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Disorder correction to the Néel temperature of ruthenium-doped BaFe2As2: Theoretical analysis
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We analyze theoretically nuclear magnetic resonance data for the spin-density-wave phase in the ruthenium-
doped BaFe2As2. Since inhomogeneous distribution of Ru atoms introduces disorder into the system, experimen-
tally observable random spatial variations of the spin-density-wave order parameter emerge. Using perturbation
theory for the Landau functional, we estimate the disorder-induced correction to the Néel temperature for this
material. Calculated correction is significantly smaller than the Néel temperature itself for all experimentally
relevant doping levels. This implies that, despite pronounced spatial nonuniformity of the order parameter, the
Néel temperature is quite insensitive to the disorder created by the dopants.
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I. INTRODUCTION

In this paper we discuss the influence of doping-induced
disorder on the Néel temperature of the ruthenium-doped
BaFe2As2. The compound is a representative of a wide
class of pnictide superconductors, actively studied in the last
decade. Many members of this class, including BaFe2As2

itself, experience a transition into a spin-density-wave (SDW)
phase. The Néel temperature for this transition is sensitive to
the doping concentration and decreases monotonically when
the doping grows. Beyond a certain doping level (∼25% for
Ru-doped BaFe2As2) the magnetism is completely replaced
by the superconducting phase.

Although doping by ruthenium atoms is an important
experimental method [1–4] to explore electronic correlation
effects in BaFe2As2, introduction of dopants unavoidably pro-
duces crystal imperfections [5–7]. While disorder might be a
source [8] of interesting phenomena, it is often an undesirable
factor blurring or masking an investigated feature. This con-
cern is quite general for doped iron-based superconductors.
Indeed, the presence of imperfections in this family of super-
conducting materials is well documented: inhomogeneities of
the charge density were observed experimentally [9–15] and
discussed theoretically [16,17] in several publications.

For an imperfect system, it is reasonable to ask to what ex-
tent a particular physical property is affected by the disorder.
Depending on the nature of the physical property under con-
sideration, the answer to this question may differ. For instance,
NMR measurements [18] for BaFe2As2 are consistent with
the notion that the SDW order parameter varies markedly over
the sample volume. At the same time, our theoretical analysis
of the same data shows that, notwithstanding pronounced
nonuniformity of the ordered state, the Néel temperature TN

is fairly insensitive to the dopant-induced inhomogeneities.
Our analysis is based on the perturbation theory [19] in

powers of the disorder strength. A key ingredient of our
study is a phenomenological model for disorder distribu-
tion, developed in Ref. [18] to interpret the NMR data. The

correction to the Néel temperature is estimated within the
Landau functional framework and is determined to be small.
This finding is the main result of our work. It implies that TN

can be reliably calculated, at least in principle, using disorder-
free models, and the Néel temperature can act as a benchmark
characteristic, useful for checking the validity of theoretical
conclusions.

The paper is organized as follows. In Sec. II the model is in-
troduced. The perturbation theory calculations are performed
in Sec. III. They are applied to the analysis of the data in
Sec. IV. Section V contains the discussion and conclusions.
Some auxiliary derivations are presented in the Appendix.

II. MODEL

Our analysis is based on experimental findings of Ref. [18],
which performed NMR studies of the SDW transition
in ruthenium-doped BaFe2As2. Since ruthenium substitutes
iron atoms, the chemical formula for the resultant alloy
is Ba(Fe1−xRux )2As2, where the doping concentration x
changes in a wide range 0 < x < 1. Since Ru is isovalent
to Fe, it is believed [18] that doping by ruthenium atoms
creates milder modifications to the electron structure of the
compound as compared, for example, with doping by cobalt
atoms. In particular, one may expect that Ru substitution
does not generate significant denesting, since no electrons
are introduced due to dopants. Yet, Ru doping weakens the
SDW phase: the Néel temperature decreases as a function of
doping, until the SDW is replaced by the superconductivity
above ∼0.3.

For our study we need to calculate a correction to the
SDW transition temperature, which turns out to be small.
Consequently, the Landau free-energy functional

F [S(r)] =
∫ {

C‖[(∇xS)2 + (∇yS)2] + C⊥(∇zS)2

+ AS2 + B

2
S4

}
d3r, (1)
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describing the material’s behavior near the transition, can be
justifiably used. In Eq. (1), the symbol S = S(r) is the SDW
magnetization, which plays the role of the order parameter.
While, in general, the magnetization is a vector, for our
purposes it is sufficient to treat S as a scalar. Coefficients
C‖, C⊥, and B are all positive. To account for the quasi-two-
dimensional (Q2D) anisotropy present in the pnictides the
coefficients C‖ and C⊥ must satisfy the inequality C‖ � C⊥.
We will make this condition more specific below.

For the coefficient A, we assume that it is spatially inho-
mogeneous: A = A(r). A convenient parametrization for A(r)
is as follows:

A(r) = a[T − TN − δTN(r)], a > 0, (2)

where T is the system temperature; the disorder-averaged
Néel temperature is TN. Local variation of the Néel temper-
ature δTN(r) satisfies

〈δTN(r)〉 ≡ 0. (3)

Here triangular brackets 〈. . .〉 denote the average over disorder
configurations.

Formulating this model, we assumed that the doping-
induced disorder affects the system mostly through the spatial
variation of δTN(r). Inhomogeneities of C‖,⊥ and B are much
less important, for they contribute to the subleading correc-
tions. Therefore, we will treat these parameters as if they are
independent of r.

A variation of F over S gives us the following equation for
the order parameter S:

−[
ξ 2
‖
(∇2

x + ∇2
y

) + ξ 2
z ∇2

z

]
S − δt (r)S + bS3 = −tS, (4)

where the coefficient b is equal to b = B/(aTN), the di-
mensionful parameter ξ 2

‖ = C‖/(aTN) is the in-plane correla-
tion length, and ξ 2

z = C⊥/(aTN) is the transverse correlation
length. The dimensionless variation of the local Néel temper-
ature δt and dimensionless temperature t in Eq. (4) are

δt (r) = δTN(r)

TN
, t = T − TN

TN
. (5)

We want to calculate the lowest (second)-order correction
�TN to the Néel temperature TN caused by disorder δTN(r). Of
course, once �TN is evaluated, the experimentally measurable
transition temperature is determined as TN + �TN. To find
�TN we need to study only the linear part of Eq. (4). Intu-
itively, one may argue that, since the O(|S|3) term in Eq. (4) is
much smaller than O(|S|) near the transition temperature, the
O(|S|3) term may be omitted. A more precise line of reasoning
is based on the realization that the transition temperature is
controlled by the bilinear part of the Landau functional: as
long as the bilinear form remains positive definite, the disor-
dered phase (S ≡ 0) remains stable. At the transition temper-
ature the lowest eigenvalue of the bilinear form vanishes (that
is, the bilinear form becomes non-negative definite). Thus,
to calculate the transition temperature, we need to study the
following eigenvalue equation:

−[
ξ 2
‖
(∇2

x + ∇2
y

) + ξ 2
z ∇2

z

]
S − δt (r)S = −tNS. (6)

The physical meaning of the parameter tN is the dimensionless
disorder-induced correction to the transition temperature:

�TN = TNtN. (7)

Mathematically, the value of −tN is the lowest eigenvalue
of the linear operator in the left-hand side of Eq. (6). Once
this eigenvalue is known, relation (7) can be used to find the
dimensionful correction.

III. CALCULATIONS

Before starting the calculations of tN, it is useful to observe
that Eq. (6) is similar to the Schrödinger equation. This
analogy allows us to determine the correction to the Néel
temperature using a familiar language of the perturbation
theory for a Schrödinger operator. Within this analogy, the
quantity −δt (r) plays the role of a small perturbation in
the potential energy, and −tN is the correction to the lowest
eigenvalue of the nonperturbed Hamiltonian.

For the three-dimensional systems, the perturbative deriva-
tion of tN has been reported in Ref. [19]. Since the pnic-
tides are layers systems, they are often described by two-
dimensional or Q2D models. Our main goal in this section
is to adapt the calculations of Ref. [19] to a quasi-two-
dimensional system. While our discussion is, in many re-
spects, similar to the three-dimensional case, certain technical
points require more delicate treatment.

Let us start with the calculations. Using the logic of the per-
turbation theory for the Schrödinger operator, we will find the
correction to the ground-state eigenvalue for the unperturbed
operator,

H0 = −[
ξ 2
‖
(∇2

x + ∇2
y

) + ξ 2
z ∇2

z

]
. (8)

The unperturbed ground state is equal to

S(0) = 1√
V

, (9)

where V is the volume of the sample. The first-order correc-
tion to the order parameter S(1) satisfies the equation

[
ξ 2
‖
(∇2

x + ∇2
y

) + ξ 2
z ∇2

z

]
S(1) + δt (r)√

V
= t (1)

N√
V

. (10)

Here t (1)
N is the first-order correction to the eigenvalue tN.

Averaging this equation over the disorder, we derive, using
Eq. (3),

[
ξ 2
‖
(∇2

x + ∇2
y

) + ξ 2
z ∇2

z

]〈S(1)〉 = 1√
V

t (1)
N . (11)

Since 〈S(1)〉 is independent of r, we have ∇〈S(1)〉 ≡ 0. There-
fore,

t (1)
N = 0. (12)

Substituting this result into Eq. (10), we calculate the first-
order correction to the order parameter,

S(1)(r) = 1√
V

∫
G(r − r′) δt (r′)d3r′. (13)
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In this relation G(r) is the Green’s function of the operator H0,
Eq. (8):

G(r) =
∫

d3k
(2π )3

eikr

ξ 2
‖
(
k2

x + k2
y

) + ξ 2
z k2

z

. (14)

Fourier transform of G(r) equals

Gk = 1

ξ 2
‖
(
k2

x + k2
y

) + ξ 2
z k2

z

. (15)

To find the second-order correction to tN it is necessary to
obtain the equation for the second-order correction to order
parameter S(2). Retaining all terms up to the second order in
δt , we can write[

ξ 2
‖
(∇2

x + ∇2
y

) + ξ 2
z ∇2

z

]
(S(0) + S(1) + S(2) ) + δt (S(0) + S(1) )

= t (2)
N S(0). (16)

Collecting all second-order terms in this expression, it is
possible to derive for t (2)

N

t (2)
N =

∫
S(0)

[
ξ 2
‖
(∇2

x + ∇2
y

) + ξ 2
z ∇2

z

]
S(2)(r)d3r

+
∫

δt (r)S(0)S(1)(r)d3r. (17)

Since S(0) is independent of r, the first term can be written as
a divergence of some vector field. Therefore, the volume in-
tegral can be replaced with a surface integral, which vanishes
for periodic boundary conditions. Thus

t (2)
N =

∫
δt (r)S(0)S(1)(r)d3r

= 1

V

∫
δt (r)δt (r′)G(r − r′)d3r d3r′. (18)

This equation explicitly demonstrates that the correction t (2)
N

is a random quantity, a (bilinear) functional of the disorder
configuration δt . However, we prove in Appendix that the
dispersion of t (2)

N vanishes in the thermodynamic limit. Thus,
since 〈t (2)

N 〉 ≈ t (2)
N , it is permissible to work with the average

value of t (2)
N . Once the disorder averaging in Eq. (17) is

performed, we obtain

〈
t (2)
N

〉 = 1

V

∫
〈δt (r) δt (r′)〉G(r − r′) d3r d3r′

=
∫

τ (r)G(r) d3r. (19)

Below we will assume that the disorder correlation func-
tion

τ (r − r′) = 〈δt (r) δt (r′)〉 (20)

has the following structure:

τ (r) = 〈�t2〉 exp

(
−x2 + y2

2r2
0

)
δ
( z

s

)
. (21)

In this expression, 〈�t2〉 is the variance of the local dimen-
sionless Néel temperature, s is the distance between Fe layers,
r0 is the disorder correlation length in a single Fe layer.
The distribution of the Ru atoms in neighboring layers is

assumed to be uncorrelated. This feature is captured by δ(z/s)
in Eq. (21).

Switching in Eq. (19) from integration over real space to
integration over momentum space, we find [19]

〈
t (2)
N

〉 =
∫

d3k
(2π )3

τkGk, (22)

where the Fourier transform of the correlation function τ (r) is

τk = 2π〈�t2〉r2
0s exp

[
− r2

0

2

(
k2

x + k2
y

)]
. (23)

Equation (22), with the help of Eqs. (15) and (23), can be
rewritten as

〈
t (2)
N

〉 = 〈�t2〉r2
0s

(2π )2

∫
d3k

exp
[−(

k2
x + k2

y

)
r2

0/2
]

ξ 2
‖
(
k2

x + k2
y

) + ξ 2
z k2

z

. (24)

Here the integration over kx and ky is performed from −∞ to
∞. At the same time, the integration over kz is from −π/s to
π/s. Taking this into account we obtain

〈
t (2)
N

〉 = 〈�t2〉r2
0 s

4π

∫ ∞

0
dk2

‖

∫ π/s

−π/s
dkz

exp
(−k2

‖r2
0/2

)
ξ 2
‖ k2

‖ + ξ 2
z k2

z

, (25)

where k2
‖ = k2

x + k2
y . It is important to note that the correction

is infinite for two-dimensional systems. Indeed, the integral
in Eq. (25) diverges logarithmically in the limit ξz = 0. To
regularize the integral we evaluate it at finite ξz, that is, in
the Q2D setting. First of all, we denote q = k2

‖r2
0 , α = ξz/s,

β = ξ‖/r0, kzs = u and integrate the last equation over q by
parts:

〈
t (2)
N

〉 = 〈�t2〉
4πβ2

∫ π

−π

du
∫ ∞

0
dq

exp
(− q

2

)
[q + α2u2/β2]

= −〈�t2〉
4πβ2

∫ π

−π

du ln

(
0.89

α2u2

β2

)[
1 + O

(
α2u2

β2

)]
.

(26)

Here we assume that α2π2/β2 � 1. This condition will be
discussed in Sec. V C.

Returning to the evaluation of 〈t (2)
N 〉, we perform the inte-

gration over u:

〈
t (2)
N

〉 ≈ 〈�t2〉
β2

[
1 − ln

(
0.94

πα

β

)]
. (27)

For the logarithmic function in this expression we expect, as
usual, that its value is of the order of unity. Thus

〈
t (2)
N

〉 ∼ 〈�t2〉
β2

= r2
0

ξ 2
‖
〈�t2〉. (28)

Thus, the second-order correction to dimensionless Néel tem-
perature (28) depends on the variance of the local dimension-
less Néel temperature and on the ratio of the in-plane length
ξ‖ and disorder correlation length in a single Fe layer r0. As
for the interlayer parameters s and ξz, they introduce weak
logarithmic correction to the main result. This correction was
neglected in Eq. (28).

Obviously, Eq. (28) is applicable not only for antiferromag-
nets, but also for superconductors, as well as other ordered
phases. As a specific application, in the next section we will
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TABLE I. Experimentally measured Néel temperature (from
Ref. [18]), analytical fit to this temperature, see Eq. (31), and
disorder-induced correction to the transition temperature, Eq. (41),
for several doping concentrations x. The values of x from this table
correspond to the experimentally studied samples, Ref. [18]. The
presented data show that the fit (31) works well for x � 0.2. Only
when x = 0.25, significant discrepancy between the measured and
fitted Néel temperatures emerges. Correction �TN remains small
(ratio �TN/TN remains of the order of 10% or less) for all x.

x = 0.00 x = 0.05 x = 0.15 x = 0.20 x = 0.25

TN(x), K, 135 130 95 80 55
Ref. [18]

TN(x), K, 140 126 98 84 70
Eq. (31)

�TN(x), K, 0 3.3 6.9 7.4 7.2
Eq. (41)

use this formula to find the corrections to the Néel temperature
of doped BaFe2As2.

IV. ANALYSIS OF EXPERIMENTAL DATA

In this section we will apply Eq. (28) to the analysis of the
data published in Ref. [18]. This paper is of particular interest
for us here, since it discusses statistical properties of the local
Néel temperature δTN(r) for doped BaFe2As2. Namely, the
authors of Ref. [18] have concluded that their data are consis-
tent with the assumption that δTN(r) is obtained by the coarse
graining of the random dopant distribution over small, but
finite, patches of the underlying two-dimensional lattice. The
model for δTN(r) is formulated [18] in the following manner.
Initially, the whole two-dimensional lattice of a Fe layer is
split into square patches. The size of each patch is 4 × 4 unit
cells (obviously, a patch contains N = 16 unit cells). For a
particular distribution of Ru atoms over a layer, one defines
a function n(r), which is a number of Ru atoms within a
patch located at r. As a result, the local coarse-grained doping
xloc(r) = n(r)/N is introduced. The disorder average of this
function is equal to the average doping:

〈xloc(r)〉 = x. (29)

The function xloc(r) is used to determine the local variation of
the Néel temperature according to the rule

δTN(r) = TN[xloc(r)] − 〈TN[xloc(r)]〉, (30)

where the dependence of the Néel temperature TN = TN(x) on
the average doping x is directly measured experimentally. We
find that the linear fit

TN(x) = T 0
N (1 − γ x), where T 0

N = 140 K, γ = 2, (31)

accurately describes the data. Table I attests to the quality of
this approximation. Formula (31) works well in the interval
0 < x < 0.2. For larger doping levels, the Néel temperature
is expected to decrease faster than described by Eq. (31).
(Therefore, our results will gradually become less accurate
when x grows beyond 0.2.)

The outlined disorder model allows us to obtain both r0

and 〈�t2〉 for our Eq. (28). Mathematically speaking, the
patch size corresponds to the correlation length r0 in Eq. (21).
Indeed, if |r − r′| > r0, the random quantities δTN(r) and
δTN(r′) characterize different patches. Consequently, they are
uncorrelated, which means that 〈t (r)t (r′)〉 ≈ 0, in agreement
with Eq. (21). Therefore, we can write

r0 ≈ 4a0 ≈ 11 Å, (32)

where a0 ≈ 2.8 Å is the unit cell size, see Ref. [1]. Consistent
with Ref. [18], we assume that the in-layer cell is defined in
such a manner that there is one iron atom per cell.

Quantity 〈�t2〉 = 〈[δt (r)]2〉 is the variance of δt within
a single patch. It can be calculated as follows. Combining
Eqs. (5), (30), and (31) we write

δt (r) = N − γ n(r)

N − γ n
− 1 = γ [n − n(r)]

N − γ n
, (33)

where n = Nx is the average number of impurities in a patch.
The variance of δt within a single patch is

〈�t2〉 = γ 2〈�n2〉
(N − γ n)2

, where �n = n(r) − n. (34)

This equation reduces the task of calculating 〈�t2〉 to the
calculation of 〈�n2〉. (The latter average will be found below
with the help of the outlined disorder model.) Such a simple
relation between the two is a consequence of linear depen-
dence of TN on doping x. In principle, to improve agreement
with the experimental data, one can introduce nonlinear terms
to Eq. (31). However, we expect that this modification does
not significantly change final results, but only complicates
calculations. To keep our formalism simple and intuitively
clear, we always use Eq. (31) in our study.

The quantity 〈�n2〉 characterizes the distribution of im-
purities within a single patch. It can be easily estimated
as follows. The number of impurities in a patch n(r) is a
random quantity with the binomial distribution. Its number
of “attempts” coincides with the number of unit cells inside
a patch: N = 16. The distribution is characterized by “success
probability” p = n/N = x (this is the probability of finding
a Ru atom at a given unit cell inside the patch). For the
binomial distribution with these parameters the answer is
〈�n2〉 = N p(1 − p) = n(N − n)/N . Substituting this relation
into Eq. (34), we find

〈�t2〉 = γ 2n(N − n)

N (N − γ n)2
. (35)

Using Eqs. (28) and (35) we determine the correction to
dimensionless Néel temperature:

〈
t (2)
N

〉 ≈ r2
0γ

2n(N − n)

Nξ 2
‖ (N − γ n)2

. (36)

The dimensionful correction to Néel temperature can be found
with the help of Eq. (7)

�TN = 〈
t (2)
N

〉
T 0

N

(
1 − γ

n

N

)
≈ r2

0γ
2n(N − n)

ξ 2
‖ N2(N − γ n)

T 0
N , (37)
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or, with estimate (32), it is equivalent to

�TN ≈ a2
0γ

2x(1 − x)

ξ 2
‖ (1 − γ x)

T 0
N . (38)

To calculate this correction, the last quantity we need to
find is ξ‖. We estimate ξ‖ from the microscopic BCS-like
theory: ξ‖ ≈ 0.13vF/TN, where vF is the Fermi velocity. This
equation is valid provided that the system’s ordered phase is of
mean field BCS character. For more details, one may consult
a standard textbook, such as Refs. [20,21]. Thus, we can write

ξ‖(x) ≈ 0.13 vF

T 0
N (1 − γ x)

, (39)

where the experimentally measured [2] value of the Fermi
velocity for the compound is virtually doping independent and
equal to vF ∼ 0.7 eV Å.

Finally, combining Eqs. (38) and (39), we find

�TN ≈ a2
0γ

2x(1 − x)(1 − γ x)

(0.13vF)2

(
T 0

N

)3
. (40)

Once all constants are substituted, the equation for the correc-
tion to the Néel temperature reads:

�TN ≈ 77x(1 − x)(1 − 2x). (41)

This correction is calculated for several concentrations
of Ru atoms; see Table I. The values of x from the table
correspond to the doping levels of the samples studied in
Ref. [18]. We see that the correction is quite small for x < 0.2.
Figure 1 offers additional illustration to this conclusion. Be-
yond doping ∼0.2 the system quickly becomes supercon-
ducting. Thus, for most of the doping range where the SDW
exists, the disorder-induced corrections to the Néel tempera-
ture remain weak.

FIG. 1. Néel temperature for Ru-doped BaFe2As2 vs doping x.
Experimental values of the Néel temperature TN(x) are shown here
as black squares. The data are approximated by solid (blue) straight
line; see Eq. (31). The Néel temperature for a doped sample without
any disorder is depicted by dashed (red) curve. The disorder-induced
correction to the Néel temperature is represented by the difference
between the solid and dashed curves. It is estimated using Eq. (41).

V. DISCUSSION

A. Relevance for other compounds

The presented calculations are simple and intuitively
clear. They also convey a useful piece of information about
BaFe2As2. One might inquire if other compounds can be
analyzed in a similar manner.

Our procedure depends crucially on the fact that Ru atoms
are isovalent with iron atoms which Ru atoms substitute.
Consequently, the doping does not introduce significant mod-
ifications to the electronic structure of the material [2]. This
allows us to write the simplest Landau functional (1), which
remains applicable as long as the Fermi-surface nesting is
maintained. For different choice of the dopants, the doping
may act to erode nesting, causing significant modifications to
the structure of functional (1). In this situation, it becomes
difficult to justify our model in its present form. Thus, we must
limit ourselves by materials with isovalent doping.

For isovalent doping, Eq. (28) is valid, and can be used
to estimate the disorder-induced correction. This equation, of
course, requires a practical model of disorder in the material.
The model cannot be obtained by theoretical means, and must
be supplied by experiment. For the very least, parameters
r0 and 〈�t2〉 must be known. Obviously, Ref. [18] fulfills
these requirements for BaFe2As2. Execution of the similar
experimental studies to other pnictide superconductors may
bring useful results about the role of the disorder in these
materials.

B. Comparison of ξ‖ and r0

Equation (39) allows us to estimate ξ‖ for different values
of x. We determine that ξ‖ varies between 7.5 Å at x = 0 and
15 Å at x = 0.25. The disorder correlation length r0, intro-
duced and discussed in Secs. III and IV, is of the same order:

ξ‖ ∼ r0; (42)

see estimate (32). This relation is not a coincidence, and can
be explained as follows. The purely local functional (1) is
an approximation to a more complicated functional with a
nonlocal kernel. The kernel is spread over a finite size, which
we denote ξ‖. (When the system obeys the BCS theory, the
kernel may be explicitly evaluated; see, for example, Chap.
7 of the de Gennes book [20]. However, we expect that the
nonlocal functional itself, as well as the scale ξ‖, are well-
defined concepts, even when the BCS microscopic theory is
inapplicable.) To determine the free-energy density at a given
point R, such a functional averages the system’s properties
over a circle of radius ξ‖ centered at R. For smooth variation
of S(r), the nonlocal functional may be replaced by purely
local Eq. (1). Within this simplified formalism, the length
scale ξ‖ emerges as a coefficient in front of the derivatives in
Eq. (4). This argument implies that the parameter ξ‖ describes
the smallest length scale below which the functional (1) is
undefined, and any fragment of the lattice of size ξ‖ must be
treated as a single unit. This gives an obvious explanation to
the fact that the NMR experimental data [18] was best fitted
under the assumption that the doping-introduced disorder
should be averaged over finite-size patches. Our reasoning
naturally equates the size of these patches r0 and parameter ξ‖.
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C. Role of the anisotropy

Evaluating integral in Eq. (26) we imposed the following
restriction π2α2/β2 � 1. It implies that the Landau func-
tional coefficients should satisfy C‖/C⊥ � π2r2

0/s2. Since
BaFe2As2 has two layers per one unit cell, the interlayer
distance s is equal to s = c0/2 ≈ 6.5 Å, where c0 is the c-axis
lattice constant (crystallographic data for BaFe2As2 may be
found in Ref. [1]). Using Eq. (32), we derive C‖/C⊥ � 30.
This means that, for Eq. (27) to be valid, the Landau functional
must be sufficiently anisotropic. It is not immediately obvious
how to estimate the anisotropy of the coefficients C⊥, C‖ for
BaFe2As2. Fortunately, the importance of this condition is not
too crucial. Indeed, even in a perfectly isotropic system the
estimate (28) remains valid up to a numerical factor [19].

D. Conclusions

In this paper, we studied the correction to the Néel temper-
ature introduced by the inhomogeneities of the doping atoms
distribution for Ru-doped BaFe2As2. Using perturbation the-
ory, we expressed the lowest-order correction to the Néel tem-
perature of a Q2D system in terms of the disorder distribution
properties. A previously developed phenomenological model
for the disorder in Ru-doped BaFe2As2 allows us to complete
the calculations. The corrections are found to be quite small
for all doping levels where the material experiences the SDW
transition. This suggests that the Néel temperature in Ru-
doped BaFe2As2 may be studied using spatially homogeneous
models.
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APPENDIX: DISPERSION OF THE SECOND
CORRECTION t (2)

N

In this Appendix we demonstrate that the dispersion of
t (2)
N , given by Eq. (18), vanishes in the thermodynamic limit.

Namely, we intend to prove that the disorder average of D,
where

D = [
t (2)
N − 〈

t (2)
N

〉]2
, (A1)

is small for large systems. Since

〈D〉 = 〈[
t (2)
N

]2〉 − 〈
t (2)
N

〉2
, (A2)

we need to evaluate 〈[t (2)
N ]2〉. The random quantity [t (2)

N ]2 can
be expressed as

[
t (2)
N

]2 = 1

V 2

∫
δt (r)δt (r′)G(r − r′)d3rd3r′

×
∫

δt (r′′)δt (r′′′)G(r′′ − r′′′)d3r′′d3r′′′. (A3)

In this equation, the Green’s function G is given by Eq. (14).

As one can see from Eq. (A3), to evaluate 〈[t (2)
N ]2〉 we must

determine the four-point disorder correlation function

τ (4)(r, r′, r′′, r′′′) = 〈δt (r)δt (r′)δt (r′′)δt (r′′′)〉. (A4)

Below, for simplicity, we will assume that the disorder cor-
relation function is isotropic. Strictly speaking, this assump-
tion is inapplicable for pnictide compounds, and our choice
for the disorder correlation function, Eq. (21), is explicitly
anisotropic. Fortunately, the argumentation presented in this
Appendix can be straightforwardly generalized to anisotropic
situations.

Since the correlations of δt (r) and δt (r′) decay if |r −
r′| > r0, we can write the following approximate relation:

τ (4)(r, r′, r′′, r′′′)

≈ 〈δt (r)δt (r′)〉〈δt (r′′)δt (r′′′)〉 + 〈δt (r)δt (r′′)〉
×〈δt (r′)δt (r′′′)〉 + 〈δt (r)δt (r′′′)〉〈δt (r′)δt (r′′)〉

= τ (r − r′)τ (r′′ − r′′′) + τ (r − r′′)τ (r′ − r′′′)

+ τ (r − r′′′)τ (r′ − r′′), (A5)

which reduces the four-point correlation function to the prod-
ucts of two-point correlation functions τ . This decompo-
sition reminds one of the Wick theorem. Yet, justification
of Eq. (A5) is unrelated to the properties of the Gaussian
integration, which underpin the Wick theorem. In essence,
Eq. (A5) assumes that, if point r is far from all r′, r′′, and
r′′′ [see Fig. 2(c)], δt (r) is uncorrelated with δt (r′), δt (r′′), and

FIG. 2. Illustration to the expansion Eq. (A5). Locality requires
that the average 〈δt (r)δt (r′)δt (r′′)δt (r′′′)〉 vanishes unless an even
number of points lie within a radius r0 from each other. Thus, the
configurations shown in panels (c) and (d) correspond to vanishing
〈δtδtδtδt〉. Panel (a), on the other hand, represents the first term
on the right-hand side of Eq. (A5). Two other terms are obtained
by permutations of r, . . . , r′′′. Panel (b) also corresponds to finite
average. However, because of the constraint, requiring all four points
be confined within a distance ∼r0, after integration over space in
Eq. (A3), one obtains a contribution which, in the thermodynamic
limit, is much smaller than that of panel (a).
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δt (r′′′), and can be averaged separately from these three. Since
〈δt (r)〉 = 0, the configuration of points shown in Fig. 2(c)
corresponds to vanishing τ (4). Similarly, the configuration of
Fig. 2(d) represents vanishing τ (4).

On the other hand, both Figs. 2(a) and 2(b) depict configu-
rations for which 〈δt (r)δt (r′)δt (r′′)δt (r′′′)〉 is finite. However,
in the thermodynamic limit, the configurations of Figs. 2(a)
and 2(b) generate very dissimilar contributions to 〈D〉. Indeed,
it is easy to check that the contribution of the configura-
tion shown in Fig. 2(b) is smaller by factor of r3

0/V �
1 than the contribution represented by Fig. 2(a). Thus, in
Eq. (A5), the configuration of Fig. 2(b) is justifiably dis-
carded. Among the retained terms, the first one corresponds to
Fig. 2(a). Two other terms can be obtained by permutations of
arguments.

To simplify calculations it is convenient to introduce
new notations: r − r′′ = R1, r′ − r′′′ = R2, r − r′ = R3 +

R1, r′′ − r′′′ = R3 + R2. This allows us to rewrite Eq. (A5):

〈δt (r)δt (r′)δt (r′′)δt (r′′′)〉
� τ (R1 + R3)τ (R2 + R3) + τ (R1)τ (R2) + τ (R1

+ R2 + R3)τ (−R3). (A6)

We also define

P(R) =
∫

τ (R′)G(R′ + R)d3R′. (A7)

In the limit |R| → ∞ we have

P(R) = O(|R|−1). (A8)

Combining Eqs. (A3) and (A6) with definition (A7) one
derives

〈[
t (2)
N

]2〉 = 1

V

∫
d3R1d3R2d3R3G(R1 + R3)G(R2 + R3)[τ (R1 + R3)τ (R2 + R3) + τ (R1)τ (R2)

+ τ (R1 + R2 + R3)τ (−R3)] = [〈
t (2)
N

〉]2 + 1

V

∫
[P(R)]2d3R

+ 1

V

∫
d3R1d3R2d3R3τ (R1 + R2 + R3)τ (−R3)G((R1 + R2 + R3) − R2)G(−R3 − R2)

= [〈
t (2)
N

〉]2 + 1

V

∫
[P(R)]2d3R + 1

V

∫
[P(−R)]2d3R = [〈

t (2)
N

〉]2 + 2

V

∫
[P(R)]2d3R. (A9)

If V = L3, where L is the linear size of the system, then from Eqs. (A9) and (A8) it follows that

〈D〉 = 2

V

∫
[P(R)]2d3R ∼ 1

V

1

L2
V = O(L−2). (A10)

If L → ∞ then 〈D〉 → 0. In other words, the dispersion of t (2)
N vanishes in the thermodynamic limit.
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