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At the Mott transition, electron-electron interaction changes a metal, in which electrons are itinerant, to an
insulator, in which electrons are localized. This phenomenon is central to quantum materials. Here we contribute
to its understanding by studying the two-dimensional Hubbard model at finite temperature with plaquette cellular
dynamical mean-field theory. We provide an exhaustive thermodynamic description of the correlation-driven
Mott transition of the half-filled model by calculating pressure, charge compressibility, entropy, kinetic energy,
potential energy, and free energy across the first-order Mott transition and its high-temperature crossover
(Widom line). The entropy is extracted from the Gibbs-Duhem relation and shows complex behavior near the
transition, marked by discontinuous jumps at the first-order boundary, singular behavior at the Mott endpoint,
and inflections marking sharp variations in the supercritical region. The free energy allows us to identify the
thermodynamic phase boundary, to discuss phases stability and metastability, and to touch upon nucleation
and spinodal decomposition mechanisms for the transition. We complement this thermodynamic description of
the Mott transition by an information-theoretic description. We achieve this by calculating the local entropy,
which is a measure of entanglement, and the single-site total mutual information, which quantifies quantum
and classical correlations. These information-theoretic measures exhibit characteristic behaviors that allow us to
identify the first-order coexistence regions, the Mott critical endpoint and the crossovers along the Widom line
in the supercritical region.
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I. INTRODUCTION

At the Mott metal-insulator transition, the Coulomb in-
teraction in a half-filled band competes with the kinetic en-
ergy to change the collective behavior of the electrons from
itinerant to localized [1,2]. As unconventional superconduc-
tivity and other exotic quantum states occur in proximity to
Mott insulators, describing the Mott transition in quantum
materials remains a central programme in condensed matter
physics [2–5], one that catalyzes key advances in experimental
and theoretical techniques alike. On the experimental side,
new approaches to study correlated systems emerged, such
as ultracold atoms in optical lattices [6–10], and more re-
cently twisted two-dimensional superlattices [11,12]. On the
theoretical side, the Hubbard model is the simplest model
that captures the Mott transition. Nevertheless, understanding
the Mott transition even within simple models is a difficult
task because it is a nonperturbative phenomenon, thereby
preventing the use of known analytical methods. Dynamical
mean-field theory [13] and its extensions [14–16] emerge as
powerful tools that provide a nonperturbative approach to the
Mott transition. Theoretical progress in the description of the
Mott transition in the Hubbard model in two dimensions,

*Corresponding author: giovanni.sordi@rhul.ac.uk

where local quantum fluctuations play together with short-
range spatial correlations, is particularly challenging [17].

While key results have been obtained, here we take ad-
vantage of algorithmic improvement and extensive computer
resources to provide a detailed thermodynamic description of
the Mott transition in the half-filled two-dimensional Hubbard
model within cellular dynamical mean-field theory. We reveal
the landscape of pressure, charge compressibility, thermo-
dynamic entropy, kinetic energy, potential energy, and free
energy across the Mott transition and its high-temperature
crossover. Key thermodynamic signatures in these observ-
ables, such as inflection points in the entropy, are sometimes
visible at high temperature only when an unprecedented level
of accuracy is attained.

Knowledge of the thermodynamic entropy allows us to
complement the thermodynamic description of the Mott tran-
sition by a description based on quantum information theory
(see also our companion paper [18]). Although Jaynes [19,20]
already unveiled the links between information theory and
thermodynamics, it is only in the last decade that a classifi-
cation of phase transitions in correlated many-body systems
using information-theoretic tools become a major research
direction [21–23]. Even more recently, ultracold atom ex-
periments have become able to access information-theoretic
measures of quantum correlations [24,25], opening the avenue
to quantify and manipulate quantum correlations in many-
body quantum systems, and calling for further theoretical

2469-9950/2019/99(7)/075122(20) 075122-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.075122&domain=pdf&date_stamp=2019-02-11
https://doi.org/10.1103/PhysRevB.99.075122


WALSH, SÉMON, POULIN, SORDI, AND TREMBLAY PHYSICAL REVIEW B 99, 075122 (2019)

investigations on Hubbard-type models. Here we expand on
our companion paper [18] by providing further results on
the relation between Mott transition and two measures of
quantum correlations, the local entropy and total mutual in-
formation. The former is a measure of entanglement, whereas
the latter, defined as the difference between local entropy and
thermodynamic entropy, quantifies all classical and quantum
correlations. We reveal that these measures are able to detect
the first-order character of the transition, the critical behavior
near the Mott endpoint and the supercritical crossover emerg-
ing from the endpoint.

We describe the model and method in Sec. II. Section III
presents the phase diagram mainly through the behavior of
double occupancy. It also shows the occupation as a function
of chemical potential, key to the calculation of the entropy.
The charge compressibility can also be extracted from it. The
Gibbs-Duhem relation is used in Sec. IV to find pressure and
entropy. It also gives us the opportunity to do an accuracy
check by providing an alternate way to obtain the kinetic
energy. Questions of thermodynamic stability are explored in
Sec. V. In Sec. VI, we characterize the Mott transition using
two information theoretic measures, the local entropy and
the mutual information. Section VII summarizes our findings.
Appendix recalls the scaling behavior of the entropy at the
Mott critical endpoint.

II. METHODOLOGY

We study the single-band Hubbard model on the square
lattice in two dimensions:

H = −
∑
i jσ

ti jc
†
iσ c jσ + U

∑
i

ni↑ni↓ − μ
∑

iσ

niσ , (1)

where c†
iσ and ciσ operators create and annihilate an electron

of spin σ on site i, niσ = c†
iσ ciσ is the number operator, U is

the onsite Coulomb repulsion, and μ is the chemical potential.
We take hopping amplitudes ti j between nearest neighbors
only and set ti j = t = 1 as our energy unit.

One of the most advanced methods for a theoretical treat-
ment of this model is cellular dynamical mean-field theory
(CDMFT) [14–16], which is a cluster extension of DMFT
[13]. This theory provides a framework for understanding
local quantum fluctuations generated by the interaction U
on the same footing as the short-range spatial correlations.
CDMFT does so by taking a cluster of lattice sites, here a
2 × 2 plaquette, out of the lattice and by replacing the missing
lattice environment by a self-consistent bath of noninteracting
electrons.

To solve the impurity (cluster in a bath) problem, we use
continuous-time quantum Monte Carlo method (CTQMC)
[26], based on expansion of the hybridization between cluster
and bath (CT-HYB). The LAZY-SKIP-LIST algorithm [27] is
implemented for speed. Self-consistency is attained using an
iterative procedure. Convergence is reached typically within
50 iterations, but hundreds are necessary close to phase
boundaries. Once convergence is attained, we take averages
over at least the last 30 CDMFT iterations and the resulting
root mean square deviation on local quantities, such as the
occupation n and the double occupation D = 〈ni↑ni↓〉, is on

the fifth digit. The number of Monte Carlo updates during
each iteration is of order 109.

III. PHASE DIAGRAM

Let us consider the two-dimensional Hubbard model at
half-filling (n = 1). The phase diagram at half-filling is deter-
mined by temperature T and interaction strength U . Numer-
ical calculations based on cluster extensions of DMFT have
unveiled a simple yet rich phase diagram in the T -U plane: in
the normal state at low temperature and intermediate interac-
tion, the system undergoes a first-order transition between a
metal and a Mott insulator. This first-order transition ends in
a critical endpoint at (Uc, Tc), where the transition becomes
continuous. The supercritical region, i.e., the region in the
T -U plane at temperature higher than the endpoint, displays
interesting crossovers, understood through the concept of the
Widom line. The Widom line is a crossover line defined as the
locus of the maxima of the correlation length emanating from
the endpoint into the supercritical region [28–30]. Indeed,
at the critical endpoint, the correlation length diverges, and
asymptotically close to the endpoint all response functions
are proportional to powers of the correlation length, so the
extrema of the response functions converge asymptotically
close the endpoint [28,29]. This concept was formulated in
the context of fluids [28,29] and extended to electronic fluids
in Ref. [30].

In this section, we revisit the T -U phase diagram at n = 1
with state of the art plaquette CDMFT calculations by fo-
cusing on the behavior of the double occupancy and single
occupancy. The purpose of this section is twofold. First, the
results obtained form the starting point of our discussion of
thermodynamic quantities in Secs. IV and V that help throw
new light into the nature of the Mott transition. Second,
our analysis improves the determination of phase boundaries,
endpoint, and Widom line with a level of accuracy of about
one percent.

A. Double occupancy

First, we construct the phase diagram of the two-
dimensional Hubbard model in the T -U plane at n = 1.
We focus on three key aspects: the first-order nature of the
Mott transition, the critical Mott endpoint, and the Widom
line. We achieve these objectives by carefully computing the
isothermal double occupancy D as a function of interaction
strength U for different values of temperature in the range
1/100 � T � 1/5, where the Mott transition and its associ-
ated crossovers lie (Fig. 1). Figure 2 shows the resulting phase
diagram in the T -U plane. We calculated about 500 points in
the T -U plane.

1. First-order transition

For T < Tc, on sees in Figs. 1(a)–1(c) that D(U )|T shows
hysteresis loops, which are the hallmark of the first-order
nature of the Mott transition. As expected, the Mott insulator
has less double occupancies than the metal. Hysteresis has
been obtained by sweeping up in U (orange up triangles)
and sweeping down in U (green down triangles). The dis-
continuous jumps in D(U )|T signal the disappearance of the
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FIG. 1. (a)–(f) Isothermal double occupancy D vs U for several temperatures, at n = 1. Upper panels show T < Tc, where D(U )|T displays
hysteretic behavior. Hysteresis loops are obtained by sweeping the interaction strength U from left to right and from right to left. Arrows
indicate the sweep direction. The jumps in the double occupancy mark the spinodal points. Lower panels show D(U ) for T > Tc. In the
temperature range considered in (d)–(f), each D(U )|T has an inflection point, where the concavity changes from negative to positive. At
such inflection points, the slope of the curve becomes steeper upon decreasing T towards Tc. This behavior is quantified in panel (g), where
(∂D/∂U )T is plotted vs U for several temperatures above Tc. The first derivative (∂D/∂U )T shows a minimum that sharpens and whose value
becomes more pronounced with decreasing T . The locus of these minima defines the Widom line TW in the T -U phase diagram of Fig. 2. In
(d)–(f), the grey dashed and dotted lines indicates the crossing of the isotherms, i.e., where (∂D/∂T )U = 0 (see Fig. 8 and discussion therein).
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FIG. 2. Temperature-interaction strength phase diagram of the
half-filled 2D Hubbard model within plaquette CDFMT. Lines with
full triangles mark the spinodal lines Uc1 and Uc2, where the in-
sulating and metallic solutions cease to exist, respectively. They
are determined by the position of the jumps in D(U )|T . Dotted
line with crosses indicates the thermodynamic transition curve, Ut ,
obtained by the crossing of the grand potential (see Fig. 10 and
discussion therein). Full circle indicates the critical Mott endpoint,
where the coexistence disappears. Dashed line with open circles
marks the Widom line TW , i.e., the supercritical crossover determined
by the locus of inflections of the double occupancy vs U [i.e.,
min(∂D/∂U )T ]. All lines are guides to the eye.

insulating state at Uc1 and of the metallic state at Uc2. Thus, by
performing U sweeps at different temperatures, we can obtain
the spinodal lines Uc1(T ) and Uc2(T ) [lines with down and
up triangles, respectively, in Fig. 2(a)]. Hysteresis loops vary
with T , decreasing in size with increasing T . Therefore the
coexistence region in Fig. 2(a) shrinks with increasing T .

Our estimate for the size of the coexistence region is
compatible with that obtained by the dual fermion approach in
Ref. [31]; for example, at our lowest temperature, we obtain
Uc2 − Uc1 ≈ 0.5, whereas Ref. [31] finds Uc2 − Uc1 ≈ 0.7.
Note that to date, the size of the coexistence region and
the nature of the first-order transition with cluster dynamical
mean-field methods for cluster larger than 2 × 2 remains a
largely unexplored issue [31], one that presents formidable
challenges.

2. Widom line

For T > Tc (the so-called supercritical region), the
isotherms D(U )|T are single-valued, and monotonically de-
creasing functions of U , as can be seen in Figs. 1(d)–1(f). Far
away from Tc, at T ≈ 0.2 or ≈3.33Tc, the isotherms D(U )|T
start to develop an inflection point, where their curvature
change from negative to positive. Moreover, D(U )|T at the in-
flection point becomes progressively steeper with decreasing
T towards Tc. As a results, (∂D/∂U )T develops a minimum,
which sharpens and whose value increases, i.e., becomes more
negative, with progressively decreasing T [Fig. 1(g)], and
eventually diverges at Tc. The line connecting the values of U
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corresponding to each of the inflection points in D(U )|T —as
determined by the minima in Fig. 1(g)—is our estimate for the
Widom line in the T -U plane, as indicated by circles in Fig. 2.
From the phase diagram, it is then clear that the Widom line
is a crossover line emanating out of the Mott endpoint into the
supercritical region.

To understand the significance of the Widom line, let us
contrast the behavior of D(U ) below and above Tc; in the same
way that the divergence in ∂D/∂U at the Mott endpoint is
the precursor of the phase coexistence below Tc, so the line
of inflections of D(U ) above Tc is the precursor of the Mott
endpoint at Tc. From high to low temperature, therefore, one
has the sequence: the crossover line of minima in (∂D/∂U )T

develops into a critical point at (Uc, Tc), which is then fol-
lowed by a first-order transition at low temperature. Now, it
is often the case that the Mott endpoint and the underlying
first-order transition are masked by some broken symmetry
phases, such as long-range antiferromagnetism [13,32] or
superconductivity [33]. Because the Widom line emanates out
of the critical endpoint and persists up to high temperature in
the normal phase, the Widom line can be used to extrapolate
the existence of the endpoint and its location. The possibility
of gaining information on a hidden critical endpoint by using
the supercritical crossover emanating from it is one of the key
motivations behind the introduction of the concept of Widom
line: in fluids, it was originally discussed that the Widom line
might point to the existence of a liquid-liquid transition in
supercooled water [28]; in electronic fluids, we introduced
it [30] to pinpoint the existence of a metal-metal transition
beneath the superconducting dome in the doped 2D Hubbard
model [30,33,34].

3. Mott endpoint

At T = Tc, the isotherm D(U )|Tc is continuous with an
inflection point with vertical tangent at Uc, resulting in a
divergence in ∂D/∂U . A detailed study [35] has shown that
at Tc, D(U ) as a function of U has critical behavior and
scales as −sgn(U − Uc)|(U − Uc)|1/δ , with δ = 3 in CDMFT,
and therefore (∂D/∂U )Tc scales as −|(U − Uc)|(1/δ)−1 near
(Uc, Tc).

The singular behavior in D(U ) at the Mott endpoint ex-
tends in the supercritical region in the form of inflection
points, i.e., the Widom line: the divergence in ∂D/∂U at Tc

is replaced, for T > Tc, by a sharp minimum, which smears
out and whose value progressively moves away from Tc.
Therefore, for T > Tc, from the Mott endpoint it emerges
a sharp crossover line, the Widom line. On the other hand,
for T < Tc, the Mott endpoint is the terminus of the finite-
temperature first-order Mott transition, where the metallic and
insulating phases merge into a single phase.

These arguments lead to a natural way to estimate the
Mott critical endpoint (Uc, Tc). To find an upper bound for
Tc, we proceed as follows. By construction, the Widom line
is made of the minima of ∂D/∂U , whose magnitude becomes
more negative as T → Tc from above. At Tc, ∂D/∂U diverges.
Therefore, by plotting the magnitude of (∂D/∂U )−1 as a
function of T , it will extrapolate to zero at Tc, as shown by
diamonds in Fig. 3(b).
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FIG. 3. (a) T -U phase diagram. Lines with triangles: Uc1(T )
(down triangles) and Uc2(T ) (up triangles). Dashed line with open
red circles is the Widom line, TW . Dashed grey lines places bounds
for the location of the critical endpoint (red filled circle). Bounds on
Tc in the temperature range near the critical point (on the vertical
scale) are shown in (b). We plot on the horizontal axis the size of
the coexistence region (Uc2 − Uc1) (times 60, for better visualisation)
(blue squares). At Tc, the coexistence disappears, so this value
extrapolates to 0 at Tc. In addition, values of the −min(∂D/∂U )−1

are plotted on the horizontal axis (blue diamonds). At the endpoint,
∂D/∂U diverges, so (∂D/∂U )−1 goes to zero.

To find a lower bound for Tc, we note that the hysteresis
loops approaches zero as T → Tc from below. Therefore we
extrapolate Tc by plotting the size of the coexistence region
Uc2 − Uc1 as a function of temperature, as shown by squares
in Fig. 3(b).

Operationally, we define Tc as the midpoint between the
highest temperature where D(U ) shows hysteresis and the
smallest temperature where D(U ) is continuous (see hori-
zontal dashed lines in Fig. 3). Consequently, Uc is the mid-
point between the value of Uc2 corresponding to the highest
temperature where we found hysteresis, and the value of U
where D(U ) has its largest slope. In summary, we obtain
Uc ≈ 5.90 ± 0.05 and Tc ≈ 0.06 ± 0.005.

Our estimate for the location of the Mott endpoint
improves previous estimates with 2 × 2 plaquette DMFT
(Refs. [36,37]), and is close with those obtained with other
methods: 4 × 4 DCA gives Uc = 6.53 [31] and dual fermion
approach gives Uc = 6.64 [31].

B. Single occupancy and charge compressibility

The U -driven Mott transition at n = 1 can also be revealed
by the behavior of the occupation n as a function of μ for
different values of U and T . As shown in Figs. 4(a) and 4(b),
the shape of n(μ) differs below and above Uc: for U < Uc,
n(μ) monotonically increases with increasing μ, indicating
metallic behavior from empty band (n = 0) all the way until
half-filled band, at n = 1, or μ = U/2. On the other hand, for
U > Uc(T ), n(μ) develops a plateau at n = 1, signaling that
the half-filled system is a Mott insulator.

075122-4



THERMODYNAMIC AND INFORMATION-THEORETIC … PHYSICAL REVIEW B 99, 075122 (2019)

−8 −6 −4 −2 0
μ − U/2

0.0

0.2

0.4

0.6

0.8

1.0

n

(a) U = 4.2,
T = 1/10

−8 −6 −4 −2 0
μ − U/2

0.0

0.2

0.4

0.6

0.8

1.0

n

(b) U = 8.2,
T = 1/10

−8 −6 −4 −2 0
μ − U/2

0.0

0.2

0.4

0.6

0.8

1.0

n

(c)

U = 5.6,
T = 1/50 met

U = 5.6,
T = 1/50 ins

−0.3 −0.2 −0.1 0.0
0.96

0.98

1.00

FIG. 4. Occupation n(μ) for (a) U = 4.2 < Uc and T = 1/10 > Tc, (b) U = 8.2 > Uc and T = 1/10 > Tc, (c) n(μ) for U = 5.6 for
T = 1/50 < Tc, which lies in the coexistence region of the T -U phase diagram: a metallic solution (up triangles) and an insulating solution
(down triangles) coexist. On the x-axes we used the shifted chemical potential μ̃ = μ − U/2.

For T < Tc and within the coexistence region Uc1(T ) <

U < Uc2(T ) [see Fig. 4(c)], both a metallic and an insulating
solution can be stabilized. As a result, close to μ = U/2 two
possible profiles of n(μ) coexist: a monotonically increasing
function of U (red up triangles) coexists with a flat curve at
n = 1 denoting Mott plateau (blue down triangles). In this
article we confine our interest to the metal-insulator transition
driven by U at half-filling, so the metal-insulator transition
driven by doping (or, equivalently, by chemical potential) is
not considered here (for a detailed discussion with the same
methodology, see Refs. [30,37,38]).

The slope of n(μ) is proportional to the charge compress-
ibility κ = (1/n2)(dn/dμ)T . Figure 5(a) shows κ at n = 1 as
a function of U for T = 1/10 and 1/50. As expected, the
metallic state is compressible whereas the Mott insulator is
incompressible. κ decreases with increasing U and for T <

Tc shows a sudden jump at the Mott transition (see shaded
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FIG. 5. (a) Isothermal charge compressibility κ = (1/n2)
(dn/dμ)T at n = 1 as a function of interaction strength U and for
T above and below Tc, T = 1/10 and 1/50, respectively. Shaded
area indicates the coexistence between a metal and an insulator,
characterized, respectively, by finite and zero charge compressibility.
(b) κ vs temperature, for different values of U . For U = 5.6 and low
temperature, two solutions coexist. All lines are guides to the eye.

region). Figure 5(b) shows the temperature dependence of
κ . At the low temperatures considered here, for U < Uc,
κ monotonically decreases with increasing T , whereas for
U > Uc, κ increases with increasing T , indicating thermal
activation of electrons across the Mott gap. Compressibility
has recently been measured in ultracold atom experiments
[10] for the two-dimensional Hubbard model.

Clearly, to calculate the isothermal charge compressibility
at n = 1, one does not need knowledge of n(μ) from empty
to half-filled band: few points close to μ = U/2 suffice.
However, as we shall see in the next section, knowledge of
n(μ) from empty to half-filled band allows us to obtain, using
the Gibbs-Duhem relation, pressure, free energy and entropy
across the Mott transition at n = 1 and its precursor Widom
line.

IV. GIBBS-DUHEM RELATION

In this section, we exploit the Gibbs-Duhem relation to
find pressure and entropy for the Mott transition and its su-
percritical crossover. These two thermodynamic quantities are
found from knowledge of n(μ) from empty to half-filled band.
This approach has been motivated by recent experiments with
ultracold atoms on the 2D Hubbard model [25]. It is extremely
resourceful, yet computationally very expensive and thus not
much applied. To our knowledge this method to find pressure
or entropy has been used only for the attractive 2D Hubbard
model [39] and, with the two-particle-self-consistent approach
[40], for the metallic part of the 2D Hubbard model [41].

A. Pressure

The Gibbs-Duhem relation is

sdT − adP + ndμ = 0, (2)

where s is the entropy per particle, a the surface per particle
and P the pressure. At constant T and U , it becomes ndμ =
adP, from which one can extract P by integrating n(μ) from
0 (empty band) to 1 (half-filled band),

P(T )U = 1

a

∫ U/2

−∞
n(μ, T )dμ. (3)
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FIG. 6. (a) Pressure P vs interaction strength U at n = 1 for different temperatures. Open symbols have been obtained using Eq. (3).
Integration has been performed using composite trapezoidal rule. Error bars, most of them invisible on this scale, indicate three standard
deviations. Dashed line is the asymptotic behavior P = U/2a in the limit U → ∞, T → 0. Filled red squares are experimental data for
ultracold atoms in Ref. [25] at T ≈ 1/1.4. [(b)–(d)] Pressure P vs temperature T at n = 1 for different values of U : U = 4.2 < Uc (b),
U = 6.2 > Uc (d), and U = 5.6 (c), which, at low temperatures, lies within the coexistence region. In that region, two solutions characterized
by two distinct values of pressure coexist, with Pmet < Pins. Note that for U = 6.2, P(T ) shows activated behavior and it is increasing with
increasing T within error bars.

This step is computationally demanding, and to the best of
our knowledge it has not been attempted so far within cluster
extensions of DMFT, nor with single-site DMFT: in order
to capture subtle variations of the occupation n(μ)T , careful
scans in steps of μ ranging from 0.2 down to 0.0025 were
performed (see, for example, Fig. 4). This means that a single
value of the pressure requires a detailed knowledge of n(μ),
which we typically attain with of order of 50–170 μ values for
CDMFT calculated n. Despite the high computational cost, we
computed 31 values of the pressure across the Mott transition
and the associated Widom line, for a total of more than
2000 points in the space of parameters given by temperature,
chemical potential and interaction strength.

For the numerical integration of n(μ), we use the com-
posite trapezoidal rule and a lower limit of integration μmin

corresponding to n(μmin) ≈ 0.002. We have verified that other
integration methods (Simpson’s rule and Romberg method)
give the same result up to the fifth digits. This suggests that
the error coming from integration on a finite grid is negligible.
For the error bars associated to each value of the pressure,
we consider the statistical error [associated to the error on the
n(μ)] only. To compensate our neglect of the systematic error
associated to the discretized integral, our error bars contain
three standard deviations. Further accuracy checks are given
in the next two subsections.

Figure 6 shows the pressure P as a function of interaction
strength U at n = 1, for T = 1/10 > Tc (blue open circles)
and T = 1/50 < Tc (open triangles). P increases with increas-
ing U and approaches the asymptotic behavior P → U/(2a)
obtained in the limit U → ∞, T → 0 (dashed line). We find
consistency with experimental data on ultracold atoms in
Ref. [25] (filled red squares). The slight deviation downward
over the entire range of U is caused by the higher temperature
used in experiments.

Indeed, P(T ) increases with increasing temperature. Fig-
ures 6(b)–6(d) show P as a function of temperature for three
values of the interaction strength: U = 4.2 < Uc, U = 5.6
which, for T < Tc, lies within the coexistence region, and

U = 6.2 > Uc. Despite the small variation of the pressure
with T and the error bars, it is clear that P(T ) increases
more rapidly with increasing T in the metal than in the Mott
insulator. Indeed, in a Fermi liquid, one expects P ∝ c1 +
c2T 2 with c1 and c2 constants, whereas in a Mott insulator one
expects activated behavior P ∝ c1 + c2 exp(−�g/T ), with �g

the Mott gap. Figure 6(c) shows that within the coexistence
region, two distinct values of pressure appear, with Pmet <

Pins.

B. Entropy

The entropy per site s = −Tr[ρ ln ρ]/N , where ρ is the
density matrix and N the number of sites, can be obtained
from the Gibbs-Duhem relation as

s = a(dP/dT )μ. (4)

For the numerical derivative, we perform finite differences
between two temperatures.

Figure 7 shows the entropy s as a function of interaction
strength U for three temperatures, T = 1/10, 1/12 > Tc, and
T = 1/50 < Tc. Let us first focus on T = 1/10, which is
larger than, but not far from, Tc: s(U )T exhibits nonmonotonic
behavior; at first, the entropy increases with increasing U
until it reaches a local maximum. The increase of entropy
with U coming from the metallic side is easy to understand
since entropy is proportional to effective mass in Fermi-
liquid theory and effective mass increases with interactions.
Increasing U further, s(U )T shows a sharp drop marked by
an inflection point (vertical orange dashed line), followed by
a shallow local minimum. With U even larger, the entropy
increases with U , asymptotically reaching ln 2, as expected
for localized independent spins, at U → ∞ (not shown).
The sharp decrease of s with U that precedes the increase
towards ln 2 should occur even in infinite-system calculations
because the entropy from spin waves is inversely proportional
to the square of the spin-wave velocity. That velocity increases
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FIG. 7. Entropy per site s vs interaction strength U at n = 1 for
different temperatures T : T = 1/10, 1/12 > Tc, and T = 1/50 <

Tc. Data have been obtained using Eq. (4). Numerical derivatives
have been performed using finite differences between two tem-
peratures. We estimate s at T = 1/10 by taking finite differences
between T = 1/8 and 1/10. We estimate s at T = 1/12 by taking
finite differences between T = 1/10 and 1/12. We estimate s at
T = 1/50 by taking finite differences between T = 1/40 and 1/50.
Error bars indicate three standard deviations. Orange dashed vertical
lines mark the inflection point in s(U )T above Tc. Shaded area marks
the coexistence between metal and insulator below Tc. Since in the
Mott insulator at low temperature, the pressure P(T ) shows activated
behavior [see Fig. 6(d)], the entropy is zero within error bars. Filled
squares show high-temperature data of Ref. [42].

with U as long as the Mott transition occurs before the
asymptotic Heisenberg regime, which is observed to be the
case [36,37,43].

The nonmonotonic behavior of our data is compatible with
numerical linked-cluster expansions results at higher temper-
ature [42] shown by filled squares in Fig. 7 for T ≈ 1/3.2.

The key feature of s(U )T is the inflection point marking the
most rapid decrease of the entropy with U (vertical red dashed
lines): for example, at T = 1/10, with U increasing from
6 to 7, the entropy drops by almost one-third. Furthermore,
the slope associated to this sharp drop becomes steeper with
progressively decreasing T , as demonstrated by our data at
T = 1/12 (violet diamonds). As will be discussed later in
Fig. 13(e), indeed the minimum of (∂s/∂U )T increases in
magnitude in going from T = 1/10 to T = 1/12. Thus we
expect that at Tc, the inflection turns into a infinite slope. This
is indeed the case; at Tc, it is straightforward to demonstrate
that s(U ) scales as −sgn(U − Uc)|U − Uc|1/δ and thus has
infinite slope since δ > 1 (see Appendix).

By tracking the position of the inflection points of the
entropy s(U )T , we can thus define a crossover line in the T -U
phase diagram, in complete analogy to our analysis of the
inflection points of the double occupancy described in Sec. III.
This crossover is shown in Fig. 8(a) (orange diamonds).
Figures 8(b) and 8(c) zoom-in on the behavior of s(U )T close
to Uc for T = 1/10 and 1/12, respectively. Similarly to the
Widom line, the crossover marking the sharpest variation of
entropy with U evolves into the Mott critical endpoint. It
closely follows the Widom line and, indeed, we expect that
asymptotically close to Tc all these crossovers merge on the
same line. Due to the high computation cost, we were able to
obtain the crossover in the entropy only at two temperatures,
T = 1/10 and 1/12. However, an inflection point still occurs
in the high-temperature data of Ref. [42] (see orange vertical
dashed line in Fig. 7), suggesting that this crossover may
persist up to quite high temperature. The sharp crossover
in the entropy emerging from the Mott endpoint into the
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FIG. 8. (a) Temperature-interaction strength (T -U ) phase diagram of the 2D Hubbard model at n = 1. Orange open diamonds denote the
crossover line Ts obtained as the loci of inflection points in the most rapid downward fall with U , as measured by the position of the local
minima min(∂S/∂U )T . It emanates out of the Mott endpoint (full red circle) into the supercritical region. Red symbols are as in Fig. 2: red
triangles indicate the coexistence line and red open circles mark the Widom line TW as obtained from the loci of the inflections in D(U )T .
The gray squares (crosses) point to the position of the local maxima (local minima) of the entropy s(U )T . They are determined using the
Maxwell relation (∂s/∂U )T,n = −(∂D/∂T )n,U . At each temperature, the crossover line extracted from the loci of inflection point (orange
diamonds) occurs between the lines with gray symbols. [(b) and (c)] Entropy per site s versus U for T = 1/10 (b) and T = 1/12 (c). Vertical
orange dashed line marks the position of the inflection, near the sharpest drop with U . The position of the inflection is shown in (a) with
orange diamonds. Vertical gray dashed (dotted) line denotes the position of the local maximum (local minimum) in s(U )T as calculated by the
Maxwell relation. The good agreement with the actual data (open symbols) provides a consistency check for our calculation. The position of
the local maximum (local minimum) at each temperature is shown in (a) with gray squares (gray crosses).
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supercritical region is one of the key findings of our work. Our
prediction could be tested in the supercritcal region above the
Mott endpoint in real materials [44–47] and in atoms in optical
lattices [25].

Below Tc the crossover in the entropy evolves into a first-
order transition. For T = 1/50 < Tc, shown by triangles in
Fig. 7, s(U ) is dramatically reduced in the Mott insulator
because charge excitations are gapped while spin fluctuations
are reduced due to short-range singlet formation [36–38].
The collapse to zero of the entropy differs from single-site
DMFT, where the Mott insulator has ln 2 ground-state en-
tropy [13,36]. Within the coexistence region, the entropy is
discontinuous, with sins < smet, resulting in the latent heat � =
T (smet − sins). Heat must be added to melt the insulator into
the metal. We find � ≈ 0.0025 for U = 5.6 and T = 1/50.

The Clausius-Clapeyron equation, dT/dU = (Dins −
Dmet )/(sins − smet ) = (Dins − Dmet )/(�T ) relates latent heat
to the difference in double occupancy and to the slope of
the coexistence curve dT/dU . The metallic phase has larger
entropy and larger double occupancy than the insulating
phase, implying a positive slope for the coexistence curve, in
agreement with our T -U phase diagram [see, e.g., Figs. 8(a)
and 2]. Previous works [36] inferred from the positive slope of
the coexistence curve on the T -U phase diagram that the Mott
insulator has lower entropy than the metal. By calculating the
entropy, our contribution is to quantify the discontinuity of
the entropy across the Mott transition. Furthermore, we note
that as T → 0, the slope of the first-order transition, dT/dU ,
becomes vertical. This follows from the Clausius-Clapeyron
relation and the fact that the transition at T = 0 is between
two states with same s = 0 entropy. Our result on the infinite
slope of dT/dU at T = 0 corrects what has been previously
suggested [36,43].

We end this section with a remark that also serves as
a further consistency check on the behavior of the entropy
with U . For T > Tc, s(U )T shows two extrema: a local
maximum for U < Uc and a local minimum for U > Uc [see,
e.g., Figs. 8(b) and 8(c)]. A Maxwell relation prescribes that
the extrema of the entropy can also be determined by the
crossing of the isotherms ∂D/∂T = 0. The proof works as fol-
lows: d (e − T s) = −sdT − Pda + μdn + DdU implies that
∂D/∂T |a,n,U = −∂s/∂U |a,n,T = 0 [13,48–50]. The gray ver-
tical lines in Figs. 8(b) and 8(c) indicate the value of U at
which the two extrema computed using the Maxwell relation
occur. The agreement with the position of the local maximum
of s(U )T calculated using the Gibbs-Duhem relation is excel-
lent for both T = 1/10 and 1/12. To save computing time,
the consistency between the two methods in the case of the
minimum has been verified only for T = 1/10. The loci of
the entropy extrema are plotted in the T -U phase diagram of
Fig. 8(a) (gray squares and crosses). Note that the crossover
emerging from the Mott endpoint (orange diamonds) is in
between the loci of entropy extrema.

C. Accuracy check: kinetic energy

The subtle variations of pressure and of entropy with U and
T are one of our central results. We have already discussed the
intrinsic checks that we have performed. In this subsection, we
discuss one of the most stringent consistency checks in our
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FIG. 9. Kinetic energy per site ekin vs U for T = 1/10 > Tc (a)
and for T = 1/50 < Tc (b). We calculate ekin with two different
methods: within the CT-HYB impurity solver (open symbols) and
using Eq. (5) (X symbols), ekin = T s + μn − Pa − UD. Relative
error as a function of U for T = 1/10 (c) and for T = 1/50 (d).
The overall agreement provides a strong consistency check for our
determination of the pressure P and the entropy s.

calculations: the calculation of the kinetic energy. From the
entropy and the pressure, one can calculate the kinetic energy
per site from the Gibbs-Duhem result

ekin = T s + μn − Pa − UD. (5)

Figures 9(a) and 9(b) show ekin as a function of U for two
temperatures, T = 1/10 > Tc and T = 1/100 < Tc calculated
using Eq. (5) (X symbols). Alternatively, the kinetic energy
can be extracted with high accuracy directly within the CT-
HYB impurity solver (open symbols); Ref. [51] demonstrated
that ekin is the sum of two terms, a contribution related to
the average expansion order term, plus a term coming from
the cluster part. Figures 9(c) and 9(d) show the relative error
between the two methods as a function of U both above
and below Tc: the overall relative error is smaller than 1%,
therefore implying excellent internal consistency.

V. THERMODYNAMIC STABILITY

We have all that is needed to compute thermodynamic
potentials. This is discussed in the first subsection below.
Concavity of the grand potential is linked to thermodynamic
stability. Stability criteria give a more fundamental and unify-
ing understanding of thermodynamics. In the following two
subsections, we thus study the local stability, i.e., stability
under small perturbations, and then the global stability, i.e.,
which phase minimizes the grand potential.

A. Grand potential

From Eq. (5), ekin = T s + μn − Pa − UD, it follows that
the grand potential per site 	 = ekin + UD − T s − μn (usu-
ally extracted from the partition function in the grand-
canonical ensemble) is equal in magnitude and opposite in
sign to the pressure, 	 = −Pa. Since P is a convex function of
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FIG. 10. (a) Grand potential 	 = −P = Ekin + DU − T s − μn for T = 1/50 < Tc. Lines with up and down triangles indicate the metallic
and insulating solutions, respectively. Shaded area indicates the coexistence region between metal and insulator. The inset zooms on this
region, to show that 	ins < 	met for U = 5.6. By linear extrapolation of the nearest points just below and just above U = 5.6 (dashed orange
and green lines, respectively), we can estimate the value of U where the grand potentials cross, Ut (vertical gray dashed line). We have repeated
a similar analysis for T = 1/40 (not shown). The location of Ut for these temperatures is shown with red crosses on the T -U phase diagram
in Fig. 2. [(b) and (c)] Kinetic energy ekin and potential energy epot = UD vs U for the same temperature as (a). Within the coexistence region,
the kinetic and potential energy differences are much larger than the grand-potential difference.

T and U (see Fig. 6), as expected 	 is a concave function of T
and U . Figure 10 shows 	(U ) for T = 1/50 < Tc [panel (a)]
along with the kinetic energy ekin(U ) [panel (b)] and potential
energy epot (U ) = UD(U ) [panel (c)].

B. Local stability

The Mott insulating phase and the metallic phase separated
by the Mott transition are locally stable. The proof follows our
Ref. [37] and is shown here for completeness.

In the grand-canonical ensemble mentioned above, the
natural thermodynamic variables are temperature, chemical
potential and volume (here area). We also include interaction
strength U since we are at fixed filling and volume, wishing to
study stability in the T -U plane. The corresponding conjugate
variables can be deduced from

d	(T, μ, a,U ) = d (ekin + UD − T s − μn) (6)

= −sdT − ndμ − Pda + DdU . (7)

If instead of controlling μ we control n, then the appropri-
ate Legendre transform leads us to the Helmholtz free energy:

df = d (ekin + UD − T s) (8)

= −sdT + μdn − Pda + DdU . (9)

Taking area and filling fixed from now on, we can focus on
df = −sdT + DdU . We thus have, dropping constant n and
constant a symbols,(

∂ f

∂T

)
U

= −s;

(
∂ f

∂U

)
T

= D. (10)

Local stability requires d2 f < 0. In matrix notation, this
reads

d2 f = (dT dU )

((
∂2 f
∂T 2

)
U

(
∂2 f

∂T ∂U

)
(

∂2 f
∂T ∂U

) (
∂2 f
∂U 2

)
T

)(
dT
dU

)
< 0. (11)

At constant T , this inequality becomes(
∂2 f

∂U 2

)
T

=
(

∂D

∂U

)
T

< 0, (12)

which is satisfied by our results, including metastable phases,
as shown in Fig. 1. Note that(

∂2 f

∂T 2

)
U

= −
(

∂s

∂T

)
U

< 0;

(
∂2 f

∂T ∂U

)
= −

(
∂D

∂T

)
U

.

(13)

The sign of the mixed derivative is arbitrary, as long as the
determinant of the matrix for d2 f < 0 is positive, namely,(

∂2 f

∂T 2

)
U

(
∂2 f

∂U 2

)
T

−
(

∂2 f

∂T ∂U

)2

> 0. (14)

At the critical endpoint, the free energy is no longer ana-
lytic. The second derivatives, taken from either directions ap-
proaching the critical point, become negative infinity, namely
(∂2 f /∂U 2)T |(Tc,U

±
c ) → −∞ and (∂2 f /∂T 2)U |(T +

c ,Uc ) → −∞.
Above Tc, at each point of the phase diagram the free

energy is locally stable and uniquely determined by T and
U . Below Tc, in the coexistence region, there are two locally
stable phases corresponding to the metallic and insulating
phases, as shown in Fig. 10(a). The preferred phase is the one
that minimizes the grand potential. This is the condition of
global stability discussed below.

C. Global stability

A global stability analysis tells us which phase minimizes
the grand potential (or equivalently the Helmholtz free energy
since adding μn to the grand potential of the two phases can-
not change their intersection in the T -U plane at constant n).
Within the coexistence region, the grand potential 	 has two
values, corresponding to the existence of a metallic phase and
an insulating phase. The first-order transition occurs where the
grand potentials cross.
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Figure 10(a) and its inset, zooming on the coexistence
region, show the grand potential at T = 1/50 < Tc. At U =
5.6, which is the only point we have within the coexistence
region, we found that 	ins < 	met. To estimate where the
crossing of the grand potentials occur, we linearly extrapolate
the nearest points just below and just above U = 5.6 (dashed
orange and green line, respectively). We find that the grand
potentials for the metallic and the insulating solutions cross
at Ut ≈ 5.55 (gray dashed vertical line). For U > Ut , the
insulating solution is globally stable and the metallic solution
is only metastable (at U = 5.6 we indeed find 	ins < 	met),
while for U < Ut , the opposite occurs. We conducted this
analysis for two temperatures, T = 1/50 [Fig. 10(a)] and
T = 1/40 (not shown). The loci of points formed by Ut (T =
1/50) and Ut (T = 1/40) allow us to obtain an estimate for
the thermodynamic first-order transition line Ut (T ) in the
T -U phase diagram of Fig. 2 where red crosses within the
coexistence region show the values of Ut (T ).

Two remarks are in order. First, given the few points at
which we can evaluate the 	, our Ut (T ) curve is only a crude
estimate of the first-order transition line. However, this has not
been attempted before. Given that U (T ) must have a vertical
tangent for T → 0 (see the discussion at the end of Sec. IV B),
our results are compatible with a first-order transition at T = 0
[43].

Second, at the first-order transition the discontinuity in
grand potential, �	 = |	ins − 	met|, is much smaller
than the discontinuity in the kinetic energy �ekin =
|(ekin )ins − (ekin )met| and in potential energy �epot =
|(epot )ins − (epot )met|. This implies that the potential energy
loss due to localization is almost perfectly compensated
by the kinetic energy gain due to delocalisation, as already
noticed within the single-site DMFT solution of the half-filled
Hubbard model [13,52]. At fixed chemical potential and
area, �	 = |	ins − 	met| controls the critical temperature
Tc [13,53] because in that case, �	 = �e − T �s, so that
Tc ≈ �E/�S, helping us understand why Tc is much smaller
than the bare t .

Knowledge of the first-order transition line Ut (T ) allows us
to consider issues of nucleation and spinodal decomposition.
In the T -U plane, we have just shown that the transition line
Ut (T ) divides in two the coexistence region bounded by the
spinodals Uc1(T ) and Uc2(T ): between Uc1(T ) and Ut (T ) the
metallic phase is globally stable and the insulating phase is
metastable, whereas between Ut (T ) and Uc2(T ) the insulating
phase is globally stable and the metallic phase metastable. To
proceed further, let us consider the double occupancy D(U )
shown in Fig. 11 at T = 1/50. The spinodal points (Uc1, Dc1),
(Uc2, Dc2) indicate where the insulating and metallic solutions
cease to exist, respectively. The region between Dc2 and Dc1 is
unstable. The intercepts between D(U )T and the value of the
thermodynamic transition Ut (vertical dashed line) gives the
binodal points (Ub1, Db1), (Ub2, Db2). The region between Db2

and Dc2 and between Dc1 and Db1 are metastable. By repeating
the same analysis at different temperatures one could obtain a
D-U phase diagram with two spinodal lines surrounding the
unstable region. The regions between binodals and spinodals
are metastable. Binodals and spinodals emerge out of the
critical endpoint (Uc, Dc).
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T = 1/50 met
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FIG. 11. Double occupancy D vs U at T = 1/50 < Tc. Spinodal
points and binodal points are indicated. Vertical arrows denote the
metastable regions and the unstable region.

To progress further, let us recall the analogy between the
Mott transition in electronic fluids and the liquid-gas transi-
tion in classical fluids [44,53–58]; the metal corresponds to a
high density liquid with a large number of double occupancies
and holes so that electrons can delocalize throughout the lat-
tice, whereas the Mott insulator corresponds to a low density
incompressible gas with few double occupancies and holes so
that electrons are localized. Now, in the metastable region,
the electronic fluid is not thermodynamically stable and the
other stable phase is triggered by nucleation or cavitation: for
instance, thermal fluctuations may create droplets (or bubbles)
of the other phase, which lower the grand potential energy, and
which grow to nucleate the other phase. In the unstable region,
the system phase separates through the so-called spinodal
decomposition mechanism.

The nucleation mechanism and spinodal decomposition
mechanism can provide a framework for recent experimental
studies focusing on the processes by which a Mott insulator
transforms into a metal. For instance, textured states are
observed across the Mott transition in V2O3 [59] and VO2

[60]. Ultrafast dynamics can trigger nucleations of metallic
droplets at the transition [61–64].

VI. INFORMATION-THEORETIC DESCRIPTION

In the last two sections, we have obtained a thermodynamic
and statistical description of the Mott transition. In recent
years, information-theoretic methods have provided new tools
to analyze phase transitions in correlated many-body quantum
systems [21,22]. It is therefore interesting to study the Mott
transition with these tools.

In information theory, a cardinal concept is the one of
correlation among parts of a system, i.e. the information
contained in one part of the system about the other parts. Two
parts of a system are correlated if our ignorance (entropy)
about one part can be decreased by observing the other
part [65,66]. Correlations in many-body quantum systems
clearly play a role in observable properties, since collective
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phenomena that emerge at a macroscopic scale are not a
simple sum of microscopic properties [67]. By bringing to-
gether the theory of phase transitions and critical phenomena
to quantum information theory, one goal is to gain a novel
perspective on the correlations underlying phase changes in
many-body quantum systems.

This is a rich research programme, with ramifications in
many areas of physics. For the purpose of our discussion, we
confine ourselves on two issues about correlations at a phase
transition.

A first issue deals with what type of correlations one is
looking for at a phase transition between many-body quan-
tum systems. From the point of view of information theory,
correlations in classical mechanics can only arise due to lack
of knowledge about the system. Indeed, when a complete
microscopic description of the system is available, then there
is simply nothing to be learned about a part of the system
by observing another part, hence no correlations. However,
when we do not have full knowledge of the classical system,
a probabilistic description becomes necessary and correlation
functions become nontrivial. This contrasts with quantum
mechanics where a complete description of the whole does not
imply complete knowledge of the parts. This is the hallmark
of entanglement, one of the most distinguished signature of
quantum effects. Complete knowledge of the whole system is
possible at zero temperature where the global state is pure. In
this limit, any correlations in the system can thus be attributed
to entanglement, and a faithful measure of entanglement is
provided by the local entanglement entropy. However, at finite
temperature, only a statistical description of the whole system
is available in the form of a density matrix. In that case, cor-
relations can arise from both quantum fluctuations (quantum
correlations) or thermal fluctuations (classical correlations).
In addition, local thermal fluctuations contribute to the local
entropy but do not contribute to correlations, which motivates
the use of a more refined measure of correlations, such as the
mutual information [65,66].

A second issue deals with the role of correlations at a
phase transition in many-body quantum systems. Role of the
correlations here indicates two main aspects: what is the be-
havior of the correlation measures as a function of the tuning
parameters of the phase transition; and what is the struc-
ture of the distribution of correlations at a phase transition.
Seminal works [68,69] on the relation between entanglement
and quantum phase transition in spin systems showed that
entanglement measures can indeed detect a quantum phase
transition. These works opened up a way to many studies
characterising quantum phase transitions with entanglement
in correlated systems of spins, bosons and fermions: suitable
entanglement measures can pick up the location of quantum
phase transitions, can identify their first or second order char-
acter, and the associated critical exponents. Furthermore, one
route to access the structure of the distribution of correlations
at phase transitions is to do scaling analysis, i.e., to analyze
how correlation measures scale as a function of distance and
the number of sites [22].

In the companion paper [18], we do a first step to character-
ize the Mott metal-insulator transition in the two-dimensional
Hubbard model with information-theoretic tools. With respect
to the first issue identified in the above discussion (i.e., what

type of correlations we are looking for at the transition), we
focus on two key measures of correlations, local entanglement
entropy and mutual information. With respect to the second
issue discussed above (i.e., what is the role of correlations
at the transition), we confine ourselves on the behavior of
entanglement entropy and mutual information as a function of
the tuning parameters of the Mott transition, here interaction
strength U and temperature T . We showed that they charac-
terize the first-order Mott transition: they detect the first-order
nature of the transition by showing hysteretic behavior, they
identify universality class of the Mott endpoint by showing
critical scaling, and they pick up the crossover emanating
from the endpoint in the supercritical region by showing
sharp variations in marked by inflections. In the following
two sections, we present additional discussion of these two
measures of correlations at the Mott transition, local entropy
and total mutual information, respectively.

Main motivations for our study are twofold. First, up to
now, most work focused on zero temperature, where only
quantum correlations occur. The relation between entangle-
ment measures and quantum phase transitions, both second-
order [68–74] and first-order [72,75–77], has been explored in
different many-body systems (for a review, see Ref. [21]). The
relation between quantum phase transitions and correlation
measures other than entanglement, has also been studied
[78–81] (for reviews, see Refs. [21–23]). Fewer results have
been obtained in the most difficult case of finite temperatures.
In the finite temperature regime, it is the quantum mutual
information that plays a role in quantifying the classical and
quantum correlations [82–86]. Interesting open research di-
rections are the study of finite-temperature continuous transi-
tions [87,88] and the study of the finite temperature crossover
emanating out of a quantum critical point [89–93]. The Mott
transition investigated in this work and in our companion
paper presents the exciting possibility to study, within the
same model, a first-order transition from its low-temperature
quantum limit, to its finite-temperature critical endpoint, and
its associated crossover in the supercritical region. A second
pressing motivation for our analysis of the Mott transition
is that the entanglement properties are in general very elu-
sive to measure experimentally, but very recent experiments
with ultracold atoms [24,25] have removed this barrier, by
measuring entanglement entropy and mutual information in
1D Bose-Hubbard model [24], and 2D fermionic Hubbard
model [25]. These groundbreaking works open up the avenue
to experimentally detect quantum-information measures and
call for theoretical work.

A. Local entropy

A key measure of entanglement for many-body quantum
systems at T = 0 is the entanglement entropy. The entan-
glement entropy is defined as sA = −TrA[ρA ln ρA], where
the reduced density matrix ρA is obtained by tracing the
density matrix of the whole system over the remaining part
A, (ρA = TrA[ρAA]). The entropy sA is zero if and only if the
state of A is pure, i.e., ρA = |φA〉〈φA|. At T = 0, the state of
the whole system is pure, ρAA = |ψAA〉〈ψAA|, and sA = 0 if
and only if the global state factors as |ψAA〉 = |φA〉 ⊗ |ηA〉.
Thus a nonzero value of local entropy sA signals the presence
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FIG. 12. Local entropy s1 vs U for different temperatures. Symbols are the same as in Fig. 1.

of entanglement between A and A, and moreover it is a
quantitative measure of that entanglement.

At finite temperature, the entanglement entropy acquires
thermal contributions and is contaminated by thermal entropy
s [94]. It no longer measures quantum correlations only.
Nevertheless entanglement can persist up to high temperature
[21,95,96].

In the study of phases of correlated fermionic systems,
the local, i.e., on-site, entropy emerged as a powerful tool
to identify phase transitions [21,97–105]. Therefore we focus
on such a measure. First we discuss how we calculate this
quantity, then we discuss its behavior in the supercritical
region beyond the Mott endpoint.

1. Constructing local entropy

Let A be a site of the lattice and B the remaining sites. The
state space of a single site is spanned by {|0〉, |↑〉, |↓〉, |↑↓〉}.
Because of particle-number and angular-momentum conser-
vation, the reduced density matrix is then diagonal [97],

ρ = p0|0〉〈0| + p↑|↑〉〈↑| + p↓|↓〉〈↓| + p↑↓|↑↓〉〈↑↓|, (15)

where pi, with i = {0,↑,↓,↑↓}, is the probability for a site to
be empty, occupied with a spin up or down particle or doubly
occupied. One finds

p↑↓ = 〈ni↑ni↓〉 = D, (16)

p↑ = p↓ = 〈ni↑ − ni↑ni↓〉, (17)

p0 = 1 − 2p↑ − p↑↓. (18)

Thus s1 takes the form

s1 = −
∑

i

pi ln(pi ) (19)

= −(1 − n + D) ln(1 − n + D) (20)

− 2

(
n

2
− D

)
ln

(
n

2
− D

)
− D ln(D). (21)

In particular, at half-filling (i.e., n = 1), we have

s1 = −2D ln(D) − (1 − 2D) ln
(

1
2 − D

)
, (22)

i.e., s1 is a function of double occupancy only. Knowledge of
D allows us to calculate s1 directly.

Recently, Ref. [106] describes a new algorithm to calculate
the entanglement entropy (and Rényi entropies) for interact-
ing electrons directly within the CTQMC impurity solver.
It would be interesting to generalize their method for our
problem in future investigations.

2. Supercritical crossover of the local entropy

Let us turn to our results. In our companion paper [18], we
study the relation between local entropy s1 and Mott transi-
tion. The key result is that s1 detects the Mott transition and
its supercritical crossover. For T < Tc, s1(U )T identifies the
first-order character of the transition by hysteretic behavior,
for T = Tc, it shows critical scaling, and for T > Tc, s1(U )T

identifies supercritical crossover by sharp variations with U
marked by an inflection point. In the companion sudy, the
behavior of s1 as a function of U is shown only for a restricted
range of temperatures. However, we did not shown that, ana-
lytically, the loci of inflections in D(U )T and s1(U )T do not
coincide in general, although the are numerically extremely
close. Here we complete the picture.

Figure 12 shows s1(U )T at different temperatures. Our
companion paper [18] indicates that the key feature at T > Tc

is an inflection point. Our numerical data, indeed, show that
s1(U )T has an inflection point whose tangent becomes infinite
on approaching Tc. We show that for T > Tc, the inflection
point in s1(U ) does not coincide with that in D(U ), whereas
at Tc a singularity develops in both functions at the same
Uc. A necessary condition to have an inflection point is that
d2s1/dU 2 = 0. Now,

ds1

dU
= ds1

dD

dD

dU
, (23)

and thus

d2s1

dU 2
= d2s1

dD2

(
dD

dU

)2

+ ds1

dD

d2D

dU 2
. (24)

075122-12



THERMODYNAMIC AND INFORMATION-THEORETIC … PHYSICAL REVIEW B 99, 075122 (2019)

5.6 6.0 6.4
U

1.10

1.15

1.20

s 1

(a)
T = 1/10
T = 1/12

5.6 6.0 6.4
U

0.15

0.20

0.25

0.30

s

(b)

T = 1/10
T = 1/12

5.6 6.0 6.4
U

0.85

0.90

0.95

I
1

(c)

T = 1/10
T = 1/12

5.6 6.0 6.4
U

−0.3

−0.2

−0.1

∂
s 1

/∂
U

(d)

5.6 6.0 6.4
U

−0.2

−0.1

0.0
∂
s/

∂
U

(e)

5.6 6.0 6.4
U

−0.1

0.0

0.1

∂
I

1/
∂
U

(f)

5.0 5.5 6.0 6.5
U

0.00

0.05

0.10

0.15

0.20

T

(g)

(Uc, Tc)

Uc1

Uc2

TW

Ts1

TI1

Ts
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the thermodynamic entropy (orange diamonds, Ts). Other symbols as in Fig. 2.

For T > Tc, where D(U ) has an inflection point, i.e.,
d2D/dU 2 = 0, we have that dD/dU is finite. Since d2s1

dD2 =
2

D(1−2D) is always positive, d2s1/dU 2 �= 0 so that s1 does not
have an inflection point there. Since our numerical data show
that s1(U ) has an inflection point at some value of U , this
means that the inflection point in s1(U ) does not coincide
with that in D(U ). We find numerically that the two inflection
points are very close [see line with blue crosses, and line with
open red circles in Fig. 13(g)].

However, at T = Tc, D(U ) becomes singular,

lim
U→U ±

c

dD

dU
= −∞, (25)

so that, using the chain rule Eq. (23), we have

lim
U→U ±

c

ds1

dU
= lim

U→U ±
c

ds1

dD

dD

dU
= ds1

dD
lim

U→U ±
c

dD

dU
= −∞, (26)

where we used that ds1/dD is finite and strictly positive
[apart from D = 0 and D = 1/4, which are far from (Uc, Tc)].
Therefore, at Tc, s1(U ) is singular in all its derivatives and the
singularity coincides with that of D(U ).

The close numerical proximity between the inflection
points in s1(U ) and in D(U ) for a large range of temperatures
is, in a sense, surprising because the inflections in s1(U ) and
D(U ) are not mathematically trivially identical. From another
point of view, this is not too surprising since we know that,
although the extrema in different response functions do not
need to overlap for all temperatures, they need to converge at
the critical endpoint.

Physically, the largest change in magnitude of s1(U ) found
in close proximity with the largest fluctuations of the dou-
ble occupancy −dD/dU , is telling us that large fluctuations
in double occupancy lead to large changes in occupation

probabilities. Furthermore, our results show that small vari-
ations in the interaction strength U produce sharp changes
in the s1(U ), suggesting the idea of controlling entanglement
properties close to the Mott transition to create an entangle-
ment switch [68,69].

Finally, we note that, similarly to double occupancy and
to entropy, the entanglement entropy s1 scales as −sgn(U −
Uc)|(U − Uc)|1/δ , although in general, for example when there
is a nonzero magnetization, s1(U ) does not need to scale like
D(U ) [102].

B. Mutual information

Next we turn to the concept of mutual information. In
this subsection, we clarify the definition of (normalized) to-
tal mutual information given in our companion paper [18],
explaining why we used it instead of the standard definition
of mutual information. This discussion is intimately related
to the deviations of local entropy from extensivity, allowing
us to introduce a new sequence of entanglement entropies
whose decay with the size of the entangled region would be
related to deviations from extensivity and to mutual infor-
mation. We also explain why we see conceptual differences
between our approach to mutual information and that used
in the experiment on ultracold atoms [25], even though the
final mathematical expressions are the same. We extend our
understanding of the phase diagram as seen by quantum
information by showing data that compares inflections in s,
s1, and I1 (Fig. 13). This contains the new information that
the loci of inflections of I1(U ) numerically coincide with the
loci of inflections in the thermal entropy s(U )T , as shown in
particular in Fig. 13(g). Finally, we also show that the local
entropy of an isolated site, s′

1, which is of purely thermal
origin with no quantum contribution, is very different from s1,
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reinforcing the fact that entanglement contributes significantly
to correlations, even at finite temperature.

1. Definitions of mutual information

Let us consider the definition of mutual information,
I (A : B) = sA + sB − sAB. Physically, the (quantum) mutual
information contains all quantum and classical correlations
between A and B. Subextensivity of entropy guarantees that
the mutual information is non-negative, and it is nonzero only
when the sum of the entropy of the parts exceeds the entropy
of the whole. Information-theoretically, this means that the
information lacking about the entire system is less than the
sum of the information lacking about its parts, so some of
the lacking information about the part must be common—the
parts are correlated [65,66].

We will be concerned with finite temperature, where it has
been shown rigorously that, for a Hamiltonian with finite-
range hoppings and interactions, mutual information scales as
the size of the boundary of the two regions [107].

In Ref. [25], it was suggested that the mutual information
can be obtained as follows. Consider one site, so that sA = s1

and sAB = sN . Then, sB was approximated by sB = (N − 1)s,
leading to I = s1 − s, the same expression as the one we used.
However, this neglects corrections of order 1 to sB because the
entropy s is extensive up to corrections of order 1/N . At zero
temperature, the result expected from the Schmidt decomposi-
tion sB = sA = s1 comes precisely from a correction of order
1 to sB. With the definition IAB = sA + sB − sAB, the T = 0
result sB = sA = s1 should be I = 2s1, whereas I = s1 − s
leads to I = s1. This leads us to define the notion of total
mutual information.

2. s1 − s as total mutual information

Suppose we are interested in the total mutual information
between a given site i and the rest of the lattice. Following the
standard definition of mutual information, the mutual infor-
mation between site i = 1 and the rest of the lattice is I (1 :
{>1}) = s1 + s{>1} − s{>0} where, following the companion
paper [18], we denote by {>k} the set of sites with indices
greater than k, so {>0} is the entire lattice. If we now consider
the site labeled i = 2, the mutual information between i = 2
and the rest of the lattice {1} ∪ {>2} would lead to double-
counting the correlations between sites 1 and 2. This mutual
information has already been accounted for in the quantity
I (1 : {>1}). To avoid such double-counting, we first trace over
site 1, that has already been considered. This gives us a new
density matrix for sites i = 2 and up. We can now, with this
new density matrix, compute the mutual information between
site 2 and the remaining sites {>2}. Continuing this process,
each time tracing out the i − 1 sites already considered when
we want the mutual information for site i, we define the total
mutual information (normalized with 1/N) between a single
site and the rest of the lattice as

I1 = 1

N

N∑
i=1

I (i : {>i}) = 1

N

N∑
i=1

(s1(i) + s{>i} − s{>i−1}).

(27)

Writing down the first few terms

I1 = 1

N
(s1(1) + s{>1} − s{>0} (28)

+ s1(2) + s{>2} − s{>1} (29)

+ s1(3) + s{>3} − s{>2} (30)

+ · · · (31)

+ s1(N ) + 0 − s{>N−1}), (32)

we see that most terms cancel, leaving I1 = (
∑N

i=1 s1(i)/N −
s) where s = s{>0}/N is the thermodynamic entropy per site.
For a translationally invariant system, all s1(i) are equal, so the
total mutual information further simplifies to the difference
between the local entropy and the thermodynamic entropy
I1 = s1 − s. This quantity measures the total mutual informa-
tion between one site and regions of all other possible sizes,
avoiding overcounting mutual information with sites already
considered.

3. Supercritical crossover of the total mutual information

Next, let us turn to our results. The companion paper [18]
shows that the Mott transition and its supercritical crossover
are imprinted not only in the local entropy, but in the total
mutual information I1 as well. For T < Tc, I1(U )T detects
the first-order nature of the transition by hysteretic behavior.
At T = Tc, it reveals critical behavior. For T > Tc, I1(U )T

shows nonmonotonic behavior with minimum followed by a
rapid increase marked by an inflection. The positions of this
inflection for each temperature keeps track of the supercritical
crossovers beyond the endpoint.

Figure 13 shows data comparing the inflections in s, s1,
and I1. This adds to the companion paper the new result that
the loci of inflections of I1(U ) numerically coincide with the
loci of inflections in s(U )T , as seen from green squares and
orange diamonds in Fig. 13(g). Similarly to double occupancy
and to entropy, the total mutual information I1 also scales
as sgn(U − Uc)|(U − Uc)|1/δ . The difference between local
entropy and thermodynamic entropy, s1 − s, quantifies corre-
lations between a site and its environment. At T = ∞ where
degrees of freedom become independent, s = s1 and I1 = 0.
At T = 0, s = 0, and I1 = s1. Further physical discussion is
found in the companion paper [18].

4. Local entropy with and without hybridization

Up to now, we have considered s1 − s, i.e., the difference
between local entropy and entropy per site. From a comple-
mentary perspective, we can also compare the local entropy
s1 to the entropy of an isolated site (i.e., without hybridization
to a bath) in the grand-canonical ensemble, s′

1. The quantity
s′

1 is for an isolated site with interaction U in the grand-
canonical ensemble. It contains only thermal contributions,
no quantum contributions. The quantity s1 − s′

1 quantifies the
contributions to the entropy from the terms coming from the
hopping in and out of the bath, and thus from all the quantum
and classical correlations between site and bath.

Figure 14(a) shows s′
1 and s1 versus U , whereas Fig. 14(b)

shows their difference. For U > 0, s′
1(U ) is smaller than

s1(U ), implying that the system with hybridization has less
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information than the isolated site. In other words, on average,
the probability of having double occupancy is larger when
the site is hybridized with the bath and the space of possible
states on one site is larger than when there is no hybridization
with a bath. In the latter case, double occupancy is quickly
suppressed by U and the information about the site is larger
[s′

1(U ) smaller] since we know that the site is occupied on
average by one electron and that other states are much less
probable.

5. Extension: deviations from extensivity and a sequence
of entanglement entropies

If we assume that at finite temperature, entanglement
entropy has an extensive contribution plus a contribution
proportional to the area, it is easy to understand why the
standard definition of mutual information scales like the area
of the common boundary [107]. This hypothesis has another
consequence.

Consider the following sequence of entanglement en-
tropies. Let s1 be the entropy of a single site, s2 the entropy
of two sites,..., sn the entropy of a ball of n sites. The
entropy per site s is s = limn→∞ sn

n . This can be rewritten as
limn→∞ ( sn

n − s) = 0, which mathematically means that for
every ε > 0 there exists an integer N such that for n � N ,
| sn

n − s| < ε. Physically, this means that the sequence sn
n − s

(Ī1 being the first term of this sequence) converges to 0 when
we have reached a size N sufficiently large to consider the
subsystems of size N as noncorrelated ones. In other words,
the sequence converges to zero as the ratio of area to volume
if N1/d is larger than the correlation length of the problem.

As a simple classical example, consider a chain of N Ising
spin 1/2 dimers. Let us assume that in the dimers the spins
are locked to point in the same direction. Among the different
dimers, the spins can point in arbitrary directions. In other
words, we have the mixed classical state ρ = ( 1

2 |↑↑〉〈↑↑| +

1
2 |↓↓〉〈↓↓|)⊗N . Now, the entropy of a single spin, s1, is ln 2.
The entropy of a dimer is s2 = ln 2 as well. Therefore, for
n = 2, we found that s1 > s2/2, i.e., the entropy of a spin
is larger than the entropy per spin. This is because of the
correlations: within the dimer the spins are correlated. For
n � 2, we also have sn/n = 1/2. Therefore, for n � 2 even,
there are no more correlations. In information language, the
uncertainty per spin is smaller than the uncertainty on a single
spin.

Therefore sn/n − s measures the size-dependent nonexten-
sivity of the entropy, and s1 − s is a measure of the entropy
due to correlations on the shortest distance. This is compatible
with the findings of Ref. [108], where entanglement at high
temperatures can be detected by probing smaller and smaller
parts of the system. It would be interesting to measure sn/n − s
to see how the various correlation lengths (single-particle,
spin, charge, etc.) control the size dependence of sn/n − s.

VII. CONCLUSIONS

We revisited the iconic T -U normal-state phase diagram of
the half-filled 2D Hubbard model within plaquette CDMFT,
with the goal of connecting thermodynamic concepts and
information-theoretic ideas. Other key motivations of our
work are to advance our understanding of recent results with
ultracold atoms in optical lattices [24,25] and to provide a path
forward for new experiments.

We improved the boundaries of the first-order Mott tran-
sition, and the location of the Widom-line in the supercritical
region up to the percent accuracy level. We gave an exhaustive
description of the thermodynamics near the Mott transition,
revealing the behavior of pressure, charge compressibility,
entropy, kinetic energy, potential energy, and free energy
across the Mott transition and its high-temperature crossovers.

We found the so far unexplored first-order thermodynamic
transition line Ut (T ) and showed that it is vertical and that it
sits roughly in the middle of the previously identified spinodal
lines when T → 0. This allowed us to complete a study of the
local thermodynamic stability of the coexisting metallic and
insulating phases with a study of their global stability. We un-
cover binodal transition points and regions where either phase
is unstable to nucleation of the other phase. Our analysis bears
relevance for pioneering experiments addressing nucleations
and metastability at the onset of the Mott transition [59–64].

Calculation of the entropy from n(μ) using the Gibbs-
Duhem relation is a methodological advance in the CDMFT
context that can be exported to the study of other models.
Physically, this calculation enabled us to show that the Widom
line is also imprinted on the entropy and that the entropy
has the expected critical scaling at the Mott endpoint. We
found that the behavior of the entropy as a function of U
is highly nonmonotonic, exhibiting a maximum, followed
by an inflection point near the Widom line, followed by a
minimum. This nontrivial behavior can be understood from
the limiting U → 0 and U → ∞ behaviors and from the
differences between the physics of elementary excitations in
incipient metals and insulators.

Knowledge of the entropy allowed us not only to obtain
the grand potential and study global stability, it allowed us
to compute the total mutual information between a single
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site and the rest of the system. The total mutual information
I1 = s1 − s is a quantity that we introduced that is closely
related to the usual concept of mutual information. Along
with the local entropy s1, we showed that it gives information-
theoretic measures of correlations at the Mott transition. Here
and in the companion paper [18], we uncovered their charac-
teristic behaviors along the first-order phase boundary, near
the critical endpoint, and in the supercritical region along the
Widom line. Their sometimes unexpected behavior can be
related to the physics of spin and charge excitations [18]. We
demonstrated that both I1 and s1 can be used to detect the
first-order Mott transition and the associated Widom line. This
is a testable prediction for ultracold atom experiments [24,25].
Finally, we suggested a sequence of entanglement entropies
that are yet to be calculated, but that could provide new
insights on the link between correlations and entanglement.
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APPENDIX: CRITICAL BEHAVIOR OF THE ENTROPY
AT THE MOTT ENDPOINT

The first-order Mott transition terminates in a critical
endpoint. Close to that point, first derivatives and second
derivatives of the singular part of the free energy f vanish
or diverge as power laws. The power is the critical exponent.
Common critical exponents are α, β, γ , and δ, which are
universal and related via scaling laws. To calculate the ex-
ponents, one needs to indicate along which direction one is
approaching the critical endpoint, i.e., if one is approaching
the critical endpoint along the temperaturelike and magnetic-
field-like renormalization-group eigendirections t and h, or if
one is approaching the endpoint from other directions. This is
because it is not known a priori whether the eigendirections
t and h are aligned with the physical coordinates temperature
T and interaction strength U . Figure 15 shows a sketch of the
Mott transition with the eigendirections.

In this section, we consider the critical behavior of the
entropy s. Reference [35] shows that within CDMFT, double
occupancy scales as −sgn(U − Uc)|U − Uc|1/δ , with δ = 3.

1. Scaling of the entropy along physical coordinates

Let us begin with a mean-field point of view. The
Ginzburg-Landau free energy functional for the order param-
eter η takes the form

f = tη2 + cη4 + hη, (A1)

where t and h are, respectively, the temperaturelike and
magnetic-field-like eigendirections, and c is a constant. If

U

T

t

h

α, γ

β

δ

δ

FIG. 15. Sketch of the interaction-driven Mott transition in the
T -U plane. The first-order transition (continuous red line) terminates
in a second-order endpoint at (Uc, Tc ) (red circle). Gray arrows
indicate the eigendirections t and h. Blue arrows indicate the critical
exponents along directions of interest here.

these eigendirections are not aligned with the temperature and
interaction axis, then

t = t1(U − Uc) + t2(T − Tc),

h = h1(U − Uc) + h2(T − Tc), (A2)

and the entropy is given by

s = − ∂ f

∂T
= −

(
t2η

2 + cη4 + h2η + ∂ f

∂η

∂η

∂T

)
. (A3)

In equilibrium, η is given by ∂ f
∂η

= 0:

2tη + 4cη3 + h = 0. (A4)

Approaching the transition along the line T = Tc and
(U − Uc) the latter equation becomes

2t1(U − Uc)η + 4cη3 + h1(U − Uc) = 0. (A5)

To leading order,

η ≈ − h1

4c
(U − Uc)1/3. (A6)

Substituting in the equation for entropy, the leading order is

s ≈ h2h1

4c
(U − Uc)1/3. (A7)

This is the mean-field behavior that is expected from dynami-
cal mean-field theory [35]. In general, we should have

s ≈ h2h1

4c
(U − Uc)1/δ. (A8)

2. Scaling of the entropy along an eigendirection

The free energy obeys the following scaling relation:

f (λpt, λqh) = λd f (t, h). (A9)
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Consider the entropy s = − ∂ f (t,h)
∂t . Then

λp ∂ f (λpt, λqh)

∂ (tλp)
= λd ∂ f (t, h)

∂t
, (A10)

λps(0, λqh) = λd s(0, h), (A11)

and choosing λ = h−1/q, we have

h
d−p

q s(0, 1) = s(0, h). (A12)

All we need to do is rewrite this in terms of known exponents,
that are related to p and q. Since we have the equalities

p = 1/ν, (A13)

q = 1
2 (d + 2 − η), (A14)

when we replace h by h ∼ (U − Uc), the scaling of the
entropy becomes

s(0, (U − Uc)) ∼ (U − Uc)
2(d− 1

ν )
d+2−η . (A15)

Since η is not an exponent that is frequently used, we ma-
nipulate this to have an expression that involves better known

exponents:

d + 2 − η = δ(d − 2 + η) = δ
2β

ν
, (A16)

so that we can rewrite the result in the simpler form

s ∼ (U − Uc)
(dν−1)

βδ . (A17)

Since α = 2 − νd , we find the final form

s ∼ (U − Uc)
1−α
βδ . (A18)

For d = 2, the Onsager solution gives

1 − α

βδ
= 1 − 0

1
8 × 15

= 8

15
, (A19)

while for d = 3 [109],

1 − α

βδ
= 1 − 0.110

0.3265 × 4.789
≈ 0.5692. (A20)

Hence, the entropy is continuous at U = Uc but its first
derivative and all others with respect to U are singular.
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