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Extraction of topological information in Tomonaga-Luttinger liquids
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We discuss expectation values of the twist operator U appearing in the Lieb-Schultz-Mattis theorem (or the
polarization operator for periodic systems) in excited states of the one-dimensional correlated systems z(q,±)

L ≡
〈�±

q/2|U q|�±
q/2〉, where |�±

p 〉 denotes the excited states given by linear combinations of momentum 2pkF with

parity ±1. We found that z(q,±)
L gives universal values ±1/2 on the Tomonaga-Luttinger (TL) fixed point, and

its signs identify the topology of the dominant phases. Therefore, this expectation value changes between ±1/2
discontinuously at a phase transition point with the U(1) or SU(2) symmetric Gaussian universality class. This
means that z(q,±)

L extracts the topological information of TL liquids. We explain these results based on the free-
fermion picture and the bosonization theory, and also demonstrate them in several physical systems.

DOI: 10.1103/PhysRevB.99.075128

I. INTRODUCTION

In many-body quantum systems, it is important to investi-
gate structures of low-energy spectra such as the existence of
energy gaps and the degeneracy of ground states. These struc-
tures of energy spectra characterize the physical properties of
the systems such as metals or insulators, and dominant phases.

The Lieb-Schultz-Mattis (LSM) theorem plays an impor-
tant role in the study of such properties in one-dimensional
(1D) lattice systems [1–5]. In the LSM theorem, the possibil-
ity of opening an energy gap in a parity and translationally
symmetric system is related to the orthogonality of a non-
degenerate ground state in a finite-size system |�0〉 and a
variational excited state U q |�0〉. Here, U is the twist operator
which creates the O(1/L) excitation in a finite L size system.
For fermion systems, that is defined by

U = exp

⎛
⎝2π i

L

L∑
j=1

jn j

⎞
⎠, (1)

where n j is the density operator at site j. For spin sys-
tems, the twist operator is defined by replacing the density
operator n j by the spin operator Sz

j . It is well known that
as a generalization of the original LSM theorem (q = 1),
the necessary condition for the appearance of gapped states
with q-fold degenerate ground states is given by q(S − m) =
integer where S and m are the spin and the magnetization per
unit cell [4]. In this way

z(q)
L = 〈�0|U q|�0〉 (2)

is the essential index in the LSM theorem.
On the other hand, the same quantity z(q)

L is also introduced
by Resta from an argument of electric polarization. He intro-
duced z(1)

L to define the expectation value of the center-of-mass
operator 1

L

∑L
j=1 jn j in periodic systems [6–8]. This notion

was also extended to q-fold degenerate systems [9]. It is well
known that an insulator is distinguished from a conductor
at zero temperature by its vanishing dc conductivity (Drude

weight) [10], whereas, z(q)
L distinguishes not only metals and

insulators, but also “topology” of insulators by its sign, such
as band or Mott insulators. Thus z(q)

L plays the role of order
parameters and also probes to detect topological phase transi-
tions [11,12].

In this paper, we turn our attention to the following expec-
tation value of U :

z(q,±)
L = 〈�±

q/2|U q|�±
q/2〉, (3)

where |�±
p 〉 denotes linear combinations of excited states

with momenta 2pkF and −2pkF, and with parity P |�±
q/2〉 =

± |�±
q/2〉. Here kF is the Fermi momentum with qkF = nπ

(n: integer). This is as an extension of Eq. (2), but, as will
be shown later, it extracts the topological information of 1D
quantum systems at the limit of the Tomonaga-Luttinger (TL)
fixed point as the universal values z(q,±)

L = ±1/2, whereas z(q)
L

becomes zero. This is essentially different from the property
of z(q)

L whose sign is determined in the gapped fixed points.
This paper is organized as follows. In Sec. II, we discuss

the properties of z(q,±)
L in the free fermions. In Sec. III, we

discuss the interacting systems based on the TL model and
bosonization of the twist operator. In Sec. IV, we demonstrate
the properties in several physical systems based on the exact
diagonalization (ED). Finally summary and discussions are
given in Sec. V. Throughout this paper, the lattice constant
and the Planck constant are set to be unity.

II. FREE-FERMION PICTURE

First, we consider the properties of Eq. (3) in free-fermion
systems. It follows from the relation of the creation operators
in the real and the momentum spaces, and the twist operator

Uc†
jU

−1 = c†
j e

i(2π/L) j, Uc†
kU −1 = c†

k+2π/L, (4)

that U creates the momentum shift 2π
L . This means that it

creates momentum transfer 2kF with respect to the ground

2469-9950/2019/99(7)/075128(8) 075128-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.075128&domain=pdf&date_stamp=2019-02-13
https://doi.org/10.1103/PhysRevB.99.075128


MASAAKI NAKAMURA AND SHUNSUKE C. FURUYA PHYSICAL REVIEW B 99, 075128 (2019)

k

εk

kF−kF

|Ψ0

|Ψ1|Ψ−1

k

εk

kF−kF

|Ψ1/2

FIG. 1. Dispersion relations of the ground state |�0〉 and the ex-
cited states |�p〉 in finite-size systems. States with half-odd integers p
are realized in the antiperiodic boundary condition, where the wave
number k = 2π

L m with a half-odd integer m. In particular, excited
states |�±1/2〉 are realized as doubly degenerate ground states in the
antiperiodic boundary condition. The momentum transfer of |�1/2〉
is regarded as 2kF by 1/2 fermion.

state where the fermion states between k = −kF and k = kF

are occupied. Now we introduce the following excited states:

|�±
p 〉 ≡ 1√

2
(|�+p〉 ± |�−p〉), (5)

where |�p〉 is a state with a momentum 2pkF (see Fig. 1).
|�±

p 〉 are eigenstates of the parity operation P |�±
p 〉 =

± |�±
p 〉, since P |�p〉 = |�−p〉. The momentum is restricted

by a condition 2pkF = nπ (n: integer), since the parity oper-
ation P (PciP−1 = cL+1−i) commutes with the one-site shift
operation T (T ciT −1 = ci+1) only when the eigenvalue of T
is a real number ±1. In this situation, the expectation value of
the twist operator with an integer q becomes

〈�±
p |U q |�±

p 〉 = 1
2 〈�0|(U q ± U q−2p ± U q+2p + U q)|�0〉

= ± 1
2δq,2p (L → ∞). (6)

Here terms with the finite power of U vanish in the L → ∞
limit due to the LSM theorem which insists that |�0〉 and
U q |�0〉 are orthogonal in the gapless state. Thus it turns
out that z(q,±)

L = ±1/2 and the signs identify parities of the
wave function of the excited states (5) with p = q/2. Note
that states with half-odd integers p are realized in antiperiodic
boundary conditions, since the wave numbers are given by
k = 2π

L m with half-odd integers m as shown in Fig. 1.

III. BOSONIZATION

Next, we demonstrate that the above property of z(q,±)
L

is unchanged in interacting cases. To this end we consider
the bosonization of the twist operator. In 1D systems, the
low-energy excitations are described as TL liquids [13–15].
The Hamiltonian of the interacting fermions is given by the
Gaussian model,

HTL = v

∫
dx

[
πK

2
�2 + 1

2πK

(
∂φ

∂x

)2]
, (7)

where v and K are the sound velocity and the TL parameter,
respectively. The phase fields satisfy [φ(x),�(y)] = iδ(x − y)
and their mode expansions of the phase fields are given by

φ(x) = iπ

L

∑
k �=0

1

k
e−α|k|/2−ikx[ρ+(k) + ρ−(k)] + Nπx

L
+ Q,

(8)

�(x) = − 1

L

∑
k �=0

e−α|k|/2−ikx[ρ+(k) − ρ−(k)] − M

L
, (9)

with the cutoff α. The density operators satisfy the following
commutation relation:

[ρr (−k), ρr′ (k′)] = r
kL

2π
δrr′δkk′ (r, r′ = +,−), (10)

and ρ+(−k) |�0〉 = ρ−(k) |�0〉 = 0 for k > 0. The zero mode
satisfies the relation [Q, M] = −i. The effects of the inter-
actions are renormalized into the TL parameter K , whereas
K = 1 is for the free fermions. Usually, the low-energy
Hamiltonian also includes a nonlinear term as H = HTL +

2g
(2πα)2

∫
0 dx cos[2qφ(x)] which opens an energy gap when it

is relevant in the renormalization group analysis. Therefore
Hamiltonian (7) is realized just on the transition point with
the Gaussian universality class (g = 0).

The center-of-mass operator is bosonized using the partial
integration as

2π

L

L∑
j=1

jn j → 2π

L

∫ L

0
dx x

1

π
∂xφ(x) (11)

= 2φ(L) − Nπ − 2Q, (12)

where we have ignored the 2kF-umklapp term. Then
the normal ordered representation becomes [15] (see
Appendix A)

U q → U (q, K ) ≡ exp{iq[2φ(L) − Nπ − 2Q]} (13)


 : exp[i2qφ(L)] :

(
2πα

L

)q2K

. (14)

If we set the cut-off parameter α to the order of the lattice
constant ∼1, this result describes the O(1/L) excitation in
the LSM theorem. This is also consistent with the conjecture
z(q)

L ∝ 〈cos 2qφ〉 discussed in Ref. [11], since z(q)
L is a real

number under the parity symmetry φ → −φ. We can also
confirm that the bosonized representation satisfies the relation
(see Appendix A)

U (q, K )U (p, K ) = U (p + q, K ). (15)

For the interacting case with the forward scattering K �= 1, it
follows from the concept of TL liquids that the state with 2qkF

momentum |�q〉 is given by

|�q(K )〉 = U (q, K ) |�0(K )〉 , (16)

where |�0(K )〉 is the ground state. Therefore, the relation for
free fermions (6) is also applicable to the interacting case (7)
only by a replacement U q → U (q, K ). Thus within the low-
energy approximation, the values z(q,±)

L = ±1/2 turn out to be
universal for the TL liquids with K �= 1. This result does not
depend on the detailed form of U (q, K ) as long as relation
(15) is satisfied.

In the conformal field theory (CFT), expectation values
of one-point operators in finite-size systems are evaluated as
[16,17] (see Appendix B)

〈Oi|O j (σ )|Oi〉 = Ci ji

(
2π

L

)x j

, (17)
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where x j is the scaling dimension of the jth operator, and Ci ji

is the operator product expansion (OPE) coefficient defined as

Oi(σ1)O j (σ2) =
∑

k

Ci jk

|σ1 − σ2|xi+x j−xk
Ok (σ2). (18)

In the present case, the excited states |�±
q/2〉 are eigenstates

of O1(σ ) ≡: cos[qφ(σ )] : and O2(σ ) ≡: sin[qφ(σ )] :, respec-
tively. In addition, O3(σ ) ≡: cos[2qφ(σ )] : is related to the
twist operator as O3(L) ∝ U (q, K ). The scaling dimensions
are x1 = x2 = q2K/4 and x3 = q2K . The OPE coefficients
are C131 = +1/2 and C232 = −1/2 (see Appendix C). Then,
the formula, Eq. (17), seems to explain Eq. (6), but the size
dependence (2π/L)x3 remains. This discrepancy is because
the bosonized operator O3(L) is no longer a local field, so
that Eq. (17) is not applicable to the present case.

IV. PHYSICAL SYSTEMS

A. The S = 1/2 J1-J2 spin chain

In the rest of this paper, we demonstrate the above argu-
ment in several models based on ED. As the first example,
we consider the S = 1/2 antiferromagnetic Heisenberg chain
with the next-nearest-neighbor exchanges,

H =
L∑

i=1

[Si · Si+1 + αSi · Si+2]. (19)

In this system, a phase transition between the gapless state
and the dimer state occurs at αc = 0.2411 [18]. This critical
point belongs to the universality class of the SU(2) symmetric
Gaussian model, and is identified by the level crossing of
the singlet-triplet excitation energies. These excited states
correspond to |�±

1 〉. The critical point can also be determined
by the condition z(2)

L = 0 [11,12] which is obtained by the
ground-state expectation value of U 2 by ED for the L = 28
system, as shown in Fig. 2.
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FIG. 2. z(2,±)
L of the S = 1/2 J1-J2 spin chain for the L = 28

system obtained by ED (red and blue lines). If we calculate the
first excited state without classifying the Hilbert space by parity,
the value change discontinuously between ±1/2 at the gapless-dimer
transition point αc = 0.2411 (magenta line). On the other hand, z(2)

L

changes continuously and becomes zero at αc (green line). z(2,±)
L

converges to ±1/2 for the gapless region, while to a finite value for
the dimer region.
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FIG. 3. System size dependence (L = 12–30) of z(2,±)
L of the

S = 1/2 J1-J2 spin chain at the gapless-dimer transition point αc =
0.2411. This shows that z(2,±)

L has the size dependence O(1/L), and
approach to ±1/2 in the L → ∞ limit.

Now we turn our attention to z(2,±)
L for the singlet |�+

1 〉
and the triplet |�−

1 〉 states corresponding to the dimer and
the gapless states, respectively. According to the results of
ED in Figs. 2 and 3, z(2,±)

L = ±1/2 at the critical point
α = αc with the size dependence O(1/L). If we calculate
the first excited state without classifying the Hilbert space
by parity and/or spin-reversal symmetries, the expectation
value changes discontinuously at αc. For the gapless region
α < αc, the values z(2,±)

L = ±1/2 are almost constant, while
they deviate from ±1/2 for the dimer regions α > αc. This
indicates that for the gapped region 〈�0|U q|�0〉 �= 0 due to
the LSM theorem, so that Eq. (6) is not satisfied. For the
Majumder-Gorsh point α = 0.5 where the system is fully
dimerized [19–22], the expectation values of U 2 with respect
to the two states |�0〉 and |�−

1 〉 give the same value z(2,−)
L =

z(2)
L 
 −[cos(2π/L)]L/2.

B. The S = 1 spin chain

The next example is the S = 1 Heisenberg chain with the
single-ion anisotropy,

H =
L∑

i=1

[
Si · Si+1 + D

(
Sz

i

)2]
. (20)

This model undergoes a U(1) Gaussian-type phase transition
from the Haldane-gap state [23,24] to the large-D (or trivial)
state at Dc = 0.968 ± 0.001 [25–27]. This transition point is
determined by the level crossing of low-energy spectra of
|�±

1/2〉 obtained with antiperiodic boundary conditions [28].
The twisted boundary conditions play a role to make artifi-
cial low-energy excitations that degenerate with the Haldane
|�−

1/2〉 and large-D |�+
1/2〉 ground states, respectively. The

transition point Dc can also be identified by z(1)
L = 0 [29].

It follows from the results obtained by ED shown in Figs. 4
and 5, z(1,±)

L ± 1/2 with the size dependence O(1/L). The ex-
cited states correspond to the Haldane (|�−

1/2〉) and the large-
D (|�+

1/2〉) phases, respectively. Unlike the case of the S =
1/2 J1-J2 spin chain, z(1,±)

L deviates from ±1/2 away from
Dc, because both regions D ≷ Dc are gapped states.
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FIG. 4. z(1,±)
L of the S = 1 XXZ chain for the L = 18 system

obtained by ED (red and blue lines). If we calculate the first
excited state without classifying the Hilbert space by parity, the
values change discontinuously between ±1/2 at the Haldane-large-D
transition point Dc = 0.968 (magenta line). On the other hand, z(1)

L

changes continuously and becomes zero at Dc (green line). z(1,±)
L do

not converge to ±1/2 for the gapped regions D �= Dc.

C. The extended Hubbard model

As an electron system, we consider the 1D extended Hub-
bard model at half-filling and zero magnetic field,

H =
L∑

i=1

⎡
⎣−t

∑
s=↑,↓

(c†
isci+1,s + H.c.) + Uni↑ni↓ + V nini+1

⎤
⎦,

(21)

where cis (c†
is) is the electron annihilation (creation)

operator for spin s = ↑,↓. The number operators are defined
by nis ≡ c†

iscis and ni ≡ ni↑ + ni↓. According to the analysis
of the excitation spectra [30,31], the U(1) Gaussian transi-
tion in the charge part, and the SU(2) symmetric spin-gap
transition take place independently near the U = 2V line
with 0 < U < Uc, where Uc is the tricritical point. Therefore,
there appear three phases around U = 2V . Those are spin-
density-wave (SDW), bond-charge-density-wave (BCDW),
and charge-density-wave (CDW) phases.
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FIG. 5. System size dependence (L = 8–20) of z(1,±)
L of the S =

1 XXZ chain at the Haldane-large-D transition point Dc = 0.968.
This shows that z(1,±)

L has the size dependence O(1/L), and approach
to ±1/2 in the L → ∞ limit.
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FIG. 6. z(2,±)
ν,L of the extended Hubbard model for the charge

(ν = ρ) and the spin (ν = σ ) sectors for the L = 14 system at
U/t = 3 obtained by ED (red and blue lines). At the BCDW-CDW
(SDW-BCDW) boundary, we get z(2,±)

ρ,L = ±1/2 (z(2,±)
σ,L = ±1/2).

The excited states |�±
ν,1〉 are obtained under antiperiodic boundary

conditions with wave number k = π (k = 0) for ν = ρ (ν = σ ). If
we calculate the first excited state without classifying the Hilbert
space by parity, the value changes discontinuously between ±1/2 at
these transition points (magenta line). On the other hand, z(2)

ν,L changes
continuously and becomes zero at the transition points (green line).

To apply our argument to the electron system, we introduce
the twist operators for the charge and the spin sectors as [5]

Uρ ≡ U↑U↓, Uσ ≡ U↑U −1
↓ , (22)

where Us ≡ exp[(2π i/L)
∑L

j=1 jn js]. Their ground-state ex-

pectation values z(2)
ν,L ≡ 〈�0|Uν |�0〉 (ν = ρ, σ ) give the

BCDW-CDW (z(2)
ρ,L = 0) and the SDW-BCDW (z(2)

σ,L = 0)
transition points, respectively [11]. In the present two-
component case, the boson representation of Uν is given by
(14) where the phase fields for the charge (ν = ρ) and the spin
(ν = σ ) sectors are replaced as φ → φν/

√
2.

As shown in Fig. 6, the expectation values of Uν with
respect to the excited states become z(2,±)

ρ,L = ±1/2 at the

BCDW-CDW transition point, and z(2,±)
σ,L = ±1/2 at the SDW-

BCDW transition point, respectively. Their system-size de-
pendence at the critical points is O(1/L) as shown in Fig. 7.
The excited states |�±

ν,1〉 are obtained under antiperiodic

boundary conditions c†
i+L,s = −c†

i,s with wave number k = π

(k = 0) for the charge ν = ρ (spin ν = σ ) sector [30,31].
In the present case, z(2,±)

ρ,L and z(2,±)
σ,L behave similarly to

those of the S = 1 spin chain and the S = 1/2 J1-J2 spin
chain, respectively, reflecting U(1) and SU(2) symmetries of
the universality class of the transitions. The difference of the
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FIG. 7. System size dependence (L = 8–16) of z(2,±)
ρ,L of the ex-

tended Hubbard model at the BCDW-CDW boundary Vc/t = 1.650
and z(2,±)

σ,L at the SDW-BCDW boundary Vc/t = 1.353 at U/t = 3
[30,31]. This shows that z(2,±)

ν,L has the size dependence O(1/L), and
approach to ±1/2 in the L → ∞ limit.

signs of z(2,±)
σ,L and the S = 1/2 J1-J2 model is due to that of

the coupling constant of the nonlinear terms g.

V. SUMMARY AND DISCUSSION

In summary, we have discussed the expectation value of
the LSM-type twist operator U q with respect to excited states
|�±

q/2〉 that accompany momentum transfer qkF. This takes the
universal values ±1/2 in TL liquids, so that if the Hilbert
space of these states is not classified by discrete symmetries,
the expectation value changes discontinuously between these
two values at the phase transition points that belong to the
universality class of the U(1) or SU(2) symmetric Gaussian
model. As a matter of fact, the behavior of z(q,±)

L is just like
an “enhanced” version of z(q)

L which takes finite values with
different signs at the two gapped fixed points but becomes
zero at the transition point. However, the property of z(q,±)

L is
essentially different from that of z(q)

L in terms that z(q,±)
L takes

finite values on the limit of the gapless point. This property
is applicable to detect these phase transitions and characterize
the topology of the system. We have demonstrated these prop-

erties in the S = 1/2 J1-J2 spin chain, the S = 1 Heisenberg
chain, and the extended Hubbard model.

In TL liquids, we cannot define order parameters as
ground-state expectation values of operators, because the
bosonized operator is always written in normal-ordered form.
In other words, this is the consequence of an absence of long-
range orders. Therefore, physical information in a TL liquid
is usually characterized by the dominant exponents of the
two-point correlation functions that show power-law decay.
Contrary to this, our result indicates that we can enhance the
order parameter z(q)

L and extract the physical information of
TL liquids if the average is taken in terms of appropriate
excited states.

In the present argument, the universal values z(q,±)
L = ±1/2

in TL liquids do not depend on the detailed boson repre-
sentation of U as long as relation (15) is satisfied. On the
other hand, z(q)

L = 0 on the Gaussian point is explained by
the bosonized form (14) and the symmetry of the Gaussian
point under the transformation φ → φ + π/2q which reverses
the sign of the nonlinear term of the sine-Gordon model. In
addition to this, there is small size dependence of the z(q)

L = 0
point due to the approximation to the linearized dispersion
relation of the TL model. Then, 〈: ei2qφ :〉 takes a finite value,

and the size dependence mainly stems from the factor ( 2π
L )

q2K

of Eq. (14). Recently, the size dependence of z(q)
L away from

the z(q)
L = 0 point has been discussed [32]. For this case,

effects of the marginal operator should be taken into account
in the present case [33].
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APPENDIX A: DERIVATION OF EQS. (14) AND (15)

We derive Eq. (14). By rescaling the density operators by the TL parameter and using the Campbell-Baker-Hausdorff formula
eA+B = eAeBe−(1/2)[A,B] = eBeAe(1/2)[A,B], the normal-ordered representation of Eq. (13) is calculated as follows:

U (1, K ) ≡ exp{i[2φ(L) − Nπ − 2Q]} = exp

⎡
⎣−

∑
n �=0

√
K

n
e−απ |n|/L[ρ̃+(n) + ρ̃−(n)] + iNπ

⎤
⎦ (A1)

= exp

[
−
∑
n>0

√
K

n
e−απ |n|/L[ρ̃+(n) − ρ̃−(−n)]

]
︸ ︷︷ ︸

≡exp(i2φ> )

exp

[
−
∑
n<0

√
K

n
e−απ |n|/L[ρ̃+(n) − ρ̃−(−n)]

]
︸ ︷︷ ︸

≡exp(i2φ< )

eiNπ

× exp

⎧⎨
⎩−K

2

[∑
n>0

1

n
e−απ |n|/L[ρ̃+(n) − ρ̃−(−n)],

∑
m<0

1

m
e−απ |m|/L[ρ̃+(m) − ρ̃−(−m)]

]
︸ ︷︷ ︸

− K
2 [i2φ>,i2φ<] (∗)

⎫⎬
⎭, (A2)
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where we have redefined ρ̃±(n) ≡ ρ±(p) with p = 2π
L n. The marked part in Eq. (A2) becomes

(∗) = exp

(
−K

2

∑
n>0

∑
m<0

1

nm
e−απ (|n|+|m|)/L{[ρ̃+(n) + ρ̃−(−n)], [ρ̃+(m) + ρ̃−(−m)]}

)

= exp

(
−K

2

∑
n>0

1

n2
e−α2πn/L2n

)
= exp

(
−K

∑
n>0

1

n
e−α2πn/L

)
= exp[K log(1 − e−α2π/L )]



(

2πα

L

)K

. (A3)

Therefore Eq. (A1) becomes

U (1, K ) 

(

2πα

L

)K

exp(i2φ>) exp(i2φ<)eiNπ ≡
(

2πα

L

)K

: exp[i(2φ(L) − Nπ − 2Q)] :



(

2πα

L

)K

: exp[i2φ(L)] : . (A4)

Thus we get Eq. (14). This satisfies Eq. (15) as follows:

U (p, K )U (q, K ) = exp(i2pφ>) exp(i2pφ<)eipNπ exp(i2qφ>) exp(i2qφ<)eiqNπ

(
2πα

L

)(p2+q2 )K

= exp(i2pφ>) exp(i2qφ>) exp(i2pφ<) exp(i2qφ<)ei(p+q)Nπ

(
2πα

L

)(p2+q2 )K

exp(−[i2qφ>, i2pφ<])

= exp[i2(p + q)φ>] exp[i2(p + q)φ<]ei(p+q)Nπ

(
2πα

L

)(p2+q2+2pq)K

= exp[i2(p + q)φ>] exp[i2(p + q)φ<]ei(p+q)Nπ

(
2πα

L

)(p+q)2K

= U (p + q, K ). (A5)

APPENDIX B: ALTERNATIVE DERIVATION OF EQ. (17)

In Refs. [16,17], Eq. (17) has been derived based on the transfer-matrix method. Here we give an alternative derivation of
this formula using only CFT. We consider an expectation value of an operator O j in terms of excited states in the cylindrical
coordinate as

zi ji ≡ cyl 〈Oi|O j (σ )|Oi〉cyl , (B1)

where |Oi〉cyl is the highest weight state corresponding to the primary operator Oi(z, z̄). We assume that the operators are
Hermitian O†

i = Oi. Then the counterpart of the two-dimensional plain |Oi〉 and its conjugate state are defined as

|Oi〉 ≡ lim
z,z̄→0

z−�i z̄−�̄iOi(z, z̄) |0〉 , (B2a)

〈Oi| ≡ lim
z,z̄→0

z−�i z̄−�̄i 〈0|Oi(1/z, 1/z̄), (B2b)

where (�i, �̄i ) is the conformal dimension of Oi. The above definitions satisfy the normalization condition 〈Oi|Oi〉 = 1. We
now define |Oi〉 and 〈Oi| on a cylinder with length L as follows:

|Oi〉cyl ≡ lim
w,w̄→−∞

(
L

2πaz

)�i
(

L

2πaz̄

)�̄i

Oi(w, w̄) |0〉 , (B3a)

cyl 〈Oi| ≡ lim
w,w̄→−∞ lim

w′→−w
lim

w̄′→−w̄

(
L

2πaz

)�i
(

L

2πaz̄

)�̄i

〈0|Oi(w
′, w̄′), (B3b)

where a is the lattice constant, and w, w̄ and z, z̄ are related by the conformal transformation,

w = L

2πa
ln z, w̄ = L

2πa
ln z̄. (B4)
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The normalization between |Oi〉cyl and cyl 〈Oi| is confirmed as follows:

cyl 〈Oi|Oi〉cyl = lim
w,w̄→−∞ lim

w′→−w
lim

w̄′→−w̄

(
L

2πaz

)2�i
(

L

2πaz̄

)2�̄i

〈0|Oi(w
′, w̄′)Oi(w, w̄)|0〉

= lim
z,z̄→0

(
L

2πaz

)2�i
(

L

2πaz̄

)2�̄i

× lim
z′→1/z

lim
z̄′→1/z̄

(
L

2πaz′

)−�i
(

L

2πaz̄′

)−�̄i
(

L

2πaz

)−�i
(

L

2πaz̄

)−�̄i

〈0|Oi(z
′, z̄′)Oi(z, z̄)|0〉

= lim
z,z̄→0

(
1

z

)2�i
(

1

z̄

)2�̄i 1

(1/z)2�i (1/z̄)2�̄i

= 1. (B5)

The expectation value of O j (σ ) = O j (w, w̄) with w = τ + iσ , w̄ = τ − iσ in terms of |Oi〉cyl is calculated as follows:

zi ji = cyl 〈Oi|O j (w, w̄)|Oi〉cyl

= lim
w′′,w̄′′→−∞

lim
w′→−w′′

lim
w̄′→−w̄′

(
L

2πaz′′

)2�i
(

L

2πaz̄′′

)2�̄i

〈0|Oi(w
′, w̄′)O j (w, w̄)Oi(w

′′, w̄′′)|0〉

= lim
z′′,z̄′′→0

lim
z′→1/z′′

lim
z̄′→1/z̄′′

(
L

2πaz′′

)2�i
(

L

2πaz̄′′

)2�̄i

×
(

L

2πaz′

)−�i
(

L

2πaz̄′

)−�̄i
(

L

2πaz

)−� j
(

L

2πaz̄

)−�̄ j
(

L

2πaz′′

)−�i
(

L

2πaz̄′′

)−�̄i

×〈0|Oi(z
′, z̄′)O j (z, z̄)Oi(z

′′, z̄′′)|0〉

= lim
z′′,z̄′′→0

(
2πa

L

)x j z� j z̄�̄ j

z′′2�i z̄′′2�̄i
〈0|Oi(1/z′′, 1/z̄′′)O j (z, z̄)Oi(z

′′, z̄′′)|0〉 (B6)

=
(

2πa

L

)x j

Ci ji, (B7)

where x j = � j + �̄ j is the scaling dimension of O j , and Ci ji is the OPE coefficient of the three-point function in Eq. (B6). Thus
we get Eq. (17).

APPENDIX C: OPERATOR PRODUCT EXPANSION COEFFICIENTS

We calculate OPE coefficients involving the following operators:

O1(σ ) =: cos[qφ(σ )] :, O2(σ ) =: sin[qφ(σ )] :, O3(σ ) =: cos[2qφ(σ )] : . (C1)

In a spin-1/2 chain, O1 and O2 correspond to the singlet state and the triplet state with Sz = 0, respectively. O3 appears in the
umklapp scattering term. The phase field is given by the holomorphic and the antiholomorphic parts as

φ(z, z̄) =
√

K

2
[ϕ(z) + ϕ̄(z̄)]. (C2)

The vertex operators satisfy the following OPE rule for z 
 z′:

: eiαϕ(z) :: eiβϕ(z′ ) :
 (z − z′)αβ : ei(α+β )ϕ(z′ ) : . (C3)

Then the OPE of O2, O3 is given by their most divergent terms as

O2(z, z̄)O3(z′, z̄′) 
 1

4i
(: eiq

√
K/4ϕ(z) :: eiq

√
K/4ϕ̄(z̄) :: e−iq

√
Kϕ(z′ ) :: e−iq

√
K ϕ̄(z̄′ ) : −H.c.)


 1

4i

1

(z − z′)q2K/2(z̄ − z̄′)q2K/2
(: e−iq

√
K/4ϕ(z′ ) :: e−iq

√
K/4ϕ̄(z̄′ ) : −H.c.)

= −1/2

(z − z′)q2K/2(z̄ − z̄′)q2K/2
O2(z′, z̄′). (C4)
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Thus, we obtain C232 = −1/2. Similarly, we obtain C131 = 1/2 as

O1(z, z̄)O3(z′, z̄′) 
 1/2

(z − z′)q2K/2(z̄ − z̄′)q2K/2
O1(z′, z̄′). (C5)

The process to obtain these universal values C131 = 1/2 and C232 = −1/2 is quite similar to that of Eq. (6).
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