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Three-dimensional two-band Floquet topological insulator with Z2 index
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We present a class of three-dimensional (3D) two-band Floquet topological insulators constructed from
two-dimensional Floquet topological insulators with a Z topological index. It is shown that the 3D two-band
Floquet topological insulator has a Z2 topological index, whose value can be obtained by numerical calculations
or by using a relation to the winding number. The classification of the 3D Z2 Floquet topological insulator,
however, cannot be attributed to the stable homotopy groups. Thus, it is an example outside the proposed
K-theory classifications of Floquet topological insulators. We also analyze the edge modes of the 3D Z2 Floquet
topological insulator and find the parity of the number of edge modes reflects the bulk Z2 index.
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I. INTRODUCTION

In recent years, topological properties of materials have
been a focus in both theoretical and experimental studies of
condensed matter physics [1–4]. In addition to topological
matter in equilibrium, periodically driven systems can also
exhibit nontrivial topological properties [5–8]. Interestingly,
a static, topologically trivial system may acquire nontrivial
topological signature if driven periodically in time. This type
of periodically driven topological systems may be realized
by shining light on materials [6,9], varying the parameters
periodically in cold-atom systems [7], photonic systems [10],
or classical acoustic systems [11].

The time evolution of those periodically driven systems
leads one to expect that Bloch’s theorem, well known in solid-
state physics [12], can also be applied to the time direction,
just as it can be applied to the spatial directions. Therefore,
one can introduce a time-component counterpart of the lattice
momentum, which is called the quasienergy. The result actu-
ally was obtained by mathematician Floquet [13] long before
Bloch’s theorem. When the periodically driven topological
systems exhibit band structures (in quasienergy) similar to
the static topological insulators, they are called the Floquet
topological insulator (FTI) [5–8]. Properties of stacked two-
dimensional (2D) FTI have been studied in Ref. [14]. In
addition to clean systems, there have been recent theoretical
[15–18] and experimental [19] studies on FTIs in disordered
systems.

Similar to the static Chern insulator, the topological signa-
tures of FTI manifest in two different ways: the first is the
topological index from the system with periodic boundary
condition. The second is the topological edge modes localized
at the boundary when open boundary condition is imposed.
For the Chern insulator, there is a bulk-boundary correspon-
dence relating the sum of the Chern numbers of the occupied

*heyan_ctp@scu.edu.cn
†cchien5@ucmerced.edu

bands and the number of topological edge modes at the open
boundary [1–3,20]. The situations are more complicated for
the FTI because the edge modes can exist even when the
Chern numbers of all the bands are zero. A bulk-boundary
correspondence of FTI has been established in Ref. [21]. More
discussions can be found in Refs. [22,23], including FTIs
with disorder. Roughly speaking, the number of edge modes
entering a band minus the number of edge modes leaving
the same band still equals the Chern number of the band,
similar to the counting for the static Chern insulator. The main
difference between static Chern insulator and FTI is that the
quasienergy of the latter is by definition a phase angle and thus
is periodic in 2π/T , where T is the driving period. Because
of this, it is possible for an edge mode to connect the top band
and the bottom band [24].

The topological index of FTI can also be obtained as
a winding number [21]. For a 2D FTI with a trivial one-
period time-evolution operator U (T ) = 1 and periodic bound-
ary condition, both the momentum and time dependencies are
periodic. The time-evolution operator then defines a mapping
from a three-dimensional (3D) torus to the unitary group
U(N ). Here, N is the number of bands. If one ignores the
nontrivial cycle of the torus, i.e., treating [25] T 3 as S3 in
homotopy groups, the topological classification is given by
[21] the homotopy group π3(U(N )) = Z , N > 1. This result
suggests another class of FTI with the topology of the nontriv-
ial homotopy group [26] π4(U(2)) = Z2, whose construction
is made possible by extending the 2D FTI to a 3D FTI. We will
show the resulting 3D two-band FTI has a Z2 classification
similar to the 3D time-reversal topological insulator (TI).

Due to the fact [26] π4(U(N )) = 0 for N � 3, the Z2 index
can only apply to two-band (N = 2) models in 3D. Adding
more bands will lead to topologically trivial models, so the 3D
two-band FTI discussed here is more suitable for low-energy
effective models when the focus is on two bands only. Another
important subtlety is that, while the static 3D TI can have a
Z2 index protected by time-reversal symmetry, the Z2 index
of the 3D FTI does not require any symmetry. Moreover, the
Z2 index of the 3D FTI is different from the index for the
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2D time-reversal-invariant FTI discussed in Ref. [27]. Similar
to the static topological insulator, FTIs of multiband systems
can be classified by the stable homotopy group or K theory
according to their discrete symmetries, such as time-reversal
or chiral symmetry [28–30]. In contrast, the 3D FTI proposed
here is due to a low-dimensional homotopy group and may be
considered as an exception to the periodic table of FTI. More
discussions on the classification of topological indices using
homotopy can be found in Ref. [25].

The framework for constructing the 3D two-band FTI
applies to simple models showing piecewise-constant time
dependence as well as general models showing explicit time
dependence. When open boundary condition is imposed,
topological edge modes of the 3D two-band FTI will emerge
at the boundary. We will show some examples and discuss
the relation between the number of edge modes and the bulk
topological index. Moreover, the edge modes of the 3D two-
band FTI will be shown to be robust against weak disorder
in the onsite potential or hopping coefficient. While the Z
index of a 2D FTI is associated with the Chern number of
its Hamiltonian [21], we found a similar connection between
the Z2 index and its Hamiltonian mapping. Therefore, the 3D
two-band FTI offers an additional playground for studying
topological properties of time-dependent systems.

The rest of the paper is organized as follows. In Sec. II, we
briefly review the 2D FTI and the computation of the winding
number. In Sec. III, we generalize the 2D FTI to the 3D FTI
and compute the Z2 index. Then, in Sec. IV we consider some
models of the 3D two-band FTI with open boundary condition
and discuss the number of edge modes. A connection between
the Z2 index and the parity of the total number of edge modes
is also discussed. Section V concludes our work.

II. 2D FTI WITH Z INDEX

We briefly review the topological classification of two-
dimensional FTI by closely following Ref. [21]. If a time-
dependent, N-band Hamiltonian satisfies H (t + T ) = H (t ),
the Floquet theorem requires its eigenstate |ψ (t )〉 to satisfy

|ψ (t + T )〉 = U (T )|ψ (t )〉 = eiεT |ψ (t )〉. (1)

Here, we introduce the time-evolution operator

U (k, t ) = T exp

(
− i

∫ t

0
H (k, t ′)dt ′

)
, (2)

and call the time-evolution operator over one period, U (T ),
the Floquet operator. Here, T denotes the time ordering. In
Eq. (1), ε is the quasienergy, which is the phase angle of
the eigenvalues of the Floquet operator. Although the Floquet
operator determines the quasienergy spectrum, to characterize
the topology of a 2D FTI, one has to consider its time
evolution U (t ) for 0 � t � T , not just U (T ).

A. FTI with trivial Floquet operator

It is convenient to start with an FTI with a trivial Floquet
operator satisfying U (T ) = 1. In this case, the infinitesimally
thin quasienergy band is located at ε = 0. There is an energy
gap extending from ε = 0+ to π/T , which is equivalent
to −π/T , then back to ε = 0−. When periodic boundary

condition in real space is imposed, U (k, t ) is periodic in kx and
ky. The condition U (0) = U (T ) = 1 makes U (k, t ) periodic
in t as well. Therefore, U (k, t ) defines a mapping from a 3D
torus T 3 to the unitary group U(N ). This mapping is classified
by the homotopy group π3(U(N )) = Z , N > 1. Therefore, it
can be characterized by the winding number W (U ), given by

1

8π2

∫
dt dkxdkyTr

(
U−1∂tU

[
U−1∂kxU , U−1∂kyU

])
. (3)

It can be shown that the winding number is also equal to the
number of edge modes inside the energy gap [21].

For a generic time-dependent Hamiltonian, the time-
evolution operator usually can not be obtained exactly. One
has to use a perturbation expansion to approximately evaluate
U (t ). As an example, we consider a 2D two-band model
described by the Hamiltonian

H =
∑

i=x,y,z

niσi. (4)

Here, ni with i = x, y, z are functions of kx and ky satisfying∑
i n2

i = 1, and σi are the Pauli matrices. In the following,
we will use the Einstein convention and sum over repeated
indexes. This Hamiltonian is independent of time, so its time-
evolution operator is

U (k, t ) = exp[−iH (k)t] = cos t − i sin t (naσa). (5)

The driving period is T = 2π in this case, and U (2π ) = 1
leads to a trivial Floquet operator. The inverse of U (t ) is given
by U−1 = cos t + i sin t (naσa). Then,

U−1∂tU = −inaσa, (6)[
U−1∂kxU , U−1∂kyU

] = 2 sin2 tεabcσa(∂kx nb)(∂ky nc). (7)

Making use of the above results, we find the winding number
W (U ) = 2w(n), where

w(n) = 1

4π

∫
dkxdkyεabcna(∂kx nb)(∂ky nc). (8)

Here, ni defines a mapping from a 2D torus to a 2D sphere.
The above result shows that W (U ) is twice the winding
number w(n) of the mapping defined by ni.

B. FTI with nontrivial Floquet operator

For the general case with U (k, T ) �= 1, the quasienergy
band will be more complicated. Suppose one wants to con-
sider the winding number at certain quasienergy E0, one can
smoothly deform U (k, t ) without closing the energy gap to a
new time-evolution operator UE0 (k, t ) such that UE0 (k, T ) =
1. The new time-evolution operator can be constructed as
follows:

UE0 (k, t ) =
{U (k, 2t ), 0 < t < T/2

exp[−iHeff(2T − 2t )], T/2 < t < T
(9)

where Heff = i
T lnU (k, T ) is the effective Hamiltonian cor-

responding to the Floquet operator. One can show that
the second-stage evolution reverses the first-stage evolution,
therefore, UE0 (k, T ) = 1. The winding number can then be
found by Eq. (3) for the case with a trivial Floquet operator.
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To smoothly connect this new time evolution UE0 (k, t ) to
the old one, we can consider the following family of time-
evolution operators with an additional parameter 0 � s � 1
[let Th = T/(1 + s)]:

Us(k, t ) =
{U (k, (1 + s)t ), 0 < t < Th

exp[−iHeff[2T − (1 + s)t]], Th < t < T .
(10)

It can be shown that

Us=0(k, t ) = U (k, t ), Us=1(k, t ) = UE0 (k, t ), (11)

and the energy gap is not closed during the deformation.
Since the winding number is a topological invariant, its value
does not change under a smooth deformation. Therefore, the
winding number and the number of edge modes of a general
case with a nontrivial Floquet operator can be informed from
the winding number W (UE0 ).

C. Examples

As a concrete example, we take the Hamiltonian (4) with
ni = Ri/|Ri|, where

(Rx,Ry,Rz ) = (sin kx, sin ky, m + cos kx + cos ky). (12)

It has been shown, for 0 < m < 2 and −2 < m < 0, w(n) = 1
and −1, respectively [31]. The corresponding 2D FTIs with
the same parameters thus have the winding numbers W (U ) =
2 and = −2, respectively.

However, the aforementioned simple model does provide
an example with a unit winding number. To construct a model
with W (U ) = 1, we consider the following piecewise time-
independent Hamiltonian:

H1 =
{

niσi, 0 < t < π,

1, π < t < 2π,
(13)

where ni is given by Eq. (12). The corresponding time-
evolution operator is

U1 =
{

cos t − i sin t (niσi ), 0 < t < π

exp(−i t ), π < t < 2π.
(14)

It can be shown that at the end of the first stage of time
evolution, U1(π ) = −1. In the second stage, the Hamiltonian
is a constant, which is chosen to bring in an extra minus sign
for the time-evolution operator. Therefore, for H1 we find that
its time evolution still satisfies U1(2π ) = 1. For this model,
the integration in the computation of the winding number only
receives a finite contribution from half of the time. Thus, we
find the winding number to be W (U1) = 1 for 0 < m < 2 and
W (U1) = −1 for −2 < m < 0.

One may generalize the example to a 2D FTI with an
explicit time dependence, given by

H = A[sin kxσx + sin kyσy

+ (m + w cos t + cos kx + cos ky)σz], (15)

where 0 � t < 2π , A is an overall multiplicative constant,
and w is the amplitude of the periodic driving force. For this
model, the Floquet operator U (2π ) �= 1 in general. Neverthe-
less, one can follow the method presented in Sec. II B and
deform the time-evolution operator of the above Hamiltonian
to one with a trivial Floquet operator. That way its winding

number can be inferred from the deformed trivial Floquet
operator. For example, we take A = 0.1, m = −0.5, and w =
0.5 and find that the quasienergy spectrum has a gap at ε = 0.
The winding number corresponding to the gap can be obtained
from the deformed time-evolution operator, and its value is
one. We will show that there is an edge mode located around
ε = 0 in Sec. IV, compatible with the counting from the
winding number.

III. 3D FTI WITH Z2 INDEX

Next, we extend the 2D two-band model discussed above
with one more spatial dimension. As a consequence, the time-
evolution operator U (k, t ) defines a mapping from a four-
dimensional (4D) torus T 4 to the group U(2). If we ignore
the nontrivial cycles on T 4, the topological classification of
this mapping is given by the homotopy group [26] π4(U(2)) =
π4(S3) = Z2. Here, the replacement of T 4 by S4 in the homo-
topy group follows Ref. [25]. To understand this homotopy
group usually requires tools from algebraic topology such as
spectral sequences [32]. Here, we use an alternative method
to compute the Z2 index shown in Refs. [33,34].

We define the following 3D two-band model by introduc-
ing a similarity transformation to a periodic, time-dependent
2D two-band Hamiltonian H2D:

H2 = U −1
z H2DUz, Uz = exp

(
−i

kz

2
σz

)
. (16)

Note that the unitary operator Uz is not periodic in kz [i.e.,
Uz(kz = 0) �= Uz(kz = 2π )], but H2 is. Moreover, H2D may be
a stack of 2D FTI with the same winding number, and we will
give an example later. If the time-evolution operator of H2D is
U2D(kx, ky, t ), the time-evolution operator of H2 is given by

U2(kx, ky, kz, t ) = U −1
z U2D(kx, ky, t )Uz, (17)

which defines a mapping from T 3 × S1 to U(2).

A. 3D FTI with trivial time-evolution operator

We start with the case with a trivial Floquet evolution
operator U2D(T ) = 1. To derive the Z2 index of the 3D two-
band FTI, we embed the U(2) time-evolution operator into the
U(3) group as follows. Let

V1 =
(U2d 0

0 1

)
. (18)

We introduce the similarity transformation

V2 =

⎛
⎜⎝

eikz/2 0 0

0 e−ikz/2 0

0 0 1

⎞
⎟⎠V1

⎛
⎜⎝

e−ikz/2 0 0

0 eikz/2 0

0 0 1

⎞
⎟⎠. (19)

Without changing the embedded U(2) part, we can also
rewrite the above transformation as

V2 =

⎛
⎜⎝

1 0 0

0 e−ikz 0

0 0 eikz

⎞
⎟⎠V1

⎛
⎜⎝

1 0 0

0 eikz 0

0 0 e−ikz

⎞
⎟⎠

≡ M−1V1M. (20)
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In order to define the topological index, one can treat the
S1 of the periodic kz as the boundary of a 2D unit disk and
extend the definition of the similarity transformation from the
boundary into the bulk by replacing M in Eq. (20) by

R(kz, r) =

⎛
⎜⎝

1 0 0

0 reikz
√

1 − r2

0 −√
1 − r2 re−ikz

⎞
⎟⎠. (21)

Here, we introduce a new parameter 0 � r � 1, which is the
radius of the 2D disk. When r = 1, we get back to the sim-
ilarity transformation of Eq. (20). Making use of R(kz, r) to
transform V1, we obtained the following U(3) time-evolution
operator:

g(kx, ky, t, kz, r) = R(kz, r)−1V1R(kz, r). (22)

To be precise, the above similarity transformation actually de-
fines a mapping from T 3 × D2 to the coset space U(3)/U(2).
The is because the U(2) transformation on the boundary,
Eq. (20), is fixed, but the U(3) transformation in the bulk,
Eq. (22), may be varied.

The Z2 topological index of the 3D two-band FTI is given
by I = exp[i�(g)], where [34]

�(g) = −i

240π2

∫
T 3×D2

Tr(g−1dg)5. (23)

Here, we use the language of differential form to simplify the
notations and omit the exterior product symbol

∧
between

differential forms. Equation (23) actually defines the winding
number of the mapping T 3 × D2 → U(3)/U(2). (�(g)/π ) is
also known as the Wess-Zumino amplitude, which has been
discussed in the context of topological insulators [35].

We emphasize that the Wess-Zumino amplitude is a gen-
eral topological index with its value taken from Z2, so the way
one constructs a 3D model does not affect its value associated
with the 3D model. For a given 3D two-band Hamiltonian
H3D(kx, ky, kz ), one can calculate the time-evolution operator
U (kx, ky, kz, t ), which is a 2 × 2 matrix. It can be embedded
into a 3 × 3 matrix V by

V =
(U 0

0 1

)
. (24)

Then, one finds a smooth one-parameter extension of V
denoted by g(r) with 0 � r � 1, such that g(r = 1) = V ,
similar to the procedure shown in Eq. (22). In terms of g,
the Wess-Zumino amplitude is again given by Eq. (23), apart
from a factor of π . Therefore, for a given 3D two-band FTI,
it is possible to carry out the calculation of � numerically by
identifying a smooth extension g(r). Although the extension
of V to g is not necessarily unique, the parity of (�/π )
does not depend on any specific choice of g, as shown in
Ref. [34].

Here, we demonstrate a particular construction of 3D two-
band FTI shown in Eq. (16), which can be thought of as a
straightforward way because it starts from a 2D two-band
model with a Z-topological index. For the 3D two-band model
of Eq. (16), we will show that �(g) can also be computed
analytically by a relation to the winding number W (U ) of
the corresponding 2D model shown in Eq. (3). The key step

is to make use of the so-called Polyakov-Wiegmann identity
[36,37]

�(gh) = �(g) + �(h) + ��(g, h),

��(g, h) = i

48π2

∫
T 3×S1

Tr

[
(g−1dg)3dh h−1

+ g−1dg(dh h−1)3 + 1

2
(g−1dgdh h−1)2

]
. (25)

The derivation is summarized in the Appendix. One obtains,
from Eq. (22),

�(g) = �(R−1) + �(V R) + ��(R−1,V R), (26)

�(V R) = �(V ) + �(R) + ��(V, R). (27)

Since R from Eq. (21) only depends on the two variables
(kz, r) and V1 only depends on the three variables (kx, ky, t ),
the antisymmetric property of the wedge product gives rise to
(R−1dR)5 = (V −1dV )5 = 0, which also means that �(R−1) =
�(R) = �(V ) = 0. Therefore, one obtains

�(g) = ��(R−1,V R) + ��(V, R). (28)

Following a similar argument, (dRR−1)3 = 0. Furthermore,
one can show that∫

T 3×S1
Tr(V −1dV dR R−1)2 = 0. (29)

The reason is that the integrand is proportional to dr, but the
boundary of T 3 × D2 has a fixed value of r, causing the above
integrals to vanish. Therefore, we obtain

��(V, R) = i

48π2

∫
T 3×S1

Tr[(V −1dV )3dR R−1]. (30)

Similarly, one can show that

��(R−1,V R) = − i

48π2

∫
T 3×S1

Tr[dR R−1(dV V −1)3]. (31)

Collecting the above results, we find

�(g) = −i

48π2

∫
T 3×S1

Tr(dR R−1[(dV V −1)3 + (V −1dV )3])

= 1

24π

∫
T 3

Tr
(
U−1

2d dU2d
)3

= πW (U2d ). (32)

B. Relations between topological quantities

There is a connection between the winding number defined
by Eq. (23) and the elements of π4(U(2)) = Z2. We provide
a heuristic argument as follows. One can treat the U(3) group
as a U(2) principal bundle over the base manifold U(3)/U(2),
then there exists a long exact homotopy sequence for fiber
bundles [32]

· · · → πk+1(U(3)/U(2)) → πk (U(2)) → πk (U(3))

→ πk (U(3)/U(2)) → πk−1(U(2)) → · · · . (33)

Here, the exact sequence means that the image of each map-
ping in the sequence equals the kernel of the next mapping.
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From the known fact [38] π4(U(3)) = 0, the above sequence
is truncated as

· · · → π5(U(3)) → π5(U(3)/U(2)) → π4(U(2)) → 0. (34)

Moreover, it is known that [26,38] π5(U(3)) = Z and
π4(U(2)) = Z2.

The coset space U(3)/U(2) is equivalent to the five-
dimensional sphere (see Sec. 17.5 of Ref. [39]), which gives
rise to π5(U(3)/U(2)) = Z . Thus, the above exact sequence
translates to

· · · → Z
×2−→ Z → Z2 → 0. (35)

A more detailed analysis shows that the labeled arrow in
the above sequence represents the multiplication by 2. The
exactness of the above sequence requires that the nontrivial
element of Z2 is the image of the odd numbers of the previous
Z . Since the winding number from Eq. (23) corresponds to
π5(SU(3)/SU(2)), the parity will decide where it will be
mapped to π4(U(2)). It can be shown that the odd winding
numbers of π5(SU(3)/SU(2)) map to the nontrivial element
of π4(U(2)), and the even winding numbers map to the
trivial one.

For the 2D two-band FTI, the winding number W (U ) has
been shown to relate to the Chern number computed from
the eigenstates of the Floquet operator [21]. This raises the
question if some similar relation also exists for the 3D two-
band FTI. The answer is affirmative and can be understood
as follows. The eigenstates of the Floquet operator of a 3D
two-band FTI define a 3D unit vector si = 〈ψn|σi|ψn〉, which
can be thought of as a mapping from T 3 to S2. After we ignore
the nontrivial cycles [25] of T 3, the mapping of the eigenstates
can be classified by the Hopf index of π3(S2) = Z . One can
increase the dimension of an n sphere by suspension (or smash
product) with S1 as Sn+1 = S1 ∧ Sn (not to be confused with
the symbol of exterior product). The technique leads to a
mapping π3(S2) → π4(S3). As a consequence, the odd Hopf
indices map to the nontrivial element of π4(S3) = Z2 and the
even Hopf indices map to the trivial one (see Sec. 11.15 of
Ref. [40]).

C. FTI with nontrivial Floquet operator

In the above discussion, we only construct the 3D two-band
FTI from a 2D FTI (or a stack of 2D FTI) with trivial Floquet
operator U2D(k, T ) = 1. A similar procedure can also be
applied to a more general 2D FTI (or a stack of 2D FTI) with
U2D(k, T ) �= 1. Following the steps in Sec. II B, we introduce
a new time-evolution operator for a given quasienergy gap E0

as

UE0 (k, t ) =
{U2D(k, 2t ), 0 < t < T/2

exp[−iH2D,eff(2T − 2t )], T/2 < t < T

where H2D,eff = i
T lnU2d (k, T ). By definition, UE0 (T ) = 1

and we can apply the formulas for the case with a trivial
Floquet operator. UE0 is smoothly connected to U2D without
closing the quasienergy gap as shown Eq. (10).

The calculation of the Z2 index based on the new time-
evolution operator UE0 can be performed by the procedure de-
scribed in the previous subsection: We embed the above U(2)

operator into a U(3) operator by a similarity transformation

g(k, t, r) = R(kz, r)−1

(UE0 0

0 1

)
R(kz, r), (36)

where R(kz, r) is given by Eq. (21). The Z2 index �(g) is then
computed by Eq. (23). Since a smooth deformation between
the cases with and without a nontrivial Floquet operator does
not alter the quantized topological invariant, the general case
will have the same Z2 index obtained from its counterpart with
a trivial Floquet operator.

D. Examples

As an example, we extend the 2D FTI model of Eq. (13)
with piecewise-constant time dependence to a 3D two-band
FTI by using Eq. (16) and the procedure following it. Our
numerical calculation verifies that �(g) = ±π for 0 < m < 2
and −2 < m < 0, respectively. For both parameter regimes,
we have I = −1, so they correspond to the topologically
nontrivial mapping. On the other hand, for m > 2 or m < −2,
we find that �(g) = 0 and I = 1, which corresponds to the
trivial case. Since W (U1) = ±1 for the model of Eq. (13) with
0 < m < 2 and −2 < m < 0, respectively, one can infer that
�(g) = ±π from Eq. (32) for the corresponding 3D two-band
FTI. In both parameter regimes, we have I = −1, which
agrees with the numerical result. In the next section, we will
show more general models of 3D two-band FTI showing
explicit time dependence.

IV. EDGE MODES

The topology of a system can be characterized by the
topological index calculated from a manifold with periodic
boundary condition, as we did in the previous sections. It can
also be detected by studying the same Hamiltonian with open
boundary condition, as we will analyze in this section. We will
also discuss the relation between the number of edge modes
and the Z2 index of the 3D two-band FTI.

A. 2D two-band FTI

We start with a 2D two-band FTI with periodic boundary
condition described by the Bloch Hamiltonian

H2D = A[sin kxσx + sin kyσy

+ (m + w cos t + cos kx + cos ky)σz]. (37)

Here, A, m, and w are parameters and the driving period
is T = 2π . Since the Floquet operator of Eq. (37) shows
U (T ) �= 1, we cannot directly apply the winding number
formula. As discussed in Sec. II, one can always smoothly
deform the time-evolution operator to obtain a new one with
U (T ) = 1. Then, the winding number formula can be used to
find the winding number at a selected value of quasienergy for
the new case with a trivial Floquet operator. Since topological
invariants do not change under smooth deformation, the wind-
ing number remains the same for the original case before the
deformation. For example, the winding number of the model
(37) at ε = 0 is Wε = 1.
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FIG. 1. Left panel: quasienergy spectrum as a function of ky for the 2D two-band FTI model of Eq. (38) with one edge mode located around
ε = 0. Middle panel: same model as the left panel with different parameters. There is one edge mode located around ε = 0 and another one
located at ε = ±π . Right panel: quasienergy spectrum as a function of ky for the 3D two-band FTI model of Eq. (39) with kz = 0.3.

The Hamiltonian corresponding to the same model (37) but
with open boundary condition along the x axis is

H2D
x = A

[
σz − iσx

2
⊗ h0 + H.c.

+ [sin kyσy + (m + w cos t + cos ky)σz] ⊗ I0

]
, (38)

where h0 = δi+1, j and I0 = δi j are Nx × Nx matrices with
i, j = 1, . . . , Nx. Here, Nx is the number of sites along the x
axis. The left panel of Fig. 1 shows the quasienergy spectrum
as a function of ky with Nx = 20, A = 0.1, m = −0.5, and
w = 0.5. There is one chiral edge mode at each end point of
the x direction, consistent with the winding number Wε = 1
at ε = 0. In contrast, the middle panel of Fig. 1 shows the
spectrum with A = 0.2, m = −1.5, and w = 2.5. In addition
to one edge mode at each end point around ε = 0, there
is another edge mode at each end point around ε = ±π in
this case. The extra edge mode is the so-called anomalous
edge mode [21], an interesting feature of the periodic driven
system.

B. 3D two-band FTI

We next construct a 3D two-band FTI related to the 2D
two band FTI (37). The Bloch Hamiltonian of the 3D system,
H3D, with periodic boundary condition can be obtained by
a similarity transformation of a two-band Hamiltonian H st.
Explicitly,

H st = A[sin kxσx + sin kyσy

+ (m + w cos t + m′ cos kz + cos kx + cos ky)σz],

H3D = U −1
z H stUz. (39)

Here, Uz = exp(iσzkz/2) and we introduce an additional mo-
mentum component kz to the model. By comparing H st with
Eq. (37), one can see that the parameter m has been replaced
by m + m′ cos kz, which depends on the momentum of the
new direction. Since the 2D FTI (37) has quantized winding
numbers, a small change of the value of m does not change
the winding number if the gap remains open. Therefore, as
long as the amplitude m′ of the additional modulation in H st

is not too large, each slice in the momentum space with fixed
kz can be shown to be a 2D FTI with the same winding
number. Thus, H st may be considered as a stack of 2D FTI
with very weak kz dependence in the absence of the similarity
transformation. The Z2 index of the 3D two-band FTI (39) at
a selected quasienergy can be obtained numerically following
the procedure outlined in Sec. III.

In general, one can write the Hamiltonian in real space.
For example, the above model can also be expressed by the
equivalent Hamiltonian in the second quantized form as

H3D =
∑

n

A

[
− c†

n

iσ+
2

cn+x̂−ẑ + c†
n

iσ+
2

cn−x̂−ẑ − c†
n

σ+
2

cn+ŷ−ẑ

+ c†
n

σ+
2

cn−ŷ−ẑ + c†
n

σz

2
cn+x̂ + c†

n

σz

2
cn+ŷ

+ H.c. + (m + w cos t )c†
nσzcn

]
. (40)

Here, c†
n = (c†

n1
, c†

n2
) denote the creation operators of two

fermions (due to the two bands) on site n = (nx, ny, nz ) with
nx, ny, nz ∈ Z . x̂ is the unit vector along the x direction, etc.,
σ+ = (σx + iσy)/2. In real space, one can see that the model
contains nearest- and next-nearest-neighbor hopping terms.

To study the edge modes of the 3D FTI model (39), we
begin by assuming open boundary condition along the x axis.
The Hamiltonian then becomes

H3D
x = A

[
U −1

z

σz − iσx

2
Uz ⊗ h0 + H.c. + U −1

z [sin kyσy

+ (m + w cos t + m′ cos kz + cos ky)σz]Uz ⊗ I0

]
. (41)

For the 3D two-band FTI, the quasienergy spectrum depends
on ky and kz and forms a 2D curved surface. Here, we
only show the curves at fixed values of kz by plotting the
quasienergy spectrum as a function of ky in the right panel
of Fig. 1 with kz = 0.3, A = 0.1, m = −0.5, m′ = 0.4, and
w = 0.5. The spectrum of the 3D model is very similar to the
2D FTI in the left panel of Fig. 1. This is because H3D

x is a
similar transformation of H st with open boundary condition,
and the parameter m + m′ cos kz does not close the gap of
Eq. (38). Therefore, the quasienergy spectra of H3D

x and H2D
x
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FIG. 2. The quasienergy spectrum as a function of ky for the 3D two-band FTI of Eq. (42) with open boundary condition in the z direction.
The panels from left to right correspond to kx = 0.3, 1.9, 2.2, respectively.

are similar. There is an edge mode at each end along the x axis
for the 3D two-band FTI. Incidentally, one may consider H st

with open boundary condition for a stack of 2D FTIs with the
same winding number, and there is one edge mode at each end
weakly dependent on kz.

To test the robustness of the edge modes, we compute
the quasiparticle spectrum with a different open boundary
condition by keeping the x, y directions periodic but imposing
open boundary condition in the z direction. The Hamiltonian
corresponding to Eq. (39) in this configuration becomes

H3D
z = A

{[
(sin kx − i sin ky)

σx − iσy

2
+ m′

2
σz

]
⊗ h0 + H.c.

+ (m + w cos t + cos kx + cos ky)σz ⊗ I0

}
. (42)

Here, h0 and I0 have the same structures except Nz replaces
Nx, and we assume there are Nz sites in the z direction. The
quasienergy spectrum of Eq. (42) is shown in Fig. 2 with Nz =
20, A = 0.2, m = −0.5, w = 1.5, and m′ = 0.5. From the left
to right panels of Fig. 2, the spectrum as a function of ky is
plotted for kx = 0.3, 1.9, 2.2, respectively. From the left to
right, one can see that the distance between the two crossings
of the edge modes gradually shrinks to zero, and then the
quasienergies of the edge modes no longer intersect. From this
observation, one can deduce that the edge modes actually have
paraboloid-shaped dispersions, and there is only one edge
mode for each end point along the z direction. This is also
consistent with the result we have found for the same model
with open boundary along the x direction shown in the right
panel of Fig. 1. However, the emergence of the edge mode in
the z direction differentiates the 3D FTI from a stack of 2D
FTI because a stack of 2D FTI does not support a topological
edge mode along the direction of its stacking. Since the edge
mode appears in the newly introduced boundary in the z
direction, which is also the stacking direction of H st , the edge
mode is intrinsic to the 3D system, not associated with the
stacking of 2D FTI in H st.

In order to better characterize the edge modes, we also
sample the wave functions of typical modes and show them
in Fig. 3 for the case with kx = 0.3 and ky = −1.6. The
top panels show the wave functions of the two edge modes
corresponding to quasienergy ε = ±0.48, respectively. One
can see that they are indeed localized to the two ends of the

open boundary. The bottom panels show the wave functions
of two selected states, one from the top bulk band and one
from the bottom bulk band, corresponding to the quasienergy
ε = ±1.51, respectively. For the bulk states, one can see that
they spread across the whole system. In Fig. 3, we present the
results for a larger lattice with Nz = 40 sites in order to show
more details of the wave functions.

C. Robustness of the edge mode and bulk-boundary
correspondence

We have demonstrated that when the topological index � =
π , the edge mode does exist in the band gap. This indicates
a topologically nontrivial phase of the Z2 classification. One
may wonder what happens when � = 2π . The 3D two-band
FTI with � = 2π can be obtained from the 2D two-band
FTI by a similarity transformation. Thus, one would expect
that there are two edge modes for the resulting 3D two-band
FTI. To verify this assertion, we modify Eq. (42) so that the

FIG. 3. Top panels: wave functions of the edge modes of Eq. (42)
located at the left and right boundaries, respectively. Lower left
(right) panel: wave function of one selected state from the top
(bottom) bulk band.
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FIG. 4. (Upper left) The quasienergy spectrum as a function
of ky from the 3D two-band FTI model of Eq. (43) with open
boundary condition in the z direction and fixed kx = 0.3. (Upper
right and lower left) The quasienergy spectra as a function of ky

and fixed kx = 0.3 of the 3D two-band FTI models with random
onsite potentials of Eq. (44) and with random hopping coefficients
of Eq. (45), respectively. (Lower right) The quasienergy spectrum of
Eq. (46) as a function of ky with random onsite potentials along the x
direction.

modified Hamiltonian gives � = 2π . Explicitly,

H2π = A

{[
(sin kx − i sin 2ky)

σx − iσy

2
+ m′

2
σz

]
⊗ h0 + H.c.

+ (m + w cos t + cos kx + cos 2ky)σz ⊗ I0

}
. (43)

Here, A = 0.2, m = −0.5, w = 0.5, and m′ = 0.5. On the
upper left panel of Fig. 4, we plot the quasienergy spectrum of
Eq. (43) as a function of ky for fixed kx = 0.3 with Nz = 20.
One can see that there are four crossings of the edge-mode
branches, indicating the shapes of two paraboloidlike edge-
mode dispersions.

According to the Z2 index, � = 2π is expected to be
equivalent to the trivial case of � = 0. If the bulk-boundary
correspondence for the 3D two-band FTI is analyzed in the
way we did for the 2D two-band FTI, one expects that the two
edge modes may not be stable under a z-coordinate-dependent
perturbation, and the two modes could annihilate each other.
We will explain in the following this is not the case. First,
the edge modes are robust against a disorder potential in the
z direction. We show in the upper right and lower left panels
of Fig. 4 the spectrum of the same system (43) with additional
random onsite potentials or random hopping coefficients cor-
responding to the Hamiltonians

H ′
2π = H2π + Aσ0 ⊗ Ir, (44)

H ′′
2π = H2π + Aσz ⊗ hr . (45)

Here, σ0 is the 2 × 2 identity matrix, Ir = viδi j and hr =
viδi+1, j for i, j = 1, . . . , Nz, with vi being a random variable
uniformly distributed between 0 and 0.5. One can see that the
bulk bands are broadened by the random potential or random
hopping coefficient. The two edge modes, nevertheless, are
still observable inside the band gap until the band gap closes
due to the broadened bands. Therefore, no edge-mode annihi-
lation occurs in the 3D two-band FTI.

Next, we consider the same model with open boundary
condition in the x direction and random onsite potentials along
the x direction. The Hamiltonian is given by

Hx
2π = A

[
U −1

z

σz − iσx

2
Uz ⊗ h0 + H.c. + U −1

z [sin 2kyσy

+ (m + w cos t + m′ cos kz + cos 2ky)σz]Uz ⊗ I0

]

+ Aσ0 ⊗ Ir . (46)

The quasienergy spectrum is shown in the lower right panel
of Fig. 4. Here, we take A = 0.2, m = −0.5, w = 0.5, m′ =
0.4, kz = 0.3, and Ir = viδi, j with vi being a random variable
uniformly distributed between 0 and 0.3. One can see that
there are still two edge modes in the band gap. Therefore, the
edge modes are stable against random onsite potentials along
the z or x direction.

In general, the number of edge modes is determined by the
Z index, which is equivalent to its winding number, of the 2D
two-band FTI on which the 3D two-band FTI is based. By
constructing 3D two-band FTIs with � = nπ , where n is an
integer, it can be shown that there are n edge modes at each
end point of the open boundary. From the explanation given
in Sec. III B, all the odd (even) winding numbers are mapped
to the nontrivial (trivial) element in Z2. Thus, we propose the
parity of the number of edge modes, not the number itself,
reflects the Z2 index of the 3D two-band FTI. We notice that
there is also no simple bulk-boundary correspondence for the
Hopf insulator [41] based on the homotopy group π3(S2) =
Z . The 3D two-band FTI is based on the homotopy group
π4(U(2)) = Z2 = π4(S3), and both π3(S2) and π4(S3) are
homotopy groups between manifolds of different dimensions.
Therefore, the 3D two-band FTI may share similar features as
the Hopf insulator and complicate the bulk-boundary corre-
spondence.

There have been experimental probes for various FTIs
[9–11] and proposals for measuring the winding number of
some 2D FTIs [42]. A direct measurement of the Z2 index of
the 3D two-band FTI can be challenging because one has to
connect the index to some physical quantity. Measurements
of the quasienergy spectrum or edge modes of the 3D two-
band FTI with open boundary condition, nevertheless, may
reveal the similar spectrum and edge modes when compared
to their corresponding 2D two-band FTI. The Z2 index can
also be inferred from the parity of the number of edge
modes.

The study focuses on two-band models. For a multiband
system of real materials, if two quasienergy bands are sepa-
rated from the other bands with a large gap, the time-evolution
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operator may be written in an almost blocked form as

U (t ) =
(U2×2 · · ·

... U(n−2)×(n−2)

)
. (47)

If the off-diagonal blocks have very small elements, one may
concentrate on the part U2×2 for the two almost isolated
bands and calculate the topological index � (or I). However,
the off-diagonal blocks and the other bands will act like an
environment and blur the features we have discussed.

V. CONCLUSION

We showed the construction of a class of 3D two-band FTI
with a Z2 topological index based on the homotopy group
π4(U(2)). The Hamiltonian of the 3D two-band FTI is ob-
tained from a similarity transformation of a corresponding 2D
two-band FTI with a Z topological index. As a consequence,
the quasienergy spectrum of the 3D FTI resembles that of the
2D FTI when open boundary condition is imposed. However,
the parity of the total number of edge modes corresponds to
the bulk index for the 3D two-band FTI. The edge modes
of the 3D two-band FTI are robust against weak disorder
which does not close the gap. Since conventional classifica-
tion schemes of FTI do not apply to the 3D two-band FTI
discussed here, this class of 3D FTI offers additional examples
of the rich physics of Floquet topological systems.
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APPENDIX: DERIVATION OF EQ. (25)

Here, we show a derivation of Eq. (25). Note that
(gh)−1d (gh) = h−1(x + y)h with x = g−1dg and y = dhh−1.
Then, we have

�(gh) = −i

240π2

∫
M

Tr(x + y)5

= �(g) + �(h) + −i

48π2

∫
M

Tr(x4y + y4x + x3y2

+y3x2 + x2yxy + y2xyx). (A1)

Making use of the facts that dx = −x2, dy = y2, d (x3) =
−x4, d (y3) = y4, we find

d
(
x3y + xy3 + 1

2 xyxy
)

= −x4y − x3y2 − x2y3 − xy4 − x2yxy − xy2xy. (A2)

By using Stoke’s theorem, we find

�(gh) = �(g) + �(h) + i

48π2

∫
M

Trd

(
x3y + xy3 + 1

2
xyxy

)
(A3)

which gives Eq. (25).
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