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Spin-orbital entangled excitonic insulator with quadrupole order
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We employ the multiorbital dynamical mean-field theory to examine the ground state of a three-orbital
Hubbard model with a relativistic spin-orbit coupling (SOC) at four electrons per site. We demonstrate that the
interplay between the strong electron correlations and the SOC induces a Van Vleck-type nonmagnetic insulator
and its magnetic exciton condensation. In the moderate electron correlation regime, the SOC induces another
type of a nonmagnetic excitonic insulator, in addition to a relativistic band insulator. Most interestingly, we find
that this nonmagnetic excitonic insulator exhibits a high-order multipole ordering. The characteristic features
among these insulators are manifested in the momentum-resolved single-particle excitations, thus accessible by
angle-resolved photoemission spectroscopy experiments.
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I. INTRODUCTION

5d transition-metal oxides have been extensively studied
from theoretical and experimental aspects because the in-
terplay between the electron correlations and the relativistic
spin-orbit coupling (SOC) can induce a variety of exotic
quantum states [1]. Most of the research has focused on (t2g)5

electron systems with a single hole in the t2g manifold, i.e.,
layered-perovskite A2IrO4 (A = Sr and Ba) [2–26]. Recently,
the focus has started to move onto other electron fillings.
Among many interesting observations, recent experiments
on (t2g)4 electron systems with two holes in the t2g mani-
fold have reported that perovskite AOsO3 (A = Ca and Ba)
[27,28] and post-perovskite NaIrO3 [29] exhibit a nonmag-
netic insulating behavior despite the first-principles calcula-
tions based on density functional theory that predict otherwise
[27,29–32]. An intriguing paramagnetic insulating behavior
has also been observed in double perovskite Ba2YIrO6 with a
(t2g)4 electronic configuration [33,34].

It is instructive to consider two limiting cases for the (t2g)4

electron system with the SOC. When the SOC is significantly
large, i.e., in the j j coupling limit of the local effective total
angular momentum j, the j = 1/2 and 3/2 based bands are
well separated to simply become a relativistic band insulator
with the fully occupied j = 3/2 and the completely empty
j = 1/2 based bands. On the other hand, when the electron
correlations are dominant, the LS coupling scheme in the
atomic limit is a better description. According to the Hund’s
rule, the ground state has the orbital angular momentum L = 1
and the spin angular momentum S = 1, which couple via the
SOC to form the total angular momentum J = 0. Considering
the hybridization between neighbors, it is expected that the
local singlets with J = 0 form a band to become a Van
Vleck-type nonmagnetic insulator. In this context, Khaliullin

has proposed a Van Vleck-type excitonic insulator, where an
excitonic condensation between the local J = 0 and J = 1
states is driven by the magnetic order through the intersite
exchange interaction [35].

The theoretical studies in the two extreme limits are im-
portant to investigate possible exotic states. In addition, it
is highly desirable to examine the electronic ground state as
well as the excitations in a wider range of couplings using
a numerical technique that allows us to treat the interplay
between the electron correlations and the SOC in a well-
controlled manner.

For this purpose, here we employ the multiorbital dynam-
ical mean-field theory (DMFT) [36] to study a three-orbital
Hubbard model with the SOC at four electrons per site, corre-
sponding to the (t2g)4 electronic configuration. We determine
the phase diagram of the intraorbital Coulomb interaction U
versus the SOC λ plane in the model, which is summarized
in Fig. 1. We find that the phase diagram displays four phases,
i.e., metal, nonmagnetic excitonic insulator, antiferromagnetic
excitonic insulator, and nonmagnetic insulator. Moreover, the
interplay between U and λ can realize two types of the non-
magnetic insulator: a Van Vleck-type nonmagnetic insulator
and a relativistic band insulator. Most interestingly, we find
that the nonmagnetic excitonic insulator exhibits quadrupole
order.

The rest of this paper is organized as follows. After briefly
introducing the model and numerical method in Sec. II, the
ground-state phase diagram is first determined in Sec. III.
The possibility of multipole orderings in the nonmagnetic
phases are separately examined in Sec. IV. The single-particle
excitations for four different insulating states are also stud-
ied in Sec. V. The paper is concluded with summary in
Sec. VI.
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FIG. 1. Schematic U -λ phase diagram at T = 0.06. EXI,
EXI+AF, and NI stand for nonmagnetic excitonic insulating phase,
antiferromagnetic excitonic insulating phase, and nonmagnetic insu-
lating phase, respectively. In the NI, a Van Vleck-type nonmagnetic
insulator is smoothly connected to a relativistic band insulator that
appears in the limit of large SOC. The EXI+AF shows nonzero
diploe moment, i.e., magnetically ordered, while the EXI displays
quadrupole order with zero diploe moment. Diamonds with different
colors, corresponding to four different phases, indicate the parameter
sets for which the calculations are performed to determine the nature
of states.

II. MODEL AND METHOD

A. Model

The three-orbital Hubbard model with the relativistic SOC
studied here is given as

H = H0 + HI, (1)

where the noninteracting part is represented by

H0 =
∑
〈i,i′〉

∑
γ ,σ

tγ c†
iγ σ ci′γ σ − μ

∑
i,γ ,σ

nγ

iσ + HSO (2)

and the local two-body interacting part is described by

HI = U
∑
i,γ

nγ

i↑nγ

i↓ + U ′ − JH

2

∑
i,γ �=δ,σ

nγ
iσ nδ

iσ

+ U ′

2

∑
i,γ �=δ,σ

nγ

iσ nδ
iσ̄ − JH

∑
i,γ �=δ

c†
iγ↑ciγ↓c†

iδ↓ciδ↑

+ JP

∑
i,γ �=δ

c†
iγ↑c†

iγ↓ciδ↓ciδ↑. (3)

In the noninteracting part H0, tγ sets the nearest-neighbor
hopping amplitude for t2g orbitals γ = (dyz, dzx, dxy), c†

iγ σ is
an electron creation operator at site i with orbital γ and
spin σ (=↑,↓), and nγ

iσ = c†
iγ σ ciγ σ . Notice that the electron

hopping considered here is diagonal for the three orbitals
with the same amplitude, as defined below, and thus the
hopping term preserves the spherical symmetry. The chemical
potential μ is tuned to be at four electrons per site. The SOC

term HSO is given as

HSO = λ
∑

i

∑
γ ,δ

∑
σ,σ ′

〈γ |l|δ〉 · 〈σ |s|σ ′〉c†
iγ σ ciδσ ′

= λ

2

∑
i,σ

(
c†

idyzσ
, c†

idzxσ
, c†

idxy σ̄

)

×
⎛
⎝

0 isσ −sσ

−isσ 0 i
−sσ −i 0

⎞
⎠

⎛
⎝

cidyzσ

cidzxσ

cidxy σ̄

⎞
⎠, (4)

where λ is the SOC, l (s) is the local orbital (spin) angular
momentum operator at each site, sσ = 1 (−1) for σ =↑ (↓),
and σ̄ implies the opposite spin of σ . Here, we have assumed
the local cubic symmetry. The interacting part HI includes
the intraorbital (interorbital) Coulomb interaction U (U ′), the
Hund’s rule coupling JH, and the spin flip and pair hopping
coupling JP. Because of the spherical symmetry in the atomic
limit, we impose U ′ = U − 2JH and JH = JP [37,38]. In this
paper, we set JH = 0.15U , which is within the range for
typical transition-metal compounds [39,40].

B. Method

The main focus in this study is to explore the possible
ordered states appearing as a results of competition between
the electron correlations and the SOC. To take into account
strong electron correlations and magnetic fluctuations in the
three orbitals, here we use the cluster DMFT employing a
three-orbital cluster (multiorbital DMFT). In this study, the
electron correlations and magnetic fluctuations as well as pos-
sible ordered states are treated by the multiorbital DMFT on
the Bethe lattice with coordination number Z → ∞ [41,42],
for which the DMFT is exact. Moreover, we consider the same
bandwidth W for the three orbitals (i.e., tγ = t/

√
Z) and set

W = 4t . In the following, t is used as the energy unit and we
show the results for the lowest temperature T = 0.06, which
essentially represent the ground state.

In the multiorbital DMFT calculation, we numerically
obtain the imaginary-time (τ ) Green’s functions at the im-
purity site, Gδ,σ ′

γ ,σ (i, τ ) ≡ −〈Tτ ciγ σ (τ )c†
iδσ ′ (0)〉, by using a

continuous-time quantum Monte Carlo (CTQMC) method
based on the strong coupling expansion [43]. Although the
CTQMC calculation in principle enables us to solve the model
exactly, the negative sign problem is one of the serious issues,
particularly at low temperatures for large SOC. Our previous
study for the three-orbital Hubbard model with (t2g)5 electrons
[25] has demonstrated that the sign problem is improved
significantly by transforming the t2g orbital bases (ciγ σ ) to the
maximally spin-orbit-entangled j bases (ai jm) of the eigen-
states of H0 in the atomic limit, i.e.,
⎛
⎝

ai 1
2

sσ
2

ai 3
2

sσ
2

ai 3
2

−3sσ
2

⎞
⎠ = 1√

6

⎛
⎝

√
2 −i

√
2sσ

√
2sσ

sσ −i −2
−√

3sσ −i
√

3 0

⎞
⎠

⎛
⎝

cidyz σ̄

cidzx σ̄

cidxyσ

⎞
⎠.

(5)

We find that the same transformation can also improve the
sign problem for the present (t2g)4 electron systems. In the
following, we omit the site index in the Green’s function, i.e.,
Gδ,σ ′

γ ,σ (τ ) = Gδ,σ ′
γ ,σ (i, τ ).
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FIG. 2. (a) λ dependence of staggered magnetization Mj,m, excitonic order parameter �
j′,m′
j,m , and electron density nj,m. (b) Single-particle

excitations spectrum Aj,m(ω) for three different values of λ indicated in the figure. Fermi energy is located at ω = 0. Note that all components
of the spectra are degenerate for λ = 0, and A3/2,±3/2(ω) = A3/2,±1/2(ω) and Aj,m(ω) = Aj,−m(ω) for λ = 1. (c) λ dependence of total angular
momentum squared 〈J2〉 and local spin (orbital) angular momentum squared 〈S2〉 (〈L2〉). All the calculations here are for U = 12. EXI+AF
and NI stand for antiferromagnetic excitonic insulator and nonmagnetic insulator, respectively.

III. PHASE DIAGRAM

Figure 1 shows the phase diagram in the Coulomb interac-
tion U versus the SOC λ plane. To map out the phase diagram,
we investigate two ordered states. The first state considered is
the magnetic order along the z direction described by the order
parameter

Mj,m(l ) = 1

2

∑
m′=±m

sign(m′)〈a†
l jm′al jm′ 〉, (6)

where l (= A, B) indicates two sublattices. Note that because
our model is isotropic, the magnetic orders along the other
x and y directions are identical to that along the z direction.
We also consider the excitonic order described by the order
parameter

�
j′,m′
j,m (l ) = 〈a†

l jmal j′m′ 〉, (7)

where j �= j′ and thus the electron-hole pair is formed
in different j orbitals. In addition, we calculate the elec-
tron density n j,m(l ) = ∑

m′=±m〈a†
l jm′al jm′ 〉. We have found

that Mj,m(A) = −Mj,m(B), �
j′,m′
j,m (A) = −�

j′,−m′
j,−m (B), and

n j,m(A) = n j,−m(B). To simplify the notation, we omit the
sublattice index l in these quantities below.

We should note here that the electron hopping is still
diagonal for the j bases and thus the number of electrons
in each j band is conserved for the noninteracting system
described by H0. Thereby, the excitonic order is a conse-
quence of symmetry breaking of the U(1) symmetry in which
the electron-hole pair of the j bands is condensed, while the
antiferromagnetic order is characterized by the broken SO(3)
symmetry. In the following, we show the representative results
for large and moderate values of U to construct the phase
diagram shown in Fig. 1.

A. Large U case

We first examine a case with large U . Figure 2(a) shows
Mj,m, �

j′,m′
j,m , and n j,m for U = 12 as a function of λ. When

λ = 0, there are no magnetic and excitonic orders with
n j,m = 4/3. However, as soon as λ is finite, the excitonic

order parameters become finite with �
3/2,1/2
1/2,1/2 = �

3/2,−1/2
1/2,−1/2 �= 0.

Concomitantly, the magnetic order parameters are also finite
for all three j components and are antiferromagnetically
aligned. This phase extends up to λ = 0.6. It should also
be noticed that n3/2,1/2 �= n3/2,3/2 in the presence of a finite
excitonic order [44]. For λ � 0.6, both magnetic and excitonic
orders disappear, and n3/2,1/2 = n3/2,3/2 (n1/2,1/2) increases
(decreases) towards two (zero) with further increasing λ.

Figure 2(b) shows the single-particle excitation
spectrum Aj,m(ω) = − 1

π
ImGj,m

j,m(ω + i0+) evaluated from

the imaginary-time Green’s function Gj′,m′
j,m (τ ) ≡ −〈Tτ a jm

(τ )a†
j′m′ (0)〉 using the maximum entropy method [45]. Here,

ω is real frequency, 0+ is infinitesimally small positive
real number, and the site indices are omitted. As shown in
Fig. 2(b), there is a finite excitation gap at the Fermi energy
for all values of λ and therefore these states are all insulating.

To understand the nature of these insulating states, let us
examine the local spin and orbital angular momenta squared,
〈S2

i 〉 and 〈L2
i 〉, respectively, and the local total angular mo-

mentum squared 〈J2
i 〉, where

Si =
∑

γ

∑
σ,σ ′

〈σ |s|σ ′〉c†
iγ σ ciγ σ ′ , (8)

Li =
∑
γ ,δ

∑
σ

〈γ |l|δ〉c†
iγ σ ciδσ , (9)

and

Ji = Si − Li. (10)

Since these quantities do not depend on the site index i, we
simply omit this index hereafter. First, it is highly instructive
to consider four limiting cases. According to the Hund’s rule,
when the electron correlation is significantly large with no
SOC, we expect that 〈S2〉 = 〈L2〉 = 2 and 〈J2〉 = 4 because
〈L · S〉 = 0. If the SOC is introduced in this limit, the spin
and orbital angular momenta are aligned antiparallel, and thus
〈S2〉 = 〈L2〉 = 2 and 〈J2〉 = 0. This is exactly the case for
the ideal Van Vleck-type insulator. In the limit of signifi-
cantly large SOC, where the ground state is expected to be
the relativistic band insulator, 〈S2〉 = 〈L2〉 = 4

3 and 〈J2〉 = 0.
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FIG. 3. (a) λ dependence of staggered magnetization Mj,m, excitonic order parameter �
j′,m′
j,m , and electron density nj,m. (b) Single-particle

excitations spectrum Aj,m(ω) for three different values of λ indicated in the figure. Fermi energy is located at ω = 0. Note that Aj,m(ω) =
Aj,−m(ω) for λ = 1.3, and A3/2,±3/2(ω) = A3/2,±1/2(ω) and Aj,m(ω) = Aj,−m(ω) for other two parameters. (c) λ dependence of total angular
momentum squared 〈J2〉 and local spin (orbital) angular momentum squared 〈S2〉 (〈L2〉). All the calculations here are for U = 3. EXI and NI
stand for excitonic insulator and nonmagnetic insulator, respectively.

Finally, in the noninteracting limit without the SOC, 〈S2〉 =
1.2, 〈L2〉 = 3.2, and 〈J2〉 = 4.4.

Figure 2(c) shows the evolution of these quantities with
varying λ for U = 12. As expected in the strong electron
correlation limit, we find that 〈S2〉 = 〈L2〉 = 2 and 〈J2〉 = 4
for λ = 0, in accordance with the Hund’s rule. With increas-
ing λ, 〈J2〉 monotonically decreases and eventually becomes
zero for λ � 0.6, where neither magnetic nor excitonic order
exists, as shown in Fig. 2(a). In this region, 〈S2〉 and 〈L2〉 are
still close to two, specially near λ = 0.6, implying that the
nonmagnetic insulator for λ � 0.6 is the Van Vleck-type in-
sulator. However, we also notice that 〈S2〉 and 〈L2〉 gradually
decreases with further increasing λ, while 〈J2〉 is exactly zero,
and we expect that 〈S2〉 and 〈L2〉 eventually become 4/3 in
the limit of λ → ∞. Namely, the Van Vleck-type insulator is
smoothly connected to the simple relativistic band insulator.
This nonmagnetic insulating phase is denoted as “NI” in the
phase diagram shown in Fig. 1.

On the other hand, we find in the region of 0 < λ < 0.6 that
〈J2〉 > 0 while 〈S2〉 and 〈L2〉 remain two. In this region, the
magnetic and excitonic orders are both finite, and therefore
we attribute this phase to the magnetic excitonic insulator
(indicated as “EXI+AF” in the phase diagram shown in
Fig. 1) with the enhanced hybridization between the nonmag-
netic J = 0 state and the magnetic J �= 0 excited states. Our
results are in good accordance with the recent analysis based
on the effective magnetic interactions in the large Coulomb
interaction U [46].

B. Moderate U case

Next, we examine a case with moderate value of U , i.e.,
U = 3. It is noticed first in Fig. 3(c) that 〈J2〉, 〈S2〉, and
〈L2〉 for λ = 0 clearly depart from the noninteracting values,
implying that the electron correlations are indeed considered
to be moderated, as it is expected for U ≈ W . As shown
in Fig. 3(a), we find no magnetic order for all values of λ.
Aj,m(ω) exhibits quasiparticle peaks around the Fermi energy
for both j = 1/2 and 3/2 when λ < 1.2 [see Fig. 3(b)], and
thus the ground state for λ < 1.2 is metallic.

However, the quasiparticle peaks disappear with further in-
creasing λ and the metal-insulator transition occurs at λ ∼ 1.2,
where the single-particle excitation gap is open. More interest-
ingly, in the intermediate SOC region for 1.2 � λ � 1.4, we
find that the excitonic insulator emerges without magnetic or-
der [see Fig. 3(a) and indicated as “EXI” in the phase diagram
shown in Fig. 1]. As shown in Fig. 3(b), the degeneracy of
Aj=3/2,m(ω) for m = ±1/2 and ±3/2 is lifted in this phase.

With further increasing λ, the excitonic order disappears
for λ > 1.4 and the j = 3/2 based bands are almost com-
pletely occupied with a finite excitation gap to the unoc-
cupied j = 1/2 based band [see Figs. 3(a) and 3(b)]. This
implies that the ground state for λ > 1.4 is the relativistic
band insulator. In the noninteracting limit, the SOC drives
a transition from the metal to the relativistic band insulator
at λ = 4/3. Therefore, the excitonic insulator found here is
induced by the electron correlations just before the overlap
between the j = 1/2 and 3/2 based bands is diminished,
where the condensation of an electron-hole pair in the j = 1/2
and 3/2 based bands is most favorable with nonzero �

3/2,±1/2
1/2,±1/2.

IV. EXCITONIC INSULATORS

We have found the two excitonic insulators, i.e., the non-
magnetic excitonic insulator for moderate U and the mag-
netic excitonic insulator for large U , indicated respectively as
“EXI” and “EXI+AF” in the phase diagram shown in Fig. 1.
The former appears between the metal and the relativistic
band insulator in the phase diagram, and an electron-hole pair
in the j = 1/2 and 3/2 based bands are condensed in this state
[see Figs. 3(a) and 3(b)]. Therefore, the exciton condensation
is similar to the conventional one where a valence hole and a
conduction electron form a pair.

In contrast, the other excitonic insulator appears in the
strong coupling regime where U alone can open the single-
particle excitation gap without magnetic order (see Fig. 2 for
λ = 0). As shown in Fig. 2(c), in this strong coupling regime,
the LS coupling scheme is a better description and thus the
excitonic insulator here, accompanying the magnetic order, is
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FIG. 4. λ dependence of multipole moment χ for �4u
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(Oxy, Oyz, Ozx) when (a) U = 12 and (b) U = 3. EXI, EXI+AF,
and NI stand for excitonic insulator, antiferromagnetic excitonic
insulator, and nonmagnetic insulator, respectively.

considered as the Van Vleck-type excitonic insulator induced
by mixing the nonmagnetic J = 0 state and the magnetic J = 1
and J = 2 excited states. This is simply because 〈J2〉 > 2
is possible only when the J = 2 state is involved. Indeed,
we can readily show that the finite order parameter �

3/2,±1/2
1/2,±1/2

generates the mixing between the J = 0 singlet and the J = 2
quintets in addition to the J = 1 triplets. Therefore, this
magnetic excitonic insulator is similar to the one proposed
by Khaliullin [35] except that here the J = 2 quintets is also
involved.

The difference between the two excitonic insulators arises
from the viewpoint of multipole. The multipole momentum
is described by the total angular momentum Jα (α = x, y, z)
defined in Eq. (10), where the site index i is omitted. In the
DMFT calculations, we consider eight types of multipoles,
which are classified into three categories according to the
irreducible representations in the cubic symmetry [47]. The
first category is lowest-order three �4u dipoles

Jx, Jy, Jz. (11)

The second category is two �3g quadrupoles

Ou = 1

2

(
2J2

z − J2
x − J2

y

)
, Ov =

√
3

2

(
J2

x − J2
y

)
. (12)

The third category is three �5g quadrupoles

Oxy =
√

3

2
(JxJy + JyJx ), Oyz =

√
3

2
(JyJz + JzJy),

Ozx =
√

3

2
(JzJx + JxJz ). (13)

As shown in Fig. 4(a), for the magnetic excitonic insulator
with large U , Jz is finite, which signals the dipole ordering.
On the other hand, it is noticed in Fig. 4(b) that for the
nonmagnetic excitonic insulator with moderate U , all the
dipole orderings disappear but the Ou component of the �3g

quadrupole moments becomes clearly dominant, revealing the
quadrupole order in the nonmagnetic excitonic insulator. We
should note that the same component of the �3g quadrupole
moments is finite even in the magnetic excitonic insulator

with large U . This is understood simply because the lower-
order dipole moment is finite. As shown in Fig. 4(a), in this
magnetic excitonic insulator, Jz is finite but Jx = Jy = 0 in �4u

dipoles, and thus we can easily show that the Ou component
of the two-dimensional �3g quadrupoles is also finite among
�4u × �4u = �1g + �3g + �4g + �5g (except for �1g), as we
have indeed found in our calculations.

V. SINGLE-PARTICLE SPECTRA

Finally, we calculate the momentum-resolved single-
particle spectral function

A(k, ω) = − 1

π

∑
j,m

ImG j,m
j,m (k, ω + i0+) (14)

and examine the characteristic features in the single-particle
excitations for the different insulating states found here. In our
calculations, the single-particle Green’s function G j,m

j,m (k, ω) is
introduced within the cluster perturbation theory [48]. Since
the DMFT can include the momentum k dependence only
through the noninteracting energy dispersion ε(k), we intro-
duce k to parametrize ε(k) as ε(k) = −2 cos k [49].

The typical results of A(k, ω) are summarized in Fig. 5 for
the four different insulators. As shown in Fig. 5(a), A(k, ω)
for the relativistic band insulator in the moderate correlation
regime is very similar to the noninteracting band structure
for large λ and exhibits an indirect gap between the j = 1/2
and 3/2 based bands. With slightly decreasing the SOC, the
ground state becomes the nonmagnetic excitonic insulator
with the quadrupole order and the typical result of A(k, ω)
is shown in Fig. 5(b). This result clearly demonstrates the
strong hybridization between the bottom of the j = 1/2 based
conduction band and the top of the j = 3/2 based valence
bands to induce a finite excitation gap at the Fermi energy,
and this is a strong evidence for the excitonic insulator [see
also Fig. 3(b)]. It is also noticed in Fig. 5(b) that the spectrum
is rather broad, as compared with the one for the relativistic
band insulator shown in Fig. 5(a), despite that U is the same
for both cases.

Figure 5(c) represents the result for the Van Vleck-type
insulator that appears in the strong correlation regime. The
apparent difference from the moderate correlation regime is
that the single-particle excitation gap is determined by U
and the spectrum is rather featureless with a much broader
structure specially in the occupied states below the Fermi
energy. The typical result for the magnetic excitonic insulator
is shown in Fig. 5(d). Similar to the Van Vleck-type insulator,
A(k, ω) exhibits a broad structure. In addition, there exists a
characteristic peak structure near ω = 0 below the Fermi en-
ergy. The dispersion of this excitation is strongly renormalized
to become almost flat, implying the strong correlation effects.
As shown in Fig. 2(b), this excitation originates mainly from
the one with the m = ±1/2 character of j = 3/2, the four-
fold degeneracy of j = 3/2 being lifted due to the magnetic
excitonic order.

VI. SUMMARY

In summary, we have studied the three-orbital Hubbard
model with the SOC at four electrons per site by using the
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FIG. 5. k-resolved single-particle spectral function A(k, ω) for (a) relativistic band insulator, (b) nonmagnetic excitonic insulator with the
quadrupole order, (c) Van Vleck-type nonmagnetic insulator, and (d) magnetic excitonic insulator. The parameters are indicated in the figures.
(a) and (c) are in the “NI” phase, (b) is in the “EXI” phase, and (d) is in the “EXI+AF” phase of the phase diagram shown in Fig. 1. Note that
the maximum value of each spectral function is normalized to be one. The Fermi energy is denoted by white horizontal lines at ω = 0.

multiorbital DMFT and the CTQMC method. For large U ,
we have demonstrated that the moderate SOC induces the
Van Vleck-type nonmagnetic insulator, which is smoothly
connected to the relativistic band insulator for larger λ. We
have also found in the strong electron correlation regime that
the magnetic excitonic insulator is induced for small λ by
hybridizing the nonmagnetic J = 0 singlet of the local (t2g)4

manifold and the excited multiplets with J = 1 triplets and
J = 2 quintets. More interestingly, we have found that the
excitonic insulator for moderate U emerges without any mag-
netic order. This excitonic insulator is due to the condensation
of an electron-hole pair in the j = 1/2 and 3/2 based bands,
and is characterized by the high-order �3g quadrupole order.
Although our results for moderate U are most appropriate for
5d transition-metal oxides, the results for large U should also
be relevant to 3d and 4d transition-metal oxides with the low
spin configuration in the cubic Oh symmetry. The different
insulators found here are manifested most clearly in the
momentum-resolved single-particle excitations, and thus can

be observed in angle-resolved photoemission spectroscopy
experiments.
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