way that its length along the z
axis is much larger than k−1

z > κ−1. Therefore the last term in
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the brackets in Eq. (12) is unimportant in a sense that it does
not affect the eigenstate normalization or the matrix elements.

2. Surface states

To construct the surface states [option (ii)] it is convenient
to to go back to Eq. (5), use m = b2, and make the substitution
kz = −iκ:⎛
⎝ −ky − E

h̄vF

k2
x +k2

y −κ2−b2

2b − κ

k2
x +k2

y −κ2−b2

2b + κ ky − E
h̄vF

⎞
⎠(�1

�2

)
= 0. (13)

Consider the solution of Eq. (13), corresponding to differ-
ent positive values of κ1,2 but the same spinor constant

(a
b). One can build a nontrivial localized solution |�S〉 ∝

(a
b)�(−z)(eκ1z − eκ2z ), which corresponds to the null bound-

ary conditions at the surface z = 0. Such a solution of
Eq. (13) is possible under the following conditions: −ky −

E
h̄vF

= k2
x +k2

y −κ2−b2

2b + κ = 0, or ky − E
h̄vF

= k2
x +k2

y −κ2−b2

2b − κ =
0, where (a

b) = (1
0) or (a

b) = (0
1), respectively. It is easy to see

that the first option corresponds to the surface state when
the WSM occupies the halfspace z < 0, whereas the second
option corresponds to the WSM in the region z > 0, since in
this case the values of κ1,2 are negative. The resulting states
are as follows.

(i) WSM in z < 0:

E

h̄vF
= −ky, |�S〉 =

√
2

S
(

1
κ1

+ 1
κ2

− 4
κ1+κ2

)(1
0

)

�(−z)(eκ1z − eκ2z ) eikxx+ikyy. (14)

(ii) WSM in z > 0:

E

h̄vF
= ky, |�S〉 =

√
2

S
(

1
κ1

+ 1
κ2

− 4
κ1+κ2

)(1
0

)

�(z)(e−κ1z − e−κ2z ) eikxx+ikyy. (15)

Here, κ1,2 = b ∓
√

k2
x + k2

y .

In the region b2 < k2
x + k2

y , there is only one localized
evanescent solution for any fixed value of energy, which is
not enough to satisfy the boundary conditions. Therefore the
region b2 > k2

x + k2
y , where the surface states exist, is the same

in the models described by the Hamiltonians 2 and 3 [see the
dotted circle in Fig. 2(a)].

Taking into account a finite value of m∞ modifies the above
expression, but their general structure remains the same. For
example, when a WSM fills the half-space z < 0, then the
eigenstate in Eq. (14) is replaced by

|�S;z<0〉 ∝
(

1
0

)
(eκ1z − ζeκ2z )eikxx+ikyy,

(16)

|�S;z>0〉 ∝
(

1
0

)
κ2 − κ1

κ2 + √
m∞

e−√
m∞zeikxx+ikyy,

where ζ = κ1+√
m∞

κ2+√
m∞

.

C. The boundary orthogonal to the gyrotropic axis

Any Hamiltonian, 1, 2, or 3, contains the second derivative
∂2

∂x2 . Therefore the analysis of the bulk and surface states
near the boundary orthogonal to the gyrotropic axis is similar
to the one for the boundary parallel to the gyrotropic axis
when the Hamiltonian contains the second derivative ∂2

∂z2 .
Repeating the same arguments as in the previous section, we
obtain that the orthogonal boundary is trivial and does not
contain surface states.

D. Comparison of Hamiltonians 1, 2, and 3

The only principal difference between the eigenstates of
the effective Hamiltonians considered above is the region
where the surface states exist. Such a region is determined

by the inequality b >
√

k2
x + k2

y for Hamiltonians 2 and 3, and

the inequality b > |kx| for Hamiltonian 1. The latter condition
leads to an infinite density of surface states, which is unphys-
ical and would have to be restricted artificially. Therefore it
is better to work with Hamiltonian 2 or 3. Hamiltonian 2
leads to a simpler z component of the velocity operator: v̂z =
vF σ̂y instead of v̂z = −i vF

b σ̂x
∂
∂z + vF σ̂y, which corresponds to

Hamiltonian 3. The velocity operator of Hamiltonian 2 makes
calculations of the surface current easier without losing any
essential physics. Therefore we will use Hamiltonian 2 for
subsequent calculations of the optical properties.

III. OPTICAL TRANSITIONS AND THE TENSORS
OF BULK AND SURFACE CONDUCTIVITY

In the presence of external fields one should replace p̂ =⇒
p̂ − e

c A, and also add the electrostatic potential Ĥ =⇒ Ĥ +
eϕ1̂ in Eq. (2). Particles are assumed to have charge e where
−e is the magnitude of the electron charge. If the potential
has a coordinate dependence A(r), we assume symmetrized
operators(

p̂x,y,z − e

c
Ax,y,z

)2

=⇒ p̂2
x,y,z + e2

c2
A2

x,y,z

− e

c
( p̂x,y,zAx,y,z + Ax,y,z p̂x,y,z ),

and in the expressions for the velocity operator, we need to
replace

−i
∂

∂x, ∂y, ∂z
=⇒ −i

∂

∂x, ∂y, ∂z
− e

ch̄
Ax,y,z.

Throughout the paper, we will consider the potentials cor-
responding to a monochromatic electromagnetic field propa-
gating in the arbitrary direction r with angular frequency ω

and wave vector q, i.e.,

φ = 1
2φ(ω)e−iωt+iq·r + c.c., (17)

A = 1
2 [x0Ax(ω) + y0Ay(ω) + z0Az(ω)]e−iωt+iq·r + c.c. (18)

Bulk-to-bulk and surface-to-surface transitions contribute
to the bulk and surface conductivity tensors, respectively.
The contributions are detailed in Appendix. Surface-to-bulk
transitions contribute to the surface conductivity tensor only.
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They have to be handled with more care, as we briefly describe
below.

Generally, the electron and current densities expressed in
terms of the density matrix are given by

n(r) =
∑
αβ

nβα (r)ραβ, j(r) =
∑
αβ

jβα (r)ραβ, (19)

nβα = �∗
β�α, jβα = 1

2 [�∗
β ( ĵ�α ) + ( ĵ

∗
�∗

β )�α], (20)

where ĵ = ev̂.

The Fourier harmonics of the electron and current densities
are

j(r) = 1

2

∑
q

j (q)eiqr + c.c., n(r) = 1

2

∑
q

n(q)eiqr + c.c.,

where

1

2
j (q) = 1

V

∫
V

j(r)e−iqrd3r,
1

2
n(q) = 1

V

∫
V

n(q)e−iqrd3r.

For their matrix elements, we have

j (q) =
∑
αβ

j (q)
βαραβ, n(q) =

∑
αβ

n(q)
βαραβ, (21)

where

j (q)
βα = 2〈β|e−iqr ĵ|α〉, n(q)

βα = 2〈β|e−iqr|α〉. (22)

To find the current without the effect of a boundary we can
use the states given by Eq. (7).

Now consider the states near the surface. We will denote
the bulk states with latin indices and surface states with greek
ones. For convenience we rewrite them, having in mind an
upper boundary z = 0 with the WSM located at z < 0:

|�m〉 = eikxx+ikyy

2
√

V

[(√
1 + s cos θke−iφk

s
√

1 − s cos θk

)
eikzz

−
(√

1 − s cos θkeiφk

s
√

1 + s cos θk

)
e−ikzz

]
, (23)

where Em = sh̄vF

√
(

k2
x +k2

y −b2

2b )
2 + k2

y + k2
z is the eigenenergy,

s = ±1 is the band index, the values kx,y can be of either sign
whereas kz > 0.

|�α〉 =
√

2κ

S

(
1
0

)
�(−z)eikxx+ikyy+κz, (24)

where S is the area; the energy of the state is Eα = −h̄vF ky,

κ = b2−k2
x −k2

y

2b ,
√

k2
x + k2

y < b.

Let us limit the surface states by the condition κ > κmin,
where the latter could be a typical scattering length ∼ κ−1

min. We
will assume that κ−1

min is much smaller than L, which enters the
quantization volume V = SL in Eq. (23). When we calculate
the matrix elements of the interaction Hamiltonian in the
von Neumann equation, the matrix elements V (int)

mn , V (int)
αβ , and

V (int)
mα have no peculiarities: the integration is carried out over

the whole volume. However when we calculate the matrix
elements of the density and current, and if at least one of

the indices belongs to the surface state, we will perform the
integration over dz:

nβα =
∫ 0

−∞
�∗

β�αdz, nmα =
∫ 0

−∞
�∗

m�αdz, (25)

jβα = 1

2

∫ 0

−∞
[�∗

β ( ĵ�α ) + ( ĵ
∗
�∗

β )�α]dz,

jmα = 1

2

∫ 0

−∞
[�∗

m( ĵ�α ) + ( ĵ
∗
�∗

m)�α]dz. (26)

These quantities will depend only on x and y, and therefore
determine the surface current and density.

The following current component is nontrivial:
∑

αβ

( jz )βαραβ+∑mα ( jz )mαραm. It determines the polarization of
a thin double layer:

∂

∂t
pz(x, y) =

∑
αβ

( jz )βαραβ +
∑
mα

( jz )mαραm. (27)

This layer radiates, but not normally to the layer, and it cannot
affect the surface density of carriers.

With properly defined matrix elements of the current and
density the continuity equation is satisfied automatically, so
we can consider the volume current flowing toward the bound-
ary (

∑
mn ( jz )nmρmn)z=0 as a source in the surface continuity

equation.

A. Tensors of bulk and surface conductivity

The matrix elements of the Fourier components of the
current density operator are evaluated in Appendix A.
After evaluating them, in Appendixes B and C, we used the
Kubo-Greenwood formula to calculate the bulk and surface
conductivity tensors, respectively; e.g.,

σαβ (ω) = g
ih̄

V

∑
mn

(
fn − fm

Em − En

) 〈n| ĵα|m〉〈m| ĵβ |n〉
h̄(ω + iγ ) + (En − Em)

,

(28)

for the bulk conductivity, where g = 2 is the spin degeneracy
factor and α, β denote Cartesian coordinate components. The
surface conductivity tensor has a similar structure, but the
contribution is summed over surface-to-surface and surface-
to-bulk transitions, and the normalization is over the surface
area S instead of a volume V . Both interband and intraband
transitions are included. Three-dimensional integrals over
electron momenta in Appendixes B and C cannot be evaluated
analytically, except limiting cases of small frequencies or
small b (see Appendixes D and E). Therefore integrals were
calculated numerically at zero temperature for all plots below.

The bulk (3D) conductivity tensor due to low-energy elec-
trons near Weyl points is

σ B
i j (ω) =

⎛
⎜⎝

σ B
xx 0 0

0 σ B
yy σ B

yz

0 σ B
zy σ B

zz

⎞
⎟⎠, (29)

where σ B
zy = −σ B

yz. The surface conductivity tensor at z = 0
has a similar structure, with superscript B replaced by S and
σ S

zy = −σ S
yz.
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The background bulk dielectric tensor in the most general
form which corresponds to the one for a two-axial nongy-
rotropic crystal is

ε
(0)
i j (ω) =

⎛
⎜⎝

ε(0)
xx 0 0

0 ε(0)
yy 0

0 0 ε(0)
zz

⎞
⎟⎠ (30)

so that the total dielectric permittivity tensor is

εi j (ω) = ε
(0)
i j (ω) + i

4πσ B
i j (ω)

ω
=

⎛
⎜⎝

εxx 0 0

0 εyy ig

0 −ig εzz

⎞
⎟⎠, (31)

where

g = 4πσ B
yz

ω
. (32)

Note that for Hamiltonian 3, we would have σ B
yy = σ B

zz,
whereas for Hamiltonian 2 (used in all calculations of the
conductivity tensors in this paper), we have σ B

yy �= σ B
zz. There-

fore, even if the background dielectric tensor is isotropic, the
contribution of massless Weyl electrons will create a two-
axial anisotropy. In the numerical plots below, we will take
an isotropic background dielectric tensor and neglect its fre-
quency dependence at low frequencies, ε(0)

xx = ε(0)
yy = ε(0)

zz =
10, so that all nontrivial effects of anisotropy and gyrotropy
are due to Weyl fermions.

The salient feature of both bulk and surface conductivity
tensor is the presence of nonzero off-diagonal (gyrotropic)
components due to time-reversal symmetry breaking in the
Hamiltonian. These terms originate from the finite separation
of the Weyl nodes in momentum space and the existence
of surface states (Fermi arcs). The gyrotropic effects in the
propagation, reflection, and transmission of bulk and surface
modes can serve as a definitive diagnostic of Weyl nodes,
surface states, and Fermi surface. They could also find ap-
plications in optoelectronic devices such as Faraday isolators,
modulators etc.

Figures 3–6 show spectra of εxx(ω), εyy(ω), εzz(ω), and
g(ω) for several values of the Fermi momentum kF (at
zero temperature), when the Weyl node separation 2h̄vF b =
200 meV. The characteristic feature in all plots is strong
absorption and dispersion at the onset of interband transitions,
when ω = 2vF kF . Another common feature is a Drude-like
increase in the absolute value of all tensor components at low
frequencies. Indeed, as shown in Appendix D, in the limit
ω � vF kF � vF b when only the intraband transitions in the
vicinity of each Weyl point are important, the off-diagonal
components are equal to zero and the diagonal conductivity
components are reduced to the same Drude form:

σ intra
xx (ω) = σ intra

yy (ω) = σ intra
zz (ω) = ge2vF k2

F

3π2h̄(−iω + γ )
. (33)

Note an absorption peak at ω = 100 meV at low Fermi
momenta, which corresponds to a Van Hove singularity at the
interband transitions between saddle points of conduction and
valence bands at k = 0, i.e., in the middle between the Weyl
points.

Note also that diagonal and off-diagonal parts of the con-
ductivity tensor are of the same order at low frequencies
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FIG. 3. Real and imaginary parts of the εxx component of the
dielectric tensor as a function of frequency for h̄vF b = 100 meV,
dephasing rate γ = 10 meV, and ε(0)

xx = 10.

comparable to the Weyl node separation, which indicates that
gyrotropic effects should be quite prominent.

All figures in this paper are plotted for a relatively high
dephasing rate γ = 10 meV, which smoothes out all spec-
tral features and introduces strong losses for electromagnetic
eigenmodes even below the interband transition edge. The de-
phasing rate originates from electron scattering and obviously
depends on the temperature and material quality in realistic
materials. Its derivation is beyond the scope of the present
paper.

IV. BULK POLARITONS IN WEYL SEMIMETALS

Consider first the propagation of plane monochromatic
waves in a bulk Weyl semimetal. For complex amplitudes of
the electric field and induction, (D, E )eikr−iωt , where D = ε̂E
and ε̂ is a bulk dielectric tensor, Maxwell’s equations give
n · D = 0, where n = ck

ω
. The resulting dispersion equations

are

n(n · E ) − n2E + ε̂E = 0 (34)

or⎛
⎜⎝

εxx − n2 + n2
x nxny nxnz

nynx εyy − n2 + n2
y ig + nynz

nznx −ig + nzny εzz − n2 + n2
z

⎞
⎟⎠
⎛
⎜⎝

Ex

Ey

Ez

⎞
⎟⎠ = 0.

(35)
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FIG. 4. Real and imaginary parts of the εyy component of the
dielectric tensor as a function of frequency for h̄vF b = 100 meV,
dephasing rate γ = 10 meV, and ε(0)

yy = 10.

The structure of these equations indicate strongly
anisotropic and gyrotropic properties of bulk polaritons. The
dispersion is drastically different for normal modes propagat-
ing perpendicular to the x and y axes. For each direction, there
are furthermore two normal modes with different refractive
indices. We will consider each case separately.

A. Propagation perpendicular to the anisotropy x axis

In this case, we have nx = 0, n2 = n2
y + n2

z , nz = n cos θ ,
ny = n sin θ , where θ is the angle between the wave vector
and z axis. From Eqs. (35), we obtain two normal modes that
can be called an ordinary (O) and extraordinary (X) waves. An
O wave has an electric field along x and the refractive index

n2
O = εxx. (36)

Therefore its dispersion and absorption are completely de-
scribed by the spectrum of εxx(ω). As shown in Fig. 7, at
low frequencies, the O mode experiences strong metallic
absorption and at ω = 2EF = 160 meV, there is an onset of
interband transitions.

An X wave have an electric field in the (y, z) plane and the
refractive index showing strong θ dependence and resonances:

n2
X = εyyεzz − g2

cos2 θεzz + sin2 θεyy
. (37)
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(b)

FIG. 5. Real and imaginary parts of the εzz component of the
dielectric tensor as a function of frequency for h̄vF b = 100 meV,
dephasing rate γ = 10 meV, and ε(0)

zz = 10.

For normal incidence θ = 0,

n2
X = εyy − g2

εzz
. (38)

It is obvious from Eq. (37) that the refractive index for an X
wave is strongly enhanced (singular in the absence of losses)
when

cos2 θεzz + sin2 θεyy = 0, (39)

which corresponds to the bulk plasmon excitation. Indeed,
from Maxwell’s equations in the Coulomb gauge, one can
show that | 1

c
∂A
∂t |/|∇ϕ| ∼ | ω2

ω2−c2k2 || j⊥
j‖

|, where j = j⊥ + j‖,
∇ × j‖ = 0, ∇ · j⊥ = 0. Therefore, if | j⊥| ∼ | j‖|, which cor-
responds to a general oblique propagation in an anisotropic
medium, the wave is quasielectrostatic at n2 � 1. Equation
(39) corresponds to the condition n · D = 0 for E = −∇ϕ ‖
n. If εyy = εzz = ε⊥, the dispersion equation for a plasmon
propagating in the plane orthogonal to the x axis has a simple
form ε⊥ = 0.

Figure 8 shows real and imaginary parts of the refractive
index nX of an X wave as a function of frequency for different
values of the propagation angle θ . Near the bulk plasmon res-
onance, i.e., around 100 meV for normal incidence, the value
of n2

X becomes negative in the absence of losses according
to Eq. (38). This corresponds to a nonpropagating photonic
gap. Since we include significant loss rate γ = 10 meV in all
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FIG. 6. Real and imaginary parts of g = 4πσB
yz

ω
as a function of

frequency for h̄vF b = 100 meV and dephasing rate γ = 10 meV.

simulations, the real part of nX does not go all the way to zero,
but there is a strong absorption peak in the imaginary part of
nX . We will later see that this spectral region leads to a telltale
change of phase in reflection. The second feature in all plots
is an onset of interband transitions at 2EF = 160 meV.

The real part of the bulk plasmon resonance frequency at
normal incidence as a function of the Fermi energy is shown
in Fig. 9. Note that according to Eq. (38) the magnitude of
the refractive index at frequencies around plasmon resonance
is determined by the value of the off-diagonal component
of the dielectric tensor g. Therefore measurements of the
transmission and reflection provide a sensitive measure of the
Weyl node separation.

The same is true about the polarization effects. From the
third row of Eqs. (35), one can get the expression for the
polarization coefficient:

KX = Ez

Ey
= ig − n2

X sin θ cos θ

εzz − n2
X sin2 θ

. (40)

Substituting Eq. (37) into Eq. (40), we get

KX = ig(cos2 θεzz + sin2 θεyy) − (εyyεzz − g2) sin θ cos θ

εzz(cos2 θεzz + sin2 θεyy) − (εyyεzz − g2) sin2 θ
.

(41)

At the resonant plasmon frequency defined by cos2 θεzz +
sin2 θεyy = 0, we obtain KX = 1

tan θ
, which is expected. If

we set θ = 0, which corresponds to normal incidence,

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

(meV)

R
e[
n O

]

(a)

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

(meV)

Im
[n
O

]

(b)

FIG. 7. Real and imaginary parts of the refractive index nO of
an O wave as a function of frequency for EF = 80 meV, h̄vF b =
100 meV, and dephasing rate γ = 10 meV.

KX = ig
εzz

, i.e., again proportional to g. In this case, the plas-
mon frequency is given by εzz = 0, and KX → ∞ in the
absence of losses. If εyy = εzz = ε⊥, Eq. (41) gives

KX = igε⊥ − (ε2
⊥ − g2) sin θ cos θ

ε2
⊥ cos2 θ + g2 sin2 θ

. (42)

For an isotropic medium, when g2 = 0, the last expression
gives KX = − tan θ , as it should be for a transverse wave in
an isotropic medium.

B. Propagation transverse to the y axis

In this case, ny = 0, n2 = n2
x + n2

z , nx = n cos φ, nz =
n sin φ;⎛

⎜⎝
εxx − n2

z 0 nxnz

0 εyy − n2 ig

nznx −ig εzz − n2
x

⎞
⎟⎠
⎛
⎜⎝

Ex

Ey

Ez

⎞
⎟⎠ = 0, (43)

(sin2 φεzz + cos2 φεxx )n4

− n2[εxxεzz + εyy(sin2 φεzz + cos2 φεxx ) − sin2 φg2]

+ εxx(εyyεzz − g2) = 0. (44)

Note that the solution of Eq. (44) at φ = π
2 corresponds to

the normal incidence propagation along z and therefore should
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FIG. 8. Real and imaginary parts of the refractive index nX of
an X wave as a function of frequency for different values of the
propagation angle θ . Other parameters are EF = 80 meV, h̄vF b =
100 meV, and dephasing rate γ = 10 meV.
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FIG. 9. Real part of the bulk plasmon resonance frequency at
normal incidence θ = 0 as a function of the Fermi energy.

coincide with Eqs. (36) and (37) at θ = 0. Indeed, from
Eq. (44) for φ = π

2 , we obtain

(n2 − εxx )

[
n2 −

(
εyy − g2

εzz

)]
= 0; (45)

from which n2
O = εxx and n2

X = εyy − g2

εzz
, as expected.

The case n2 → ∞ in the absence of losses, when

sin2 φεzz + cos2 φεxx = 0 (46)

corresponds to the condition n · D = 0 where E = −∇ϕ ‖ n.
From Eq. (44), we obtain

n2
O,X = εxxεzz + εyy(sin2 φεzz + cos2 φεxx ) − sin2 φg2

2(sin2 φεzz + cos2 φεxx )

±
√

[εxxεzz + εyy(sin2 φεzz + cos2 φεxx ) − sin2 φg2]2 − 4(sin2 φεzz + cos2 φεxx )εxx(εyyεzz − g2)

2(sin2 φεzz + cos2 φεxx )
. (47)

In Eq. (47), the signs ± are chosen for n2
O,X according to the

limiting case φ = π
2 .

For the propagation along the x axis of anisotropy, when
φ = 0, Eq. (44) gives

n2
O,X = εzz + εyy

2
±
√(

εzz − εyy

2

)2

+ g2. (48)

Note that the x axis is also a gyrotropy axis related to the Weyl
node separation along x. Therefore the propagation along x
is similar to the Faraday geometry in a magnetic field. In
our case, the normal modes are elliptically polarized, and an
incident linearly polarized wave experiences Faraday rotation
and gains ellipticity after traversing a sample in x direction. To
quantify the effect, Fig. 10 shows the polarization coefficient

KX = Ez/Ey after traversing a 1-μm-thick film for a wave
initially linearly polarized in y direction. The real part of KX

is a measure of the polarization rotation whereas its imaginary
part is a measure of ellipticity. Clearly, a rotation by ∼ π/2
by very thin (0.5–1 μm) Weyl semimetal films is possible
at frequencies near the interband absorption edge. This is a
giant Faraday rotation, comparable to the one observed at
terahertz (THz) frequencies in narrow-gap semiconductors
in the vicinity of a cyclotron resonance in tesla-strength
magnetic fields; see, e.g., Ref. [33] for the review. Note that
in our case no magnetic field is needed and the effect is
controlled by the Weyl node separation and by the Fermi
level. Previously Faraday rotation and nonreciprocity in light
propagation associated with it was studied in Refs. [7,23]
using the model with an axion θ term in the electromagnetic
field action.
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C. Oblique propagation of bulk polaritons

In the general case, the direction of the wave vector is
determined by two angles θ and φ:

nx = n cos φ, nz = n sin φ cos θ, ny = n sin φ sin θ.

The general expression for n2
O,X is quite cumbersome. At the

same time, in the particular case of εyy = εzz = ε⊥, the result
should not depend on the angle θ and should coincide with the
one for a magnetized plasma:

n2
O,X = ε⊥[εxx(1 + cos2 φ) + sin2 φε⊥] − sin2 φg2

2(sin2 φε⊥ + cos2 φεxx )

±
√

(ε⊥[εxx(1 + cos2 φ) + sin2 φε⊥] − sin2 φg2)2 − 4εxx(sin2 φε⊥ + cos2 φεxx )(ε2
⊥ − g2)

2(sin2 φε⊥ + cos2 φεxx )
. (49)

The condition n · D = 0 at E = −∇ϕ ‖ n in the case of an
oblique propagation gives

εxx cos2 φ + sin2 φ(sin2 θεyy + cos2 θεzz ) = 0. (50)

Therefore Eq. (50) determines the frequencies of bulk plas-
mons in the general case. Under the condition εyy = εzz =
ε⊥, the plasmon dispersion equation takes a form similar to
plasmons in a magnetized plasma:

εxx cos2 φ + sin2 φε⊥ = 0. (51)

V. BOUNDARY CONDITIONS

So far we considered propagation and transmission of elec-
tromagnetic waves in bulk samples. Now we turn to effects
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FIG. 10. Spectra of real and imaginary parts of the polarization
coefficient KX = Ez/Ey for an incident wave linearly polarized in y
direction after traversing a 1-μm film in x direction.

of reflection and surface wave propagation that are equally
sensitive to the electronic structure of WSMs. Moreover, in
many situations they are easier to observe than bulk propaga-
tion effects.

We start with the derivation of the boundary conditions
at z = 0 surface. Assume that there is an isotropic dielectric
medium with dielectric constant n2

up = εup above a WSM. The
boundary conditions include the following.

(i) Gauss’ law for the normal components of the electric
induction vector:

εupEz(z = +0) − Dz(z = −0) = 4πρS

= −i
4π

ω

(
∂

∂x
jS
x + ∂

∂y
jS
y

)
, (52)

where ρS , jS
x , and jS

y are the surface charge and components
of the surface current that are connected by the continuity
equation. For the wave field, we have ∂

∂x,∂y → ikx,y.
(ii) Equations for the magnetic field components:

Bz(z = −0) = Bz(z = +0), (53)

By(z = +0) − By(z = −0) = −4π

c
jS
x , (54)

Bx(z = +0) − Bx(z = −0) = 4π

c
jS
y . (55)

Due to the presence of the components of the surface conduc-
tivity σ S

zz and σ S
zy = −σ S

yz a surface dipole layer is formed at
the boundary between the two media. Its dipole moment is

d = Re[z0dze
−iωt+ikxx+ikyy],

dz = i

ω

[
σ S

zyEy(z = −0) + σ S
zzEz(z = −0)

]
. (56)

Note that when dealing with a surface response, we will
always choose the fields at z = −0 in Eq. (56) and similar
relationships. The presence of the dipole layer changes the
boundary conditions for the tangential field components of E.
Consider Maxwell’s equations

∂Ez

∂y
− ∂Ey

∂z
= i

ω

c
Bx,

∂Ex

∂z
− ∂Ez

∂x
= i

ω

c
By.

For convenience, let’s assume that the dipole layer has a small
but finite thickness L:

|kx,y|L � 1 and
ω

c
L � 1.
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FIG. 11. Spectra of the real and imaginary parts of the xx com-
ponent of the surface conductivity at several values of the Fermi
momentum for h̄vF b = 100 meV and dephasing rate γ = 10 meV.

Using ∂
∂x,∂y → ikx,y and integrating

∫ L
2

− L
2
. . . dz, we obtain

ikx,y

∫ L
2

− L
2

Ez dz = Ex,y

(
z = L

2

)
− Ex,y

(
z = −L

2

)
. (57)

We neglect the integral over the magnetic field components
assuming that ω

c L → 0. Next we use Gauss’ law under the
condition |kx,y|L → 0, which will yield in the region of the
dipole layer:

∂Ez

∂z
= 4πρ(z), ρ(z) = −

(
∂Pz

∂z
+ ∂ pz

∂z

)
.

Here, Pz is a component of the volume polarization whereas
pz describes the distribution of the polarization in the dipole
layer, so that∫ L

2

− L
2

∂ pz

∂z
dz = 0 and

∫ L
2

− L
2

pz dz = dz.

Substituting Ez = −4π (Pz + pz ) into Eq. (57) and integrating
over dz at |kx,y|L → 0 and finite Pz, we obtain

Ex,y

(
z = L

2

)
− Ex,y

(
z = −L

2

)
= −i4πkx,ydz. (58)

The boundary condition Eq. (58) looks unusual but it can be
easily deduced from the radiation field of an individual dipole.

Figures 11–14 show spectra of the surface conductivity
components for different values of the Fermi momentum.
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FIG. 12. Spectra of the real and imaginary parts of the yy com-
ponent of the surface conductivity at several values of the Fermi
momentum for h̄vF b = 100 meV and dephasing rate γ = 10 meV.

Note that the surface conductivity in Gaussian units has
a dimension of velocity and its value is normalized by
e2/(2π h̄) � 3.5 × 107 cm/s in all plots. In contrast with the
bulk conductivity, the surface conductivity had a Drude-like
behavior at low frequencies only for the yy component be-
cause of the surface state dispersion E = −h̄vF ky. The sur-
face optical response decreases with increasing Fermi energy
and vanishes when all surface states within k2

x + k2
y < b2 are

occupied.

VI. REFLECTION FROM THE SURFACE OF A WEYL
SEMIMETAL

Consider radiation incident from a medium with refractive
index nup on a WSM at an angle θ between the wave vector of
the wave and the normal to a WSM. For simplicity consider
the propagation transverse to the x axis. The reflection spectra
provide information about both bulk and surface conductivity
components. Here we will pay particular attention to the case
when the contribution of the surface states becomes significant
or dominant, thus allowing one to probe surface states by
optical means.

A. Reflection with excitation of an O mode

In this geometry, the complex amplitudes of the electric
field of the incident E1, reflected E2, and transmitted EO
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FIG. 13. Spectra of the real and imaginary parts of the zz com-
ponent of the surface conductivity at several values of the Fermi
momentum for h̄vF b = 100 meV and dephasing rate γ = 10 meV.

wave are parallel to the x axis. The refractive index of the
transmitted wave is n2

O = εxx = ε(0)
xx + i 4π

ω
σ B

xx [see Eq. (36)].
Applying Maxwell’s equations with standard boundary

conditions including the surface current, we arrive at

R = E2

E1
= −

cos θO

√
ε

(0)
xx + i 4π

ω
σ B

xx + 4π
c σ S

xx − cos θnup

cos θO

√
ε

(0)
xx + i 4π

ω
σ B

xx + 4π
c σ S

xx + cos θnup

,

(59)

where nup sin θ = nO sin θO. Assuming σ S
xx = 0, we ob-

tain R = E2
E1

= cos θnup−cos θOnO

cos θOnO+cos θnup
, which is a standard Fresnel

formula.
For the same magnitude of σ S

xx, the relative contribution of
surface states to the reflected field depends on the parameter

|ε(0)
xx |

4π |σ B
xx |/ω . If ω|ε(0)

xx |
4π |σ B

xx | � 1, the relative contribution of surface

states is determined by the expression: 2ω|σ S
xx |/c

|σ B
xx |/|ε(0)

xx | . If ω|ε(0)
xx |

4π |σ B
xx | � 1,

one needs to evaluate the ratio 2
√

πσ S
xx/c√

σ B
xx/ω

.

B. Reflection with excitation of an X mode

In this geometry, the complex Fourier harmonics for the
incident and reflected waves are

(y0 ∓ z0 tan θ )E1,2e∓i ω
c nup cos θz−i ω

c nup sin θy−iωt .
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FIG. 14. Spectra of the real and imaginary parts of the yz com-
ponent of the surface conductivity at several values of the Fermi
momentum for h̄vF b = 100 meV and dephasing rate γ = 10 meV.

The transmitted wave is

(y0 + z0KX )EX e−i ω
c nX cos θX z−i ω

c nX sin θX y−iωt ,

where n2
X and KX are given by Eqs. (37) and (40), in which

one should substitute θ → θX . The corresponding complex
amplitudes of the magnetic field are B1x = nup

cos θ
E1, B2x =

− nup

cos θ
E2, B(X )x = nX (cos θX − sin θX KX )EX .

At the plasmon frequency, when KX = 1
tan θX

, the last equa-
tion gives B(X )x = 0, as should be expected. For an isotropic
medium, when KX = − tan θX , we obtain B(X )x = nX

cos θX
EX ,

which is also expected for a transverse wave [note that EX

is an amplitude of the y component of the extraordinary (X)
mode].

We will use the boundary conditions

E1 + E2 − EX = iω
4π

c
nup sin θdz,

dz = i

ω

(
σ S

zy + σ S
zzKX

)
EX , (60)

nup

cos θ
(E1 − E2) − nX (cos θX − sin θX KX )EX = 4π

c
jS
y ,

jS
y = (

σ S
yy + σ S

yzKX
)
EX (61)
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to obtain

R = E2

E1
= nup

[
1 − 4π

c nup sin θ
(
σ S

zy + σ S
zzKX

)]− nX cos θ (cos θX − sin θX KX ) + 4π
c cos2 θ

(
σ S

yy + σ S
yzKX

)
nX cos θ (cos θX − sin θX KX ) + 4π

c cos2 θ
(
σ S

yy + σ S
yzKX

)+ nup
[
1 − 4π

c nup sin θ
(
σ S

zy + σ S
zzKX

)] , (62)

where nup sin θ = nX sin θX . In the limit of an isotropic
medium, where KX = − tan θX , σ S

i j = 0, we obtain R = E2
E1

=
nup cos θX −nX cos θ

nX cos θ+nup cos θX
, which is a standard Fresnel equation.

For the normal incidence, the expressions are simplified:

n2
X = εyy − g2

εzz
= ε(0)

yy + i
4π

ω
σ B

yy −
( 4πσ B

yz

ω

)2

ε
(0)
zz + i 4π

ω
σ B

zz

,

KX = ig

εzz
= i

4πσ B
yz

ω

ε
(0)
zz + i 4π

ω
σ B

zz

,

which gives

R =
nup − nX + 4π

c

(
σ S

yy + iσ S
yz

g
εzz

)
nup + nX + 4π

c

(
σ S

yy + iσ S
yz

g
εzz

) . (63)

The contribution of surface states is less trivial for X-
mode excitation as compared to the excitation of an O mode.
For normal incidence [see Eq. (63)] one can see that at the
plasmon resonance frequency, when εzz → 0 in the absence
of losses, the contribution of the surface conductivity can
become dominant. Indeed, in Eq. (63) the term σ S

yz
g
εzz

diverges

as 1
εzz

, whereas the refractive index nX diverges weaker, as
1√
εzz

. When σ S
i j = 0 while nX � nup we have R = −1 (we take

into account that the magnitude of nX is large at the plasmon
frequency). In the opposite case, when the contribution of
the surface conductivity dominates, i.e., 4π

c |σ S
yz

g
εzz

| � |nX | ≈
g√|εzz | , we obtain R = +1, i.e., the phase of the reflected field

is rotated by 180◦.
The enhanced contribution of the surface conductivity at

normal incidence in the vicinity of the bulk plasmon res-
onance is expected. Indeed, at plasmon resonance the z-
component Ez of the field in the medium becomes very large,
which leads to a dominant contribution of the surface current
jS
y = σ S

yzEz.
For oblique incidence θ �= 0 and small losses, the cal-

culations of the reflection in the vicinity of plasmon res-
onance have a technical subtlety, related to the presence
of the term nX cos θ (cos θX − sin θX KX ) in Eq. (62). In-
deed, at the plasmon frequency nX → ∞ as losses γ →
0; however, for a plasmon we also have KX → 1

tan θX
, i.e.,

(cos θX − sin θX KX ) → 0. One needs to treat the resulting un-
certainty of the product with caution. The details are presented
in Appendix F.

The main result is that the contribution of surface states to
the reflected wave is determined by the ratio

|σ S
yz|

c
√|εzz|/4π

and therefore becomes significant or dominant at the plasmon
resonance frequency, when εzz = ε(0)

zz + i 4π
ω

σ B
zz → 0. When

the bulk contribution dominates the reflection coefficient R is

close to −1. When the surface contribution dominates, R is
close to +1 i.e., the phase of the reflected field flips.

VII. SURFACE PLASMON-POLARITONS

Surface plasmon-polaritons can be supported by both bulk
and surface electron states. Here we derive dispersion re-
lations for surface waves including both bulk and surface
conductivity for several specific cases. Emphasis is placed on
the situations where the dispersion is significantly affected
or dominated by surface states and can therefore be used
for diagnostics of surface states and Fermi arcs. Previously,
surface plasmons in WSMs have been considered in the low-
frequency limit within a semiclassical description of particle
motion with added ad hoc anomalous Hall term [34] and with
a quantum-mechanical description [28] based on the Hamilto-
nian in Ref. [27]. Both studies indicated strong anisotropy and
dispersion of surface plasmons.

A. Quasielectrostatic approximation

Within the quasielectrostatic approximation the electric
field can be defined through the scalar potential:

�E = Re[�E (z)eikxx+ikyy−iωt ] = −∇F ,

F = Re[�(z)eikxx+ikyy−iωt ].

We introduce the vector of electric induction, �D =
Re[�D(z)eikxx+ikyy−iωt ] = ε̂�E and use Gauss’ law for each
half-space:

∇ · �D = 0. (64)

In general, there can be an electric dipole layer at the
boundary between the two media. The dipole layer has a jump
in the scalar potential �(z),

�(z = +0) − �(z = −0) = 4πdz, (65)

where dz is determined by Eqs. (56).
Next, we define the potential �(z) for the surface mode as

�(z > 0) = �upe−κupz, �(z < 0) = �W e+κW z.

Using Eq. (64) in each half-space, we obtain

k2
x + k2

y − κ2
up = 0, (66)

k2
x εxx + k2

y εyy − κ2
W εzz = 0. (67)

Using the boundary condition Eq. (52), we get

n2
upκup�up − [εzz(−κW �W ) + εzy(−iky�W )]

= −i
4π

ω

(
∂

∂x
jS
x + ∂

∂y
jS
y

)
,
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which gives

n2
upκup�up +

[
κW

(
εzz + 4π

ω
kyσ

S
yz

)
+ gky

+ i
4π

ω

(
k2

x σ
S
xx + k2

y σ
S
yy

)]
�W = 0, (68)

where εyz = −εzy = ig = i
4πσ B

yz

ω
. Using also the boundary con-

dition Eq. (65) together with Eqs. (56), we obtain

�up +
(

i
4π

ω
κW σ S

zz − 4π

ω
kyσ

S
zy − 1

)
�W = 0. (69)

From these relationships, one can get the dispersion equation
for surface waves. Note that the confinement constants κW

and κup are generally complex-valued. Their imaginary parts
give rise to a Poynting flux away from the surface which
contributes to surface wave attenuation.

1. Neglecting surface states

First, we neglect the surface conductivity to consider sur-
face plasmons supported by bulk carriers only. In this case

from, Eqs. (66) and (69), we get κup =
√

k2
x + k2

y , �up = �W .

Denoting k2
x + k2

y = k2, kx = k cos φ, ky = k sin φ, we obtain
from Eq. (67)

κW = k

√
cos2 φεxx + sin2 φεyy

εzz
. (70)

Furthermore, from Eq. (68) for κup = k and �up = �W , we
have

n2
upk + κW εzz + gk sin φ = 0, (71)

where εyz = ig = i
4πσ B

yz

ω
. Substituting Eq. (70) into Eq. (71),

we obtain the dispersion relation

D(ω, φ) = n2
up + εzz

√
cos2 φεxx + sin2 φεyy

εzz
+ g sin φ = 0.

(72)
The dispersion equation Eq. (72) gives the dependence

ω(φ), but does not have any dependence on the magnitude of
k. This situation is similar to the dispersion relation for bulk
plasmons in the quasielectrostatic approximation, Eq. (50). It
is also similar to waves in classical magnetized plasmas. Of
course, the range of values of k is constrained by the validity
of the quasielectrostatic approximation.

2. Including surface states

If we now include the surface conductivity, Eqs. (66)–(69)
give

D(ω, φ) − 4π

ω
k

[√
cos2 φεxx + sin2 φεyy

εzz

(
in2

upσ
S
zz − sin φσ S

yz

)

− n2
up sin φσ S

yz − i
(

cos2 φσ S
xx + sin2 φσ S

yy

)] = 0, (73)

where the function D(ω, φ) is determined by Eq. (72). As
we see, taking the surface conductivity into account brings
the dependence on the magnitude of the wave vector k into
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FIG. 15. Real part of the surface plasmon frequency as a function
of real plasmon wave number obtained as a solution to the dispersion
equation Eq. (73) for φ = π/2, h̄vF b = 100 meV and two values
of the electron Fermi momentum kF = 0.5b and 0.8b. The surface
plasmon frequency neglecting surface conductivity contribution is
shown as a dashed line.

the dispersion relation. Therefore measuring the frequency
dispersion of the surface plasmon resonance provides a direct
characterization of surface states.

Figure 15 shows the surface plasmon dispersion for propa-
gation along y, i.e., transverse to the gyrotropic x axis, for two
values of the Fermi momentum. The real part of the surface
plasmon frequency ignoring the contribution of the surface
conductivity is shown as a dashed horizontal line for each
value of kF . Clearly, the contribution of surface electron states
is important everywhere, except maybe in a narrow region of
small wave numbers k where the quasistatic approximation
breaks down. The plot has a horizontal axis ck in units of meV
in order to directly compare with frequencies. The inequality
ck � ω is satisfied almost everywhere.

The fact that the contribution of the surface current is so
important can be understood from the structure of Eq. (73).
Clearly, the relative contribution of the bulk and surface terms
can be estimated by comparing the magnitudes of |σ B| and
|kσ S|, where σ B and σ S are appropriate components of bulk
and surface conductivity tensors and k is a wave number of a
given electromagnetic mode. This is true not only for surface
modes but also for other electromagnetic wave processes
at the boundary such as reflection. In the mid/far-infrared
spectral region of interest to us, |kσ S| � |σ B| for vacuum
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wavelengths ck ∼ ω. However, for large surface plasmon
wave numbers shown in Fig. 15, the opposite condition
|kσ S| � |σ B| is satisfied.

Note the dispersion in Fig. 15 is stronger (the slope is
steeper) at frequencies corresponding to Re[εzz] ≈ 0, i.e.. near
the resonance for bulk plasmons propagating along z. This
follows from Eq. (73) where the surface terms contain a factor
1/

√
εzz. Physically, this is expected: indeed, as we already

commented, at the plasmon resonance the z-component Ez of
the field in the medium becomes very large, which leads to an
enhanced contribution of the surface current jS

y = σ S
yzEz.

B. Surface waves beyond the quasielectrostatic approximation

For small wave numbers, the quasielectrostatic approxima-
tion is no longer valid. On the other hand, in this case one
can neglect the surface conductivity as we pointed out in the
previous paragraph. This is not an interesting limit as far as
the spectroscopy of surface states is concerned, but we still
derive the resulting dispersion relation for completeness. For
the electric field of a surface mode in the upper half-space
with the refractive index nup,

�Eup = Re[�Eupeikxx+ikyy−κupz−iωt ],

the Maxwell’s equation for ∇ × �E gives

kyEz − iκupEy = ω

c
Bx, kxEz − iκupEx = −ω

c
By,

kxEy − kyEx = ω

c
Bz. (74)

For the field in the Weyl semimetal,

�EW = Re[�EW eikxx+ikyy+κW z−iωt ]

the same equation gives, after replacing κup → −κW in
Eq. (74),

kyEz + iκW Ey = ω

c
Bx, kxEz + iκW Ex = −ω

c
By,

kxEy − kyEx = ω

c
Bz. (75)

The inverse decay length for the field in the upper halfspace is
given by κ2

up = k2 − n2
up

ω2

c2 .
In a WSM, we can use a version of Eq. (35) after replacing

kz → −iκW :⎛
⎜⎝

ω2

c2 εxx − k2
y + κ2

W kxky −ikxκW

kykx
ω2

c2 εyy − k2
x + κ2

W i ω2

c2 g − ikyκW

−ikxκW −i ω2

c2 g − ikyκW
ω2

c2 εzz − k2

⎞
⎟⎠
⎛
⎜⎝

Ex

Ey

Ez

⎞
⎟⎠

= 0, (76)

where k2 = k2
x + k2

y .
Consider again a surface wave propagating transverse to

the anisotropy axis (kx = 0). In this case, there are two so-
lutions to the dispersion equation Eq. (76), O and X waves.
However, one can show that an O wave with Ex �= 0 does not
exist as a surface wave. Moreover, this statement remains true
even with the surface current taken into account. Only the X
wave with Ey,z �= 0 can exist as a surface wave. Its inverse

confinement length in the Weyl semimetal is given by

κ2
W = εyy

εzz

(
k2 − n2

X

ω2

c2

)
, (77)

where

n2
X = εzz − g2

εyy

is the refractive index of an extraordinary wave propagating
in the volume in the y direction [see Eq. (37) for θ = π

2 ]. The
polarization of an extraordinary wave is determined by

i

(
ω2

c2
g + kκW

)
Ey =

(
ω2

c2
εzz − k2

)
EzW , (78)

which follows from Eq. (76). After some straightforward
algebra, we obtain the dispersion relation for a surface wave:(

k2 − ω2

c2
n2

up

)(
gk + εzz

√
εyy

εzz

√
k2 − ω2

c2
n2

X

)

+
√

k2 − ω2

c2
n2

up

(
k2 − ω2

c2
εzz

)
n2

up = 0. (79)

In the limit of large wave numbers k, this equation becomes
the quasielectrostatic dispersion relation Eq. (72) at φ = π

2 .
For the propagation in x direction, one can repeat the

above analysis for the case ky = 0 and obtain that there are
no surface wave solutions when the surface conductivity is
neglected.

One interesting solution of the dispersion equation Eq. (79)
is a strongly nonelectrostatic surface mode which is weakly
localized in a medium above the WSM surface, e.g., in the
air. The energy of this wave is mostly contained in an ambient
medium above the WSM surface where there is no absorption.
Therefore such surface waves can have a long propagation
length; see, e.g., Refs. [35–37].

To find this solution, we assume n2
up = 1 and introduce

the notation ω
c = k0. A weak localization outside a WSM

means that |κup| � k0. Then, assuming k � k0 + δk, where
k0 � |δk|, we obtain κup � √

2k0δk. From Eqs. (79) and (77)

in the first order with respect to
√

δk
k0

, we get

δk � k0

2

(εzz − 1)2[
g +

√
εzzεyy

(
1 − εzz + g2

εyy

)]2 , (80)

Reκ2
W � Re

[
k2

0
εyy

εzz

(
1 − εzz + g2

εyy

)]
. (81)

This solution describes surface waves if Re[κW ] > 0 and
Re[κup] > 0. In addition, |δk| � k0 has to be satisfied. We
checked that all three inequalities are satisfied for the numeri-
cal parameters chosen to calculate the conductivity tensor. As
an example, Fig. 16 shows normalized confinement constants
Re[κW ]/k0 and Re[κup]/k0 � Re[

√
2δk/k0] as functions of

frequency, for the Fermi momentum kF = 0.5b. Clearly, the
solution describes a surface wave which is weakly confined in
the air and strongly confined in the WSM. The spectra remain
qualitatively the same with increasing Fermi momentum,
but the oscillating feature moves to higher energies, roughly
following the spectral region where the real parts of εzz and εyy
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FIG. 16. Normalized confinement constants (a) Re[κup]/k0 �
Re[

√
2δk/k0] and (b) Re[κW ]/k0 as functions of frequency, for the

Fermi momentum kF = 0.5b. Other parameters are h̄vF b = 100 meV
and γ = 10 meV.

cross zero. We note again that the confinement constants κW

and κup are complex-valued. Their imaginary parts give rise
to a Poynting flux away from the surface which contributes to
surface wave attenuation.

VIII. SUMMARY AND CONCLUSIONS

We presented systematic studies of the optical properties
and electromagnetic modes of Weyl semimetals in the min-
imal two-band model with two separated Weyl nodes. Both
bulk and surface conductivity tensors are derived from a
single microscopic Hamiltonian. The presence of separated
Weyl nodes and associated surface states gives rise to distinct

signatures in the transmission, reflection, and polarization of
bulk and surface electromagnetic waves. These signatures can
be used for quantitative characterization of electronic struc-
ture of Weyl semimetals. Particularly sensitive spectroscopic
probes of bulk electronic properties include strong anisotropy
in propagation of both bulk and surface modes, birefringent
dispersion and absorption spectra of ordinary and extraordi-
nary normal modes, the frequency of bulk plasmon resonance
as a function of incidence angle and doping level, and the
polarization rotation and ellipticity for incident linearly polar-
ized light. The sensitive characterization of surface electronic
states can be achieved by measuring the phase change of the
reflection coefficient of incident plane waves, the frequency
dispersion of surface plasmon-polariton modes, and strong
anisotropy of surface plasmon-polaritons with respect to their
propagation direction and polarization.

The quantitative results in this paper are valid only for
magnetic WSMs with time-reversal symmetry breaking. One
can still make some qualitative conclusions regarding the
optical response of WSMs with inversion symmetry breaking.
In particular, one should expect the off-diagonal conductivity
components to be zero in this case, and therefore gyrotropic
effects will be absent. However, there should still be strong
anisotropy of both bulk and surface mode propagation, related
to the position of Weyl node pairs. One should still expect
strong dispersion of surface plasmon-polaritons associated
with the presence of Fermi arc surface states. The features
in absorption and dispersion associated with the bulk plasmon
resonance, Fermi edge, and saddle points between Weyl nodes
will be present. The low-frequency response related to bulk
Dirac cones will be similar.

Potential optoelectronic applications of magnetic WSM
films in the midinfrared and THz spectral regions will benefit
from the strong anisotropy, gyrotropy, and birefringence of
these materials, giant polarization rotation for light transmit-
ted along the gyrotropy axis of submicron films, and strongly
localized surface plasmon-polariton modes. All effects are
tunable by doping.
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APPENDIX A: EVALUATION OF THE MATRIX ELEMENTS OF THE CURRENT DENSITY OPERATOR

We denote everywhere the bulk states by Latin letters and the surface states by Greek letters, i.e., |n〉 = |B〉, |μ〉 = |S〉. In
this section, we evaluate the matrix elements of the current density operator that enter Eq. (28) for the components of bulk and
surface conductivity tensors.

( jx )nm = 〈n| ĵx|m〉
= evF

h̄b

∫
d3r
(
�B

kn,sn
(r)
)†

(−ih̄∂x )σ̂x�
B
km,sm

(r)
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= evF

2b
knxδkn,km [sm

√
(1 + sm cos θkn )(1 − sn cos θkn )eiφkn + sn

√
(1 + sn cos θkn )(1 − sm cos θkn )e−iφkn ], (A1)

( jx )μν = 〈μ| ĵx|ν〉 = evF

h̄b

∫
d3r
(
�S

kμ
(r)
)†

(−ih̄∂x )σ̂x�
S
kν

(r) = 0, (A2)

( jx )μm = 〈μ| ĵx|m〉 = evF

h̄b

∫
d3r
(
�S

kμ
(r)
)†

(−ih̄∂x )σ̂x�
B
km,sm

(r)

= 2evF smkmxkmz

ib
(
κ2

m + k2
mz

)
√

κm(1 + sm cos θkm )

Lz
δkmx,kμx δkmy,kμy , (A3)

( jy)nm = evF

h̄b

∫
d3r
(
�B

kn,sn
(r)
)†

(−ih̄∂y)σ̂x�
B
km,sm

(r) − evF

∫
d3r
(
�B

kn,sn
(r)
)†

σ̂z�
B
km,sm

(r)

= evF

2b
knyδkn,km [sm

√
(1 + sm cos θkn )(1 − sn cos θkn )eiφkn + sn

√
(1 + sn cos θkn )(1 − sm cos θkn )e−iφkn ]

+ evF

2
δkn,km [snsm

√
(1 + sn cos θkn )(1 + sm cos θkn ) −√

(1 − sn cos θkn )(1 − sm cos θkn )], (A4)

( jy)μν = evF

h̄b

∫
d3r
(
�S

kμ
(r)
)†

(−ih̄∂y)σ̂x�
S
kν

(r) − evF

∫
d3r
(
�S

kμ
(r)
)†

σ̂z�
S
kν

(r)

= −evF δkμx,kνx δkμy,kνy , (A5)

( jy)μm = evF

h̄b

∫
d3r
(
�S

kμ
(r)
)†

(−ih̄∂y)σ̂x�
B
km,sm

(r) − evF

∫
d3r
(
�S

kμ
(r)
)†

σ̂z�
B
km,sm

(r)

= 2evF smkmykmz

ib
(
κ2

m + k2
mz

)
√

κm(1 + sm cos θkm )

Lz
δkmx,kμx δkmy,kμy , (A6)

( jz )nm = evF

∫
d3r
(
�B

kn,sn
(r)
)†

σ̂y�
B
km,sm

(r)

= i
evF

2
δkn,km [sn

√
(1 + sn cos θkn )(1 − sm cos θkn )e−iφkn − sm

√
(1 + sm cos θkn )(1 − sn cos θkn )eiφkn ], (A7)

( jz )μν = evF

∫
d3r
(
�S

kμ
(r)
)†

σ̂y�
S
kν

(r) = 0, (A8)

( jz )μm = evF

∫
d3r
(
�S

kμ
(r)
)†

σ̂y�
B
km,sm

(r) = −2evF smkmz

κ2
m + k2

mz

√
κm(1 + sm cos θkm )

Lz
δkmx,kμx δkmy,kμy , (A9)

where we have used κ = b2−(k2
x +k2

y )
2b .

APPENDIX B: CALCULATION OF THE BULK OPTICAL CONDUCTIVITY TENSOR

The 3D integrals over electron momenta cannot be evaluated analytically in most cases, even in the zero-temperature limit.
Whenever the integrals remain in the final expression, they were evaluated numerically for the plots in the main text.

1. Contribution of intraband transitions (s = +1 → s = +1)

In this case, the matrix elements j (q)
nm of the current density operator reduce to

( jx )nn = evF sn
knx

b
| sin θkn | cos φkn , (B1)

( jy)nn = evF sn

(
kny

b
| sin θkn | cos φkn + cos θkn

)
, (B2)

( jz )nn = evF sn| sin θkn | sin φkn . (B3)

Therefore we obtain

σ intra
xx (ω) = g

ih̄

V

∑
mn

(
fn − fm

Em − En

) |〈n| ĵx|m〉|2
h̄(ω + iγ ) + (En − Em)

= ige2v2
F

b2(ω + iγ )

1

V

∑
n

(
− ∂ fn

∂En

)
k2

nx sin2 θkn cos2 φkn
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= ige2v2
F

b2(ω + iγ )

∫
∞

d3k

(2π )3
δ(EB − EF )k2

x sin2 θk cos2 φk

= ige2vF

4π3b2kF h̄(ω + iγ )

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

k2
x K2

x �
(
kF −

√
K2

x + k2
y

)
√

k2
F − (

K2
x + k2

y

) . (B4)

Similarly,

σ intra
yy (ω) = ige2vF

4π3b2kF h̄(ω + iγ )

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

k2
y (Kx + b)2�

(
kF −

√
K2

x + k2
y

)
√

k2
F − (

K2
x + k2

y

) . (B5)

σ intra
zz (ω) = ige2vF

4π3kF h̄(ω + iγ )

∫ ∞

−∞
dkx

∫ ∞

−∞
dky�

(
kF −

√
K2

x + k2
y

)√
k2

F − (
K2

x + k2
y

)
. (B6)

Here, �(k) is the step function and we have used cos θk = ky√
K2

x +k2
y +k2

z

, eiφk = Kx+ikz√
K2

x +k2
z

, Kx ≡ (k2
x +k2

y )−b2

2b , and kF ≡ EF
h̄vF

.

σ intra
xy (ω) = σ intra

xz (ω) = σ intra
yz (ω) = 0. (B7)

2. Contribution of interband transitions (s → −s, |B〉 ↔ |S〉)

In this case, i.e., sm = −sn = ±1, n �= m, the matrix elements j (q)
nm of the current density operator reduce to

( jx )nm = evF snδkn,km

knx

b
(sn cos θkn cos φkn − i sin φkn ), (B8)

( jy)nm = evF snδkn,km

[
kny

b
(sn cos θkn cos φkn − i sin φkn ) − sn| sin θkn |

]
, (B9)

( jz )nm = evF snδkn,km (i cos φkn + sn cos θkn sin φkn ), (B10)

where n �= m. Therefore we obtain

σ inter
xx (ω) = g

ih̄

V

∑
s=±1

∑
mn

(
fn(−s) − fm(s)

Em(s) − En(−s)

) |〈−sn| ĵx|ms〉|2
h̄(ω + iγ ) + (En(−s) − Em(s) )

= ih̄g
∑
s=±1

∫
∞

d3k

(2π )3

(
fk(−s) − fk(s)

Ek(s) − Ek(−s)

)
e2v2

F k2
x (cos2 θk cos2 φk + sin2 φk)

b2[h̄(ω + iγ ) + (Ek(−s) − Ek(s) )]

= ige2(ω + iγ )

8π3b2h̄vF

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

×

⎡
⎢⎢⎢⎢⎢⎢⎣

�
(
kF −

√
K2

x + k2
y

)
2k2

x

⎛
⎜⎜⎜⎜⎜⎜⎝

K2
x

√
k2

F − K2
x − k2

y

kF
(

ω+iγ
vF

)2(
K2

x + k2
y

) +

[(
ω+iγ

vF

)2 − 4K2
x

]
arctan

⎡
⎣ (

ω+iγ
vF

)√
k2

F −K2
x −k2

y

kF

√
4
(

K2
x +k2

y

)
−
(

ω+iγ
vF

)2

⎤
⎦

(
ω+iγ

vF

)3
√

4
(
K2

x + k2
y

)−
(

ω+iγ
vF

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

−�
(
K −

√
K2

x + k2
y

)
2k2

x

⎛
⎜⎜⎜⎜⎜⎜⎝

K2
x

√
K2 − K2

x − k2
y

K
(

ω+iγ
vF

)2(
K2

x + k2
y

) +

[(
ω+iγ

vF

)2 − 4K2
x

]
arctan

⎡
⎣ (

ω+iγ
vF

)√
K2−K2

x −k2
y

K

√
4
(

K2
x +k2

y

)
−
(

ω+iγ
vF

)2

⎤
⎦

(
ω+iγ

vF

)3
√

4
(
K2

x + k2
y

)− (
ω+iγ

vF

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B11)

where we have used Kx ≡ (k2
x +k2

y )−b2

2b = −κ, cos θk(−kx ) = cos θk(kx ), sin θk(−kx ) = sin θk(kx ) cos φk(−kx ) = cos φk(kx ), and
sin φk(−kx ) = sin φk(kx ).
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Similarly,

σ inter
yy (ω) = ige2(ω + iγ )

4π3b2h̄vF

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

⎡
⎢⎢⎢⎢⎢⎢⎣

�
(
kF −

√
K2

x + k2
y

)

×

⎛
⎜⎜⎜⎜⎜⎜⎝

(b + Kx )2k2
y

√
k2

F − K2
x − k2

y

kF
(

ω+iγ
vF

)2(
K2

x + k2
y

) +

[(
ω+iγ

vF

)2(
b2 + k2

y

)− 4(b + Kx )2k2
y

]
arctan

⎡
⎣ (

ω+iγ
vF

)√
k2

F −K2
x −k2

y

kF

√
4
(

K2
x +k2

y

)
−
(

ω+iγ
vF

)2

⎤
⎦

(
ω+iγ

vF

)3
√

4
(
K2

x + k2
y

)− (
ω+iγ

vF

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

−�
(
K −

√
K2

x + k2
y

)

×

⎛
⎜⎜⎜⎜⎜⎜⎝

(b + Kx )2k2
y

√
K2 − K2

x − k2
y

K
(

ω+iγ
vF

)2(
K2

x + k2
y

) +

[(
ω+iγ

vF

)2(
b2 + k2

y

)− 4(b + Kx )2k2
y

]
arctan

⎡
⎣ (

ω+iγ
vF

)√
K2−K2

x −k2
y

K

√
4
(

K2
x +k2

y

)
−
(

ω+iγ
vF

)2

⎤
⎦

(
ω+iγ

vF

)3
√

4
(
K2

x + k2
y

)− (
ω+iγ

vF

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B12)

σ inter
zz (ω) = ige2(ω + iγ )

8π3h̄vF

∫ ∞

−∞
dkx

∫ ∞

−∞
dky
(
K2

x + k2
y

)

×

⎡
⎢⎢⎢⎢⎢⎢⎣

�
(
K −

√
K2

x + k2
y

)
⎛
⎜⎜⎜⎜⎜⎜⎝

2
√

K2 − K2
x − k2

y

K
(

ω+iγ
vF

)2(
K2

x + k2
y

) −
8
[(

ω+iγ
vF

)2 − 4K2
x

]
arctan

⎡
⎣ (

ω+iγ
vF

)√
K2−K2

x −k2
y

K

√
4
(

K2
x +k2

y

)
−
(

ω+iγ
vF

)2

⎤
⎦

(
ω+iγ

vF

)3
√

4
(
K2

x + k2
y

)− (
ω+iγ

vF

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

−�
(
kF −

√
K2

x + k2
y

)
⎛
⎜⎜⎜⎜⎜⎜⎝

2
√

k2
F − K2

x − k2
y

kF
(

ω+iγ
vF

)2(
K2

x + k2
y

) −
8
[(

ω+iγ
vF

)2 − 4K2
x

]
arctan

⎡
⎣ (

ω+iγ
vF

)√
k2

F −K2
x −k2

y

kF

√
4
(

K2
x +k2

y

)
−
(

ω+iγ
vF

)2

⎤
⎦

(
ω+iγ

vF

)3
√

4
(
K2

x + k2
y

)− (
ω+iγ

vF

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

. (B13)

The only nonzero off-diagonal element is σ inter
zy (ω) = −σ inter

yz (ω), as expected:

σ inter
yz (ω) = −ge2

4π3bh̄

∫ ∞

−∞
dkx

∫ ∞

−∞
dky
(
k2

y − bKx
)

×

⎛
⎜⎜⎜⎜⎜⎜⎝

�
(
kF −

√
K2

x + k2
y

)2 arctan

⎡
⎣ (

ω+iγ
vF

)√
k2

F −K2
x −k2

y

kF

√
4
(

K2
x +k2

y

)
−
(

ω+iγ
vF

)2

⎤
⎦

(
ω+iγ

vF

)√
4
(
K2

x + k2
y

)− (
ω+iγ

vF

)2
− �

(
K −

√
K2

x + k2
y

) 2 arctan

⎡
⎣ (

ω+iγ
vF

)√
K2−K2

x −k2
y

K

√
4
(

K2
x +k2

y

)
−
(

ω+iγ
vF

)2

⎤
⎦

(
ω+iγ

vF

)√
4
(
K2

x + k2
y

)− (
ω+iγ

vF

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(B14)

Here we have introduced a cutoff at k = K in the integration over electron momenta in order to regularize the divergent
integral

∫
d3k

(2π )3 , which comes from 1
V

∑
n → ∫

d3k
(2π )3 . The divergence is an artifact of the effective Hamiltonian (1), which has a

“bottomless” valence band with electrons occupying all states to k → ∞. The regularization makes the valence band bounded
from below. We chose the cutoff at the momentum corresponding to the energy of 2 eV, i.e., much higher than the range of
interest to us near the Weyl nodes. In the numerical examples in the paper the value of half-separation between Weyl nodes h̄vF b

075137-20



OPTICAL PROPERTIES AND ELECTROMAGNETIC MODES … PHYSICAL REVIEW B 99, 075137 (2019)

is chosen to be 100 meV. We have verified that an exact value of the cutoff has a negligible effect on the low-energy optical
response below 350 meV, as long as K is large enough.

APPENDIX C: CALCULATION OF THE SURFACE ELECTRICAL CONDUCTIVITY

1. Surface-to-surface states intraband transitions

σ intra
yy (ω) = g

ih̄

S

∑
μν

(
fμ − fν

Eν − Eμ

) |〈μ| ĵy|ν〉|2
h̄(ω + iγ ) + (Eμ − Eν )

= igh̄e2v2
F

S

∑
μ

(
− ∂ fμ

∂Eμ

)
1

h̄(ω + iγ )

= �(b − kF )
ige2vF

√
b2 − k2

F

2π2h̄(ω + iγ )
. (C1)

All other tensor components are equal to zero.

2. Surface-to-bulk states transitions

σ inter
xx (ω) = g

ih̄

S

∑
s=±1

∑
mμ

(
fμ − fm(s)

Em(s) − Eμ

) |〈μ| ĵx|ms〉|2
h̄(ω + iγ ) + (Eμ − Em(s) )

= i4ge2v2
F h̄

b2

∑
s=±1

∫
∞

d3k

(2π )3
�
[
b2 − (

k2
x + k2

y

)]
�(kz )

×
(

f S
k − fk(s)

Ek(s) − ES
k

)
k2

x k2
z κ (1 + s cos θk)(

κ2 + k2
z

)2[
h̄(ω + iγ ) + (

ES
k − Ek(s)

)]
= ige2

h

∫ ∞

0
dkz

∫ ∞

−∞
dkx

∫ ∞

−∞
dky�

[
b2 − (

k2
x + k2

y

)] k2
z k2

x Kx

π2
(
K2

x + k2
z

)2
b2

×
⎡
⎣ �

(
kF −

√
K2

x + k2
y + k2

z

)− �(kF + ky)√
K2

x + k2
y + k2

z

[(
ω+iγ

vF
− ky

)−
√

K2
x + k2

y + k2
z

] − �(−kF − ky)√
K2

x + k2
y + k2

z

[(
ω+iγ

vF
− ky

)+
√

K2
x + k2

y + k2
z

]
⎤
⎦.

(C2)

Similarly,

σ inter
yy (ω) = ige2

h

∫ ∞

0
dkz

∫ ∞

−∞
dkx

∫ ∞

−∞
dky�

[
b2 − (

k2
x + k2

y

)] k2
z k2

y Kx

π2(K2
x + k2

z )2b2

×
⎡
⎣ �

(
kF −

√
K2

x + k2
y + k2

z

)− �(kF + ky)√
K2

x + k2
y + k2

z

[(
ω+iγ

vF
− ky

)−
√

K2
x + k2

y + k2
z

] − �(−kF − ky)√
K2

x + k2
y + k2

z

[(
ω+iγ

vF
− ky

)+
√

K2
x + k2

y + k2
z

]
⎤
⎦, (C3)

σ inter
zz (ω) = ige2

h

∫ ∞

0
dkz

∫ ∞

−∞
dkx

∫ ∞

−∞
dky�

[
b2 − (

k2
x + k2

y

)] k2
z Kx

π2
(
K2

x + k2
z

)2

×
⎡
⎣ �

(
kF −

√
K2

x + k2
y + k2

z

)− �(kF + ky)√
K2

x + k2
y + k2

z

[(
ω+iγ

vF
− ky

)−
√

K2
x + k2

y + k2
z

] − �(−kF − ky)√
K2

x + k2
y + k2

z

[(
ω+iγ

vF
− ky

)+
√

K2
x + k2

y + k2
z

]
⎤
⎦. (C4)

The only nonzero off-diagonal element is

σ inter
yz (ω) = −ge2

h

∫ ∞

0
dkz

∫ ∞

−∞
dkx

∫ ∞

−∞
dky�

[
b2 − (

k2
x + k2

y

)] k2
z kyKx

π2(K2
x + k2

z )2b

×
⎡
⎣ �

(
kF −

√
K2

x + k2
y + k2

z

)− �(kF + ky)√
K2

x + k2
y + k2

z

[(
ω+iγ

vF
− ky

)−
√

K2
x + k2

y + k2
z

] − �(−kF − ky)√
K2

x + k2
y + k2

z

[(
ω+iγ

vF
− ky

)+
√

K2
x + k2

y + k2
z

]
⎤
⎦. (C5)
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In Eqs. (C2)–(C5), the integral over kz can be carried out analytically in terms of elementary functions, leading however to
very lengthy expressions which we do not present here. The remaining integration was carried out numerically. All integrals are
finite, i.e., no cutoff is necessary.

APPENDIX D: DRUDE-LIKE LOW-FREQUENCY LIMIT

In the limit when the frequency and the Fermi energy are much smaller than h̄vF b, only the electron momenta close to
the corresponding Weyl point kx = ±b matter. Therefore we introduce δkx = kx − b for electron states near one Weyl point
and replace the degeneracy factor by 2 × g to account for the contribution from the second Weyl point. In this case, Kx ∼
(kx−b)(kx+b)

2b ≈ δkx, kx = b + δkx, and all diagonal intraband components have the same Drude form:

σ intra
xx (ω) = σ intra

yy (ω) = σ intra
zz (ω) = ge2vF k2

F

3π2h̄(−iω + γ )
. (D1)

All off-diagonal conductivity elements are zero in this limit.

APPENDIX E: SMALL b EXPANSION

In the limit b � 1, we can expand the conductivity in powers of b to the leading order: b � 1, 1
b � 1, Kx = (k2

x +k2
y )−b2

2b ∼
(k2

x +k2
y )

2b ∼ (k2
x +k2

y +k2
z )

2b � kx,y,z,
ω
vF

for kx,y,z �= 0. Then we obtain

σ B
yz(ω) ≈ −ge2

3
√

2π2h̄

b3/2

k1/2
F

, (E1)

σ B
xx(ω) ≈ ge2k2

F vF

3π2h̄(−iω + γ )
+ 2

√
2ge2(−iω + γ )

45π2h̄vF

b3/2

k3/2
F

, (E2)

σ B
yy(ω) ≈ ge2k2

F vF

3π2h̄(−iω + γ )
+ 7

√
2ge2(−iω + γ )

360π2h̄vF

b3/2

k3/2
F

, (E3)

σ B
zz(ω) ≈ ge2k2

F vF

3π2h̄(−iω + γ )
+ ge2(−iω + γ )

6
√

2π2h̄vF

b3/2

k3/2
F

, (E4)

σ S
xx(ω) = σ S

yy(ω) = σ S
zz(ω) ≈ ge2vF

2
√

2kF π3h̄(−iω + γ )
b

3
2 . (E5)

All off-diagonal surface terms are zero.

APPENDIX F: REFLECTION IN THE VICINITY OF PLASMON RESONANCE

For oblique incidence θ �= 0 and small losses the calculations of the reflection in the vicinity of plasmon resonance have a
technical subtlety, related to the presence of the term nX cos θ (cos θX − sin θX KX ) in Eq. (62). Indeed, at the plasmon frequency
nX → ∞ as losses γ → 0; however, for a plasmon we also have KX → 1

tan θX
, i.e., (cos θX − sin θX KX ) → 0. One needs to treat

the resulting uncertainty of the product with caution.
We substitute the relationship sin θX = nup sin θ

nX
into the expression for the refractive index of an extraordinary wave:

n2
X = εyyεzz − g2

cos2 θX εzz + sin2 θX εyy
= εyyεzz − g2

εzz − sin2 θ
( nup

nX

)2
(εzz − εyy)

,

which gives

n2
X = εyy − g2

εzz
+ sin2 θn2

up

(
1 − εyy

εzz

)
. (F1)

In the case εyy = εzz = ε⊥, Eq. (F1) for an arbitrary angle θ leads to the familiar expression n2
X = ε⊥ − g2

ε⊥
. Next we use Eq. (40):

KX = ig − n2
X sin θX cos θX

εzz − n2
X sin2 θX

=
ig − nup sin θnX

√
1 − ( sin θnup

nX

)2

εzz − sin2 θn2
up

.
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Consider the expression nX cos θ (cos θX − sin θX KX ):

nX cos θ (cos θX − sin θX KX ) = nX cos θ (cos θX −
ig sin θX − sin θX nup sin θnX

√
1 − ( sin θnup

nX

)2

εzz − sin2 θn2
up

)

= nX cos θ

⎛
⎝
√

1 −
(

sin θnup

nX

)2

−
igsin θnup

nX
− sin2 θn2

up

√
1 − ( sin θnup

nX

)2

εzz − sin2 θn2
up

⎞
⎠.

The condition nX
nup

� 1, which is satisfied at the plasmon frequency, allows one to simplify the above expressions for any angle
of incidence θ

KX = ig − n2
X sin θX cos θX

εzz − n2
X sin2 θX

≈ ig − nX nup sin θ

εzz − sin2 θn2
up

, (F2)

nX cos θ (cos θX − sin θX KX ) ≈ nX cos θ

(
1 − igsin θnup

nX
− sin2 θn2

up

εzz − sin2 θn2
up

)
. (F3)

Since for nX
nup

� 1 we always have sin θX � 1, the plasmon frequency always corresponds to |εzz| � 1 (at normal incidence,

εzz = 0 exactly). Taking into account Eq. (F1), we obtain 1 � |εzz| ∼ n−2
X .

Now let us consider the range of incidence angles close to normal incidence, when sin2 θ � 1. Two cases need to be treated
separately: |εzz| � sin2 θn2

up � 1 and sin2 θn2
up � |εzz| � 1.

(i) |εzz| � sin2 θn2
up � 1 In this case,

n2
X ≈ εyy − g2

εzz
, KX ≈ nX

nup sin θ
, (F4)

nX cos θ

(
1 − igsin θnup

nX
− sin2 θn2

up

εzz − sin2 θn2
up

)
≈ ig

sin θnup
, (F5)

where g = 4πσ B
yz

ω
,

R ≈ n2
up sin θ − i

4πσ B
yz

ω
+ 4π

c σ S
yznX

n2
up sin θ + i

4πσ B
yz

ω
+ 4π

c σ S
yznX

. (F6)

For real σ (B,S)
yz , we always have |R| = 1; however, the phase of the reflected field depends on the contribution of surface states.

Since in the vicinity of plasmon resonance nX ∼ 1√|εzz | � 1, at these frequencies the contribution of surface states may become

important. This is especially clear in the limit of small enough angles, when n2
up sin θ � | 4πσ B

yz

ω
|. In this case,

R ≈ −i
4πσ B

yz

ω
+ 4π

c σ S
yznX

+i
4πσ B

yz

ω
+ 4π

c σ S
yznX

. (F7)

When the bulk contribution dominates we have R = −1, whereas if the surface contribution dominates we obtain R = +1, i.e.,
the phase of the reflected field flips.

The relative contribution of surface states is determined by the ratio
|σ S

yznX |
c
ω
|σ B

yz| . Taking into account that |nX | ≈ |g|√|εzz | and |g| =
4π |σ B

yz |
ω

, the above ratio can be reduced to
4π |σS

yz |
c√|εzz | .

(ii) sin2 θn2
up � |εzz| � 1. This case is similar to the one at θ = 0. Indeed, for this range of parameters, we obtain

n2
X ≈ εyy − g2

εzz
, KX ≈ ig

εzz
, (F8)

nX cos θ

(
1 − igsin θnup

nX
− sin2 θn2

up

εzz

)
≈ nX , (F9)

R ≈
−nX + 4π

c σ S
yz

ig
εzz

nX + 4π
c σ S

yz
ig
εzz

. (F10)
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Equations (F8) and (F9) are the same as for the normal incidence. Equation (F10) can be obtained from the normal incidence
formula Eq. (63) if |σ S

yy| � |σ S
yz

g
εzz

| and nX � nup; the latter inequalities are valid near the plasmon resonance, where nX ∼
1√|εzz | → ∞.

For real values of σ (S)
yz , we always have |R| = 1, but the phase of the reflected field depends on the contribution of surface

states. Again, when the bulk contribution dominates we have R = −1, whereas if the surface contribution dominates, we obtain
R = +1.

The relative contribution of surface states is determined by the ratio
4π
c |σ S

yz
g

εzz
|

|nX | . Again taking into account |nX | ≈ |g|√|εzz | and

|g| = 4π |σ B
yz |

ω
, we obtain that the above ratio is reduced to exactly the same expression as before:

4π |σ S
yz|/c√|εzz | .

To summarize, the effect of surface states on the reflected wave is determined by the ratio

|σ S
yz|

c
√|εzz|/4π

and therefore becomes significant or dominant at the plasmon resonance frequency, when εzz = ε(0)
zz + i 4π

ω
σ B

zz → 0.
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