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Geometric quench in the fractional quantum Hall effect: Exact solution in quantum Hall matrix
models and comparison with bimetric theory

Matthew F. Lapa,1,* Andrey Gromov,1,2,3,† and Taylor L. Hughes4,‡

1Kadanoff Center for Theoretical Physics, University of Chicago, Illinois 60637, USA
2Department of Physics, University of California, Berkeley, California 94720, USA

3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign,

Urbana, Illinois 61801-3080, USA

(Received 26 November 2018; published 7 February 2019)

We investigate the recently introduced geometric quench protocol for fractional quantum Hall (FQH) states
within the framework of exactly solvable quantum Hall matrix models. In the geometric quench protocol, a FQH
state is subjected to a sudden change in the ambient geometry, which introduces anisotropy into the system. We
formulate this quench in the matrix models and then we solve exactly for the postquench dynamics of the system
and the quantum fidelity (Loschmidt echo) of the postquench state. Next, we explain how to define a spin-2
collective variable ĝab(t ) in the matrix models, and we show that for a weak quench (small anisotropy), the
dynamics of ĝab(t ) agrees with the dynamics of the intrinsic metric governed by the recently discussed bimetric
theory of FQH states. We also find a modification of the bimetric theory such that the predictions of the modified
bimetric theory agree with those of the matrix model for arbitrarily strong quenches. Finally, we introduce a
class of higher-spin collective variables for the matrix model, which are related to generators of the W∞ algebra,
and we show that the geometric quench induces nontrivial dynamics for these variables.
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I. INTRODUCTION

Topological phenomena in gapped fractional quantum Hall
(FQH) states, such as anyonic excitations, robust edge modes,
and ground-state degeneracy on closed manifolds, are well-
described by Chern-Simons topological quantum field theo-
ries [1]. These theories apply in the limit in which the bulk
energy gap is sent to infinity and so, by their very nature,
they are incapable of describing the dynamics of gapped
excitations in FQH states. Nevertheless, FQH states support a
bulk gapped collective excitation known as the magnetoroton
or Girvin-MacDonald-Platzman (GMP) mode [2]. For small
wave vectors k the GMP mode is characterized by a definite
angular momentum equal to 2h̄, i.e., the GMP mode is a “spin-
2” mode near k = 0. Recently, a new effective “bimetric” field
theory was developed [3,4] to describe the gapped dynamics
of this spin-2 mode. The fundamental degree of freedom in
this theory is a dynamical unimodular metric ĝab(x, t ), and
the gapped fluctuations of this metric, which have spin-2,
correspond to the dynamics of the GMP mode near k = 0.
The development of the bimetric theory relied on the extensive
body of work on geometry [5–26] and Hall viscosity [14–
16,27–36] in quantum Hall states from the past two decades.

Given the existence of interesting gapped excitations in
FQH states, it is natural to try to engineer a situation in
which the gapped dynamics of FQH states could be observed,
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either in numerical simulations or in experiments. With this
goal in mind, a quantum quench protocol for FQH states,
dubbed a “geometric quench,” was introduced in Ref. [37].
This geometric quench is designed for the express purpose of
exciting the (neutral) gapped excitations in FQH systems and
can be summarized briefly as follows. First, we prepare the
system in an isotropic FQH ground state |ψ0〉 of an isotropic
Hamiltonian H0. Next, we suddenly change the Hamiltonian
to incorporate some anisotropy, H0 → H ′. Finally, we evolve
the initial state forward in time using the new anisotropic

Hamiltonian, |ψ (t )〉 = e−i H ′t
h̄ |ψ0〉.

The authors of Ref. [37] investigated this geometric quench
in two ways. First, they studied the quench analytically using
the aforementioned bimetric theory. Second, they studied the
quench numerically using the recently introduced anisotropic
Haldane pseudopotentials [38]. For quadropolar anisotropy
parametrized by a constant unimodular metric gab, this quench
was shown to excite the gapped spin-2 mode near k = 0
(i.e., the small-k limit of the GMP mode). In addition, the
dynamics of this mode in the case of small anisotropy was
shown to be well-described by bimetric theory. Reference [37]
also considered quenches with more complicated anisotropy,
and these quenches were shown to excite exotic higher-spin
modes, which have a larger excitation gap than the spin-2
mode. The existence of such higher-spin excitations in the
FQH effect has been anticipated since early work on infinite-
dimensional W∞ symmetry in FQH states [39–43].

Our goal in this paper is to study the geometric quench
protocol in more detail. To do so we consider this quench
in the context of exactly solvable matrix models of FQH
states. The exact solubility of these matrix models allows us to
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make significant analytical progress in studying the geometric
quench. We focus most of our discussion on the matrix model
for Laughlin states, known as the Chern-Simons matrix model
(CSMM). The CSMM was introduced by Polychronakos [44],
who proposed it as a concrete regularization of Susskind’s
noncommutative Chern-Simons theory of the Laughlin states
[45], and the CSMM and noncommutative Chern-Simons the-
ory were subsequently studied by many authors [46–55]. We
will also explain how our results for the Laughlin states extend
to a matrix model for the Blok-Wen series [56] of non-Abelian
FQH states. This non-Abelian matrix model was introduced
and studied in detail in Refs. [57,58] (this model also appeared
in Ref. [47], but was given a different physical interpretation
in that reference). In Refs. [59,60], it was shown that the
matrix models accurately capture the geometric properties
of the FQH states they describe. In particular, the correct
value of the guiding center Hall viscosity of these FQH states
can be recovered from the matrix model descriptions (see
Refs. [14–16] for the concept of Landau orbit versus guiding
center contributions to the Hall viscosity). The fact that the
CSMM and its non-Abelian generalizations accurately de-
scribe the geometric response of FQH states suggest that these
models are ideal testing grounds for the geometric quench of
Ref. [37].

In this paper, we formulate the geometric quench pro-
tocol in the CSMM for the case of quadropolar anisotropy
parametrized by a constant unimodular metric gab. We then
solve exactly for the postquench state |ψ (t )〉 and compute the
quantum fidelity |〈ψ0|ψ (t )〉|2 (also known as the Loschmidt
echo). We also define and compute the exact dynamics of
a spin-2 collective variable that naturally emerges in the
CSMM. We denote this collective variable by ĝab(t ) because,
as we show in the paper, this quantity is the analog in the
CSMM of the dynamical metric in bimetric theory. We show
that ĝab(t ) undergoes nonlinear oscillations after the quench,
with a period set by the gap E2 for spin-2 excitations in the
CSMM. In the case of small anisotropy, we show that the dy-
namics of ĝab(t ) in the CSMM coincides with the postquench
dynamics predicted by bimetric theory in Ref. [37]. We also
generalize these results to the non-Abelian matrix model of
Refs. [57,58]. These results imply that the quantum Hall
matrix models can describe the numerical data of Ref. [37]
for small anisotropy just as well as bimetric theory.

We then explore the connection between the matrix models
and bimetric theory in more detail, and we show that there ex-
ists a modified potential energy term for bimetric theory such
that the predictions of the matrix models for the geometric
quench exactly match the predictions of bimetric theory with
the alternative potential energy term. Finally, in the last part
of the paper, we define a set of higher-spin collective variables
for the CSMM and discuss their relation to previous work on
higher-spin operators and W∞ symmetry in the CSMM. We
then show that the geometric quench considered in this paper
induces nontrivial dynamics for these higher-spin variables.

The CSMM is closely related to the Calogero model of
interacting particles in one dimension (see Ref. [44] for
the connection). Consequently, there is a relation between
the geometric quench in the CSMM and the quench of the
harmonic trap frequency in the Calogero model that was
considered in Ref. [61]. The main difference between the

geometric quench for the CSMM and the work of Ref. [61]
is that, in the language of the Calogero model, the geometric
quench of the CSMM corresponds to a simultaneous quench
of both the harmonic trap frequency and the mass of the
Calogero particles (note that in the Calogero Hamiltonian the
mass parameter appears as a coefficient in the kinetic energy
term and the interaction term). Thus the dynamics induced
by the geometric quench in the CSMM is qualitatively dis-
tinct from that studied in Ref. [61]. Another similar quench
protocol was discussed in Ref. [62], where the harmonic trap
frequency was quenched simultaneously with the interaction
strength.

This paper is organized as follows. In Sec. II, we review the
CSMM and introduce various important variables and nota-
tion. In Sec. III, we formulate and solve the geometric quench
in the CSMM, and extend those results to the non-Abelian
matrix model. In Sec. IV, we give a detailed comparison
of the predictions of the CSMM and bimetric theory, and
we also discuss the new potential energy term for bimetric
theory that we mentioned in the previous paragraph. In Sec. V,
we introduce a set of higher-spin collective variables for the
CSMM, and we calculate their postquench dynamics. Sec-
tion VI presents our conclusions. Finally, several important
formulas are contained in Appendices A–C.

II. REVIEW OF THE CHERN-SIMONS
MATRIX MODEL (CSMM)

A. Physical meaning of the model and summary of notation

In this section, we give a lightning review of the CSMM
and its quantization. We also highlight some specific proper-
ties of the quantum ground state of the CSMM which we use
later in the paper in the solution of the geometric quench. For
more details on this model and its physical interpretation, we
refer the reader to the original work [44], and to Refs. [59,60]
for a recent discussion in the context of geometric response
of quantum Hall states (our notation is essentially the same as
Ref. [60]).

The degrees of freedom in the CSMM consist of two
N × N Hermitian matrices X a(t ), a = 1, 2, a complex length
N vector ϕ(t ), and an additional N × N Hermitian matrix
A0(t ), which is a U(N ) gauge field. All of these degrees
of freedom are functions of time t . We denote the matrix
elements of the matrix degrees of freedom by (X a) j

k , j, k =
1, . . . , N (and likewise for A0), and the components of ϕ by
ϕ j , j = 1, . . . , N .

The physical meaning of the CSMM can be briefly sum-
marized as follows. The starting point for this interpretation is
Susskind’s noncommutative Chern-Simons theory description
of the Laughlin states [45]. In that description, a quantum Hall
state is modeled as a fluid on the “noncommutative plane,” a
deformation of the two-dimensional plane R2 in which the
coordinates xa are promoted to operators x̂a, which obey a
nontrivial commutation relation [x̂1, x̂2] = iθ , where θ is a
constant with units of length squared. In Susskind’s model,
θ is quantized as

θ = �2
Bm, m ∈ Z, (2.1)
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where �2
B = h̄

eB is the square of the magnetic length.1 The
integer m, which we take to be positive, is related to the filling
fraction of the Laughlin state by

ν = 1

m
. (2.2)

This can be seen from the fact that the density of the fluid in
Susskind’s model is related to θ by

ρ = 1

2πθ
= 1

2π�2
Bm

, (2.3)

which is exactly the mean density of the ν = 1
m Laughlin state.

The physical interpretation of the parameter θ is that 2πθ is
the area occupied by a single electron in Susskind’s model.
In Ref. [45], it was argued that due to the finite value of
the parameter θ , the noncommutative Chern-Simons theory
accurately captures the “granularity” of a fluid composed of
discrete particles (which are electrons in this case).

The CSMM can be viewed as a regularization of Susskind’s
noncommutative Chern-Simons theory. While the latter the-
ory describes a constant density fluid occupying the entire
noncommutative plane, the CSMM describes a finite droplet
of fluid on the noncommutative plane consisting of N elec-
trons. Indeed, the eigenvalues of the matrices X a in the CSMM
can be interpreted as the coordinates of electrons on the plane.
Since the matrices X a do not commute with each other in the
CSMM (i.e., they are not simultaneously diagonalizable), the
electrons described by the CSMM still live on the noncommu-
tative plane. For further details on the physical interpretation
of the CSMM, we refer the reader to Refs. [44,45,59].

Before moving on, we summarize our notations. When
the matrix model is quantized, the matrix elements of X a

and A0, as well as the components of ϕ, become operators
on a quantum Hilbert space. In what follows, we reserve
the symbol “†” to denote Hermitian conjugation of quantum
operators. For classical matrix and vector degrees of freedom,
we use a superscript “T ” to denote a transpose and an overline
to denote complex conjugation. We also use the notation
[·, ·]M to denote the commutator of classical matrix degrees of
freedom (“M” stands for matrix). The notation [·, ·] without
any subscript will be used for the commutator of quantum
operators. Finally, Tr{·} always denotes the trace of classical
matrices.

B. CSMM and its quantization

The action for the CSMM has the form2

S0 = −eB

2

∫ T

0
dt Tr{εabX aD0X b + 2θA0

+ωδabX aX b} + i
∫ T

0
dt ϕTD0ϕ, (2.4)

1We use a convention in which electrons have charge −e < 0,
and we choose a constant magnetic field with strength B > 0 (i.e.,
pointing in the positive z direction).

2We use a summation convention in which we sum over any index
which appears once as a subscript and once as a superscript in any
expression.

where the covariant derivatives D0X b and D0ϕ are defined as

D0X b = Ẋ b − i[A0, X b]M, (2.5a)

D0ϕ = ϕ̇ − iA0ϕ, (2.5b)

and the dot denotes an ordinary time derivative. Here we
work on a time interval t ∈ [0, T ), and we impose periodic
boundary conditions in time on all degrees of freedom. This
turns the time-direction into a circle of circumference T ,
which we denote by S1

T . Just as in Susskind’s model, the
parameter θ is quantized as θ = �2

Bm, m ∈ Z and we again
choose m > 0. In this case, the CSMM describes the Laughlin
state with ν = 1

m .
The quantization rule for θ comes from requiring the

exponential ei S0
h̄ of the action to be invariant under large U(N )

gauge transformations. The action S0 is nearly invariant under
the U(N ) gauge transformation

X a → V X aV
T
, (2.6a)

A0 → VA0V
T + iVV̇

T
, (2.6b)

ϕ → V ϕ, (2.6c)

where V (t ) is a time-dependent U(N ) matrix. However, the
term in the Lagrangian proportional to Tr{A0} spoils this in-
variance. This is because of the existence of large gauge trans-
formations in which the map V : S1

T → U(N ) corresponds to
a nontrivial element of the group π1(U(N )) = Z. Requiring
invariance of ei S0

h̄ under these large gauge transformations
then gives the quantization rule for θ .

In the CSMM, the gauge field A0 enforces the constraint (I
is the N × N identity matrix)

G := ieB[X 1, X 2]M + eBθI − ϕϕT = 0, (2.7)

and in the A0 = 0 gauge the Hamiltonian takes the form

H0 = eBω

2
Tr{δabX aX b}. (2.8)

This Hamiltonian represents a harmonic trap for the noncom-
mutative fluid described by the CSMM, and the strength of
this trap is set by the frequency ω.

To quantize the model it is convenient to define a set
of real scalar variables, which serve to completely specify
the matrices X a. In the quantized model, these variables
then become Hermitian operators. To define these real scalar
variables, we introduce a basis T A, A = 0, . . . , N2 − 1, of
generators of the Lie algebra of U(N ) in the fundamental
representation. Thus T A are N × N Hermitian matrices, and
we assume they are normalized so that Tr{T AT B} = δAB. A
concrete choice for the generators T A is to choose T 0 = I√

N
,

and so T 0 is the generator of the U(1) part of U(N ). For A 	= 0,
we choose T A = √

2tA, where tA are a basis of conventionally
normalized generators of SU(N ), which satisfy Tr{tAtB} = δAB

2
and [tA, tB]M = i

∑
C f ABCtC , where f ABC are the structure

constants of SU(N ) (we do not need to know the exact form
of f ABC in this paper). Using this basis, we then parametrize
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X a(t ) as

X a(t ) =
N2−1∑
A=0

xa
A(t )T A, (2.9)

where we have introduced 2N2 real scalar variables xa
A(t ).

In the quantized CSMM, these scalar variables obey the
commutation relations[

xa
A, xb

B

] = i�2
BεabδAB, (2.10)

which are very similar to the commutation relations of guiding
center coordinates in the quantum Hall problem.

Using these new scalar variables, we define the oscillator
variables

zA = 1

�B

√
2

(
x1

A + ix2
A

)
(2.11)

and z†
A = 1

�B

√
2
(x1

A − ix2
A). We also define

bj = 1√
h̄
ϕ j, (2.12)

and b†
j = 1√

h̄
ϕ j (here ϕ j are the components of the row vector

ϕT ). In the quantized CSMM, these variables all obey the
harmonic oscillator commutation relations

[zA, z†
B] = δAB, (2.13a)

[bj, b†
k] = δ

j
k . (2.13b)

For later use, we also define the matrix-valued operators
Z± whose matrix elements are given by

(Z−) j
k =

N2−1∑
A=0

zA(T A) j
k, (2.14a)

(Z+) j
k =

N2−1∑
A=0

z†
A(T A) j

k . (2.14b)

The commutation relations of zA and z†
B then imply that

[(Z−) j
k, (Z+)�m] = δ j

mδ�
k . (2.15)

If we quantize the CSMM in the A0 = 0 gauge, then gauge
invariance requires that all states in the physical Hilbert space
of the model be annihilated by the matrix elements Gj

k of
the constraint G from Eq (2.7). A useful way to think about
these constraints is to define a new set of constraints by taking
the trace with the U(N ) generators T A, i.e., we define new
constraints GA := Tr{GT A}. Let |phys〉 denote a state in the
physical Hilbert space of the model. Then the constraints
GA|phys〉 = 0 for A 	= 0 imply that all physical states trans-
form as singlets under the SU(N ) part of U(N ). The remaining
constraint G0|phys〉 = 0 can be shown to reduce to

b†
jb

j |phys〉 = N (m − 1)|phys〉. (2.16)

This constraint implies that all physical states carry a total
charge of N (m − 1) under the U(1) part of U(N ). Note also
that GA|phys〉 = 0 for all A implies that Gj

k|phys〉 = 0 for all
j, k, since the Gj

k are linear combinations of the GA.

Let |0〉 be the Fock vacuum state annihilated by the zA and
bj operators. Then a complete basis of physical states for the
CSMM consists of the states [48]

|{c1, . . . , cN }〉
= Tr{Z+}c1 Tr{(Z+)2}c2 · · · Tr{(Z+)N }cN |ψ0〉, (2.17)

where c j ∈ N for j = 1, . . . , N and

|ψ0〉 = (ε j1··· jN b†
j1

[b†Z+] j2 · · · [b†(Z+)N−1] jN )(m−1)|0〉.
(2.18)

In the A0 = 0 gauge, the CSMM Hamiltonian can be rewritten
in the form

H0 = h̄ω
N2

2
+ h̄ω

N2−1∑
A=0

z†
AzA, (2.19)

which is equal to a constant plus a term proportional to the
total number operator for the zA oscillators. From this it is
clear that the lowest energy physical state is |ψ0〉, with energy

E0 = h̄ω

[
1

2
mN2 +

(
1 − m

2

)
N

]
. (2.20)

The other states |{c1, . . . , cN }〉 can be seen to have an energy
of

E ({c1, . . . , cN }) = E0 + h̄ω

N∑
j=1

c j j. (2.21)

For later use we also define a dimensionless ground-state
energy ε0 by

ε0 := E0

h̄ω
. (2.22)

We also mention here that the angular momentum operator Lz

for the CSMM takes the form

Lz = −eB

2
Tr{δabX aX b}. (2.23)

In particular, it is clear that Lz = − 1
ω

H0. It follows that the
state |{c1, . . . , cN }〉 has angular momentum

Lz({c1, . . . , cN }) = −h̄ε0 − h̄
N∑

j=1

c j j. (2.24)

C. sl (2, R) generators

The matrices X a can be interpreted as Lagrangian coordinates
for a fluid on the noncommutative plane [45]. To investigate
the response of this fluid to changes in the geometry, we
need to identify the operators which generate area-preserving
diffeomorphisms (APDs) of the fluid coordinates. The group
SDiff(R2) of APDs of the plane is an infinite-dimensional
group whose elements are (smooth, invertible) functions η :
R2 → R2, which preserve the volume form vol = dx1 ∧ dx2

on R2, i.e., η∗vol = vol, where η∗ denotes the pullback along
the map η. This group has a finite-dimensional subgroup
isomorphic to SL(2,R), which consists of the functions η of
the form

ηa(x) = Aa
bxb, (2.25)
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where Aa
b are the components of a 2 × 2 real matrix A with

determinant 1, i.e., an element of SL(2,R). Note here that
Aa

b has no x dependence. One can think of this subgroup of
SDiff(R2) as being equal to the subset of APDs which are
uniform in space.

It was shown in Ref. [59] that the operators, which generate
these SL(2,R) transformations for the matrix coordinates X a,
are3

Λab = 1

4�2
B

N2−1∑
A=0

{
xa

A, xb
A

}
, (2.26)

where {·, ·} denotes an anticommutator, and one can check that
these operators obey

[Λab, Λcd ] = i

2
(εbcΛad + εbdΛac + εacΛbd + εadΛbc), (2.27)

which are the commutation relations for the Lie algebra
sl (2,R).

Finite SL(2,R) transformations of the noncommutative
coordinates are implemented by conjugation by a unitary
operator U (α) = eiαabΛ

ab
, where αab is a constant symmetric

matrix which parametrizes the deformation. To first order in
αab, we have (for all j, k)

U (α)(X a) j
kU (α)† = (X a) j

k + εabαbc(X c) j
k + · · · . (2.28)

Since the operators U (α) act identically on all matrix elements
(X a) j

k of the noncommutative coordinates X a, the operators
Λab can indeed be interpreted as generating SL(2,R) transfor-
mations of the noncommutative coordinates X a.

It is convenient to introduce another basis for the genera-
tors of sl (2,R), which have the form

K0 = 1
2 (Λ11 + Λ22), (2.29)

K− = 1
2 (Λ11 − Λ22) + iΛ12, (2.30)

K+ = (K−)†. (2.31)

This basis of generators obeys the algebra

[K0, K±] = ±K±, (2.32a)

[K−, K+] = 2K0, (2.32b)

and in this form the sl (2,R) algebra is also known as su(1, 1).
One fact which will be useful later in the paper is that K−

annihilates the ground state |ψ0〉 of the original CSMM,

K−|ψ0〉 = 0, (2.33)

and this can be shown using a proof by contradiction. Suppose
instead that K−|ψ0〉 	= 0. Then, since K− is invariant under the
U(N ) action in the CSMM (this can be seen by writing it as
a trace, K− = 1

2 Tr{(Z−)2}), the state K−|ψ0〉 is also a valid
state in the physical Hilbert space of the matrix model. In

3Note that in Refs. [59,60], these operators were referred to as
“area-preserving deformation” generators. Here we refer to them as
sl (2,R) generators to make the connection with the full group of
area-preserving diffeomorphisms of R2 more precise.

addition, this state has energy E0 − 2h̄ω for the Hamiltonian
H0. Therefore K−|ψ0〉, if different from zero, would be a
new physical state of the CSMM with lower energy than the
ground state |ψ0〉. This is a contradiction since it is already
known that |ψ0〉 has the lowest eigenvalue of H0 among all
of the physical states of the model. Therefore it must be that
K−|ψ0〉 = 0. Note that this proof also generalizes to a proof
that |ψ0〉 is annihilated by all the U(N )-invariant operators
Tr{(Z−)p} for p = 1, . . . , N , with K− corresponding to the
case of p = 2.

D. Introducing anisotropy into the CSMM

We now explain how to introduce anisotropy into the
CSMM. One way to do this, following [59], is to deform
the harmonic trap by replacing the Kronecker delta δab with
a constant unimodular metric gab (i.e., a constant metric with
determinant equal to one). The nontrivial metric gab represents
some externally imposed anisotropy in the problem. The
action for this modified CSMM takes the form

Sg = −eB

2

∫ T

0
dt Tr{εabX aD0X b + 2θA0

+ωgabX aX b} + i
∫ T

0
dt ϕTD0ϕ, (2.34)

in which the only change to the action is the replacement
δab → gab in the harmonic potential term. In the A0 = 0
gauge, the Hamiltonian for this modified matrix model is

Hg = eBω

2
Tr{gabX aX b}. (2.35)

This model was solved in Ref. [59] and we mention here
some of the important properties of this model. First, the
entire energy spectrum of this model is identical to that of the
CSMM with gab = δab (this statement is only true because gab

has determinant one). In particular, the quantum ground state
|ψg〉 of this model has the same energy E0 as the ground state
|ψ0〉 of the original CSMM. In addition, the expectation value
of the sl (2,R) generators Λab in the state |ψg〉 is given by

〈ψg|Λab|ψg〉 = ε0

2
gab, (2.36)

where gab is the inverse metric for gab. It was shown in
Ref. [59] that, as a consequence of this relation, the Hall
viscosity of this modified CSMM with θ = �2

Bm is equal to
the guiding center Hall viscosity of the Laughlin ν = 1

m state
with guiding center metric gab [14,15].

This calculation also suggests a way to define an intrinsic
metric ĝab associated with any state |ψ〉 in the matrix model.
We define ĝab by first defining its inverse ĝab to be proportional
to the expectation value 〈ψ |Λab|ψ〉. In the special case when
|ψ〉 is chosen to be the ground state |ψg〉 of the CSMM
with metric gab, Eq. (2.36) shows that the intrinsic metric ĝab

associated with this state is locked to the externally imposed
metric gab. Later in the paper, we use the intuition provided by
this example to define a time-dependent intrinsic metric ĝab(t )
in a time-dependent state |ψ (t )〉 obtained after performing a
geometric quench in the CSMM.
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Finally we note that the Hamiltonian Hg can be written in
terms of the sl (2,R) generators as

Hg = h̄ωgabΛ
ab. (2.37)

In this form, the Hamiltonian of the CSMM resembles the
Hamiltonian of the bimetric theory, as we discuss later.

III. GEOMETRIC QUENCH IN THE CSMM
AND ITS EXACT SOLUTION

In this section, we formulate the geometric quench protocol
in the CSMM, and we also define a time-dependent intrinsic
metric in the postquench state. We then present the exact
solution for the postquench state and the time-dependent
intrinsic metric. We show that our results agree with the results
obtained in Ref. [37] using bimetric theory in the limit of
small anisotropy (we give a more detailed comparison with
the bimetric theory results later in Sec. IV). Finally, at the end
of this section, we show how our results for the CSMM can
be extended to the case of the non-Abelian matrix model of
Refs. [57,58].

A. Geometric quench protocol in the CSMM

The geometric quench of a FQH state was introduced in
Ref. [37] and consists of a sudden change in the background
geometry in a FQH system. This quench can be formulated in
the CSMM as follows. We start with the system in the ground
state |ψ0〉 of the original CSMM. Then, at time t = 0, we
suddenly introduce anisotropy into the system by replacing
δab → gab in the harmonic trap term of the CSMM (we still
take gab to be a constant unimodular metric). As result, the
initial state |ψ0〉 evolves in time under the influence of the
Hamiltonian Hg of the CSMM with nontrivial metric gab from
Eq. (2.34). Mathematically, the postquench state at time t is
related to the initial state as

|ψ (t )〉 = e−i
Hgt

h̄ |ψ0〉. (3.1)

One of our main results in this section is an explicit expression
for the postquench state |ψ (t )〉.

Given the postquench state |ψ (t )〉, we can define a time-
dependent intrinsic metric using Eq. (2.36) as a guide. We
denote this metric by ĝab(t ) and we define it by first defining
its inverse ĝab(t ) as

ĝab(t ) := 2

ε0
〈ψ (t )|Λab|ψ (t )〉. (3.2)

The normalization factor here can be understood by com-
parison with Eq. (2.36), and with this normalization ĝab(t )
will also be a unimodular metric (this will be verified by
an explicit computation). The “dynamical metric” ĝab(t ) is a
spin-2 collective variable, which (partially) characterizes the
many-body dynamics of the CSMM.

For easy comparison with Ref. [37], we choose the
anisotropy metric gab to be of the form

g =
(

eA 0
0 e−A

)
, (3.3)

where A is a real parameter which determines the anisotropy
(gab are the components of the matrix g). This choice of metric

stretches the system along one axis (the x1 axis for A > 0),
while squashing the system along the other axis. The fact that
gab is diagonal means that there is no additional rotation off
of the main coordinate axes. This choice of gab makes our
calculations in this section slightly easier, however, the case of
a nondiagonal gab can be dealt with using the same methods.

To make contact with Ref. [37] we also parametrize the
dynamical metric ĝab(t ) using a a real parameter Q(t ) � 0 and
a real phase φ(t ). In this parametrization, the metric takes the
form considered in Ref. [37],

ĝ=
(

cosh(Q) + cos(φ) sinh(Q) sin(φ) sinh(Q)
sin(φ) sinh(Q) cosh(Q) − cos(φ) sinh(Q)

)
.

(3.4)

One can check that this does indeed define a unimodular
metric. We now proceed with the exact calculations of |ψ (t )〉
and ĝab(t ).

B. Postquench state and the quantum fidelity (Loschmidt echo)

To determine the postquench state |ψ (t )〉 we first note that
using expression (2.37), the Hamiltonian Hg for our specific
choice of gab takes the form

Hg = h̄ω(sinh(A)K+ + 2 cosh(A)K0 + sinh(A)K−). (3.5)

Then, using the rearrangement identity (A1) from
Appendix A, we can rewrite the time-evolution operator

e−i
Hgt

h̄ as

e−i
Hgt

h̄ = e−β(t )K+eln(δ(t ))K0 e−β(t )K− , (3.6)

where β(t ) and δ(t ) are functions of t, ω, A and are given
explicitly in Eqs. (A2) and (A3) of Appendix A. If we now
use the fact that K−|ψ0〉 = 0, then we find that

|ψ (t )〉 = e−β(t )K+eln(δ(t ))K0 |ψ0〉. (3.7)

In addition, from the definition of K0 it is clear that K0|ψ0〉 =
ε0
2 |ψ0〉 (since K0 = 1

2
H0
h̄ω

), and so our final answer for the time-
evolved state is

|ψ (t )〉 = [δ(t )]
ε0
2 e−β(t )K+|ψ0〉. (3.8)

We see that the quench excites all even spin excitations, since
acting with K+ changes the angular momentum of a state
by −2h̄ [recall that the angular momentum operator Lz for
the CSMM has the form shown in Eq. (2.23)]. Indeed, we
can write K+ = 1

2 Tr{(Z+)2} in terms of the matrix-valued
operator Z+, and Tr{(Z+)2} is the operator that creates spin-2
excitations over the ground state |ψ0〉 of the original CSMM
[recall the form of the excited states |{c1, . . . , cN }〉 for the
original CSMM from Eq. (2.17)].

We close this section by computing the quantity
|〈ψ0|ψ (t )〉|2, which is also known as the quantum fidelity or
Loschmidt echo. The result is 4

|〈ψ0|ψ (t )〉|2 = [δ(t )δ(t )]
ε0
2

= [cos2(ωt ) + cosh2(A) sin2(ωt )]−ε0

= [1 + sinh2(A) sin2(ωt )]−ε0 , (3.9)

4Here and in the rest of the paper, we assume that |ψ0〉 has been
properly normalized.
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where we plugged in for δ(t ) using the explicit expression
from Appendix A. Since sin2(ωt ) has a period of T = π

ω
, we

find that the quantum fidelity oscillates at the period

T = π

ω
≡ 2π h̄

E2
, (3.10)

where

E2 := 2h̄ω (3.11)

is the gap for spin-2 excitations in the CSMM. The ac-
tual magnitude of the overlap depends on the filling frac-
tion ν = 1

m through the power of ε0. Note also that since
sinh2(A) sin2(ωt ) � 0, the fidelity satisfies |〈ψ0|ψ (t )〉|2 � 1.

Recall that the parameter ε0 has the form ε0 = 1
2 mN2 +

(1−m)
2 N , and so the quantum fidelity |〈ψ0|ψ (t )〉|2 has a factor

of N2 appearing in the exponent. To eliminate this large
factor, it is convenient to compare the values of the quantum
fidelity between integer and fractional cases. Let F 1

m
(t ) denote

the fidelity |〈ψ0|ψ (t )〉|2 for the CSMM with θ = �2
Bm corre-

sponding to the ν = 1
m Laughlin state. Then we consider the

following ratio of F 1
m

(t ) with F1(t ) raised to the mth power:

[F1(t )]m

F 1
m

(t )
= [1 + sinh2(A) sin2(ωt )]−( m−1

2 )N

= [1 + sinh2(A) sin2(ωt )]−ςN , (3.12)

where

ς = m − 1

2
(3.13)

is the anisospin [3,4] for the ν = 1
m Laughlin state, also called

(minus) the guiding center spin [14,15]. For small anisotropy
A  1, this is ratio is approximately equal to

[F1(t )]m

F 1
m

(t )
≈ 1 − ςNA2 sin2(ωt ). (3.14)

We see that by comparing the fidelity for ν = 1
m with the

fidelity for ν = 1, we are able to extract the universal data
ς which characterizes the ν = 1

m Laughlin state. This type
of comparison with the ν = 1 state is very similar to the
comparison which is used to extract the dipole moment per
unit length at the edge of a FQH state [16,63] (the dipole
moment also happens to be proportional to the same parameter
ς as it is closely related to the guiding center part of the bulk
Hall viscosity).

Finally, for comparison to numerics, it is useful to rewrite
Eq. (3.12) in terms of the filling fraction ν = 1

m and the energy
gap E2 = 2h̄ω for the spin-2 mode, which gives

[F1(t )]ν
−1

Fν (t )
=

[
1 + sinh2(A) sin2

(
E2t

2h̄

)]−ςN

(3.15a)

≈ 1 − ςNA2 sin2

(
E2t

2h̄

)
, (3.15b)

where in the second line, we Taylor-expanded the result for

small A. In this form, the expression for [F1(t )]ν
−1

Fν (t ) suggests a
way to extract the anisospin ς and the spin-2 gap E2 for a

general FQH state5 with filling fraction ν by fitting numerical
data from the simulation of a geometric quench for that FQH
state to Eq. (3.15b). Indeed, preliminary numerical results [64]
suggest that the formula (3.15b) is a good fit to the quantum
fidelity for the geometric quench considered in Ref. [37]. Note
also that for comparison to numerics E2 is expected to equal
the energy gap of the GMP mode at k = 0.

C. Dynamics of the intrinsic metric

In this section, we present the exact calculation of the dy-
namical metric ĝab(t ). We then show that for small anisotropy
A, the CSMM result agrees with the bimetric theory results of
Ref. [37]. We give a more detailed comparison with bimetric
theory in Sec. IV.

We start by using the form of |ψ (t )〉 derived in the last
section to write the formula for the inverse metric ĝab(t ) in the
form

ĝab(t ) = 2

ε0
[δ(t )δ(t )]

ε0
2 〈ψ0|e−β(t )K−Λabe−β(t )K+|ψ0〉. (3.16)

We know that the sl (2,R) generators Λab can be expressed
in terms of the su(1, 1) generators K0, K±, and so we
choose to proceed with this calculation by first calculat-
ing the expectation values 〈ψ0|e−β(t )K−K0e−β(t )K+|ψ0〉 and
〈ψ0|e−β(t )K−K±e−β(t )K+|ψ0〉.

To calculate these expectation values we use a generating
function technique. We define a function f (a, b, c) of three
variables a, b, c by

f (a, b, c) := 〈ψ0|eaK−ebK0 ecK+|ψ0〉. (3.17)

Then the expectation values which we are interested in can be
computed from f (a, b, c) as

〈ψ0|e−β(t )K−K−e−β(t )K+|ψ0〉

= ∂ f (a, b, c)

∂a

∣∣∣∣
a=−β(t ), b=0, c=−β(t )

, (3.18)

〈ψ0|e−β(t )K−K0e−β(t )K+|ψ0〉

= ∂ f (a, b, c)

∂b

∣∣∣∣
a=−β(t ), b=0, c=−β(t )

, (3.19)

〈ψ0|e−β(t )K−K+e−β(t )K+|ψ0〉

= ∂ f (a, b, c)

∂c

∣∣∣∣
a=−β(t ), b=0, c=−β(t )

. (3.20)

The function f (a, b, c) itself can be calculated using the
rearrangement identity Eq. (A5) from Appendix A, combined
with the fact that K−|ψ0〉 = 0. Using that information, we find
that

f (a, b, c) = [b′(a, b, c)]
ε0
2 , (3.21)

where the new function b′(a, b, c) is written down explicitly
in Eq. (A7) of Appendix A.

5Or at least any FQH state which is well-described by projection
into a single Landau level.
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The calculation now proceeds in a straightforward manner
and we find that the metric ĝab(t ) [which is the inverse of
ĝab(t )] can be written in matrix form as

ĝ(t ) = 1

1 − |β(t )|2

×
(

(1 + β(t ))(1 + β(t )) −i(β(t ) − β(t ))
−i(β(t ) − β(t )) (1 − β(t ))(1 − β(t ))

)
,

(3.22)

where β(t ) is again the function defined in Eq. (A2) of
Appendix A. We also note here that in order to derive these
expressions we needed to use the formula Eq. (A4).

From Eq. (A2), we can see that the parameter β(t ) oscil-
lates with a period of T = π

ω
= 2π h̄

E2
[E2 = 2h̄ω was defined in

Eq. (3.11)], and its time average is

〈β(t )〉 = 1

T

∫ T

0
dt β(t ) = tanh

(
A

2

)
. (3.23)

It is interesting to note that if we replace β(t ) with 〈β(t )〉
in the metric ĝab(t ), then the dynamical metric reduces to
the metric gab from Eq. (3.3) that we used for the quench
Hamiltonian Hg.

We now study the CSMM solution for the dynamical
metric in the case of small anisotropy A  1, because in this
case, we can compare to the results of Ref. [37] obtained
using the linearized equations of motion of bimetric theory. To
compare our dynamical metric ĝab(t ) with the one obtained in
Ref. [37], we write the complex parameter β(t ) in terms of a
real parameter Q(t ) and a real phase φ(t ) as

β(t ) = tanh

(
Q(t )

2

)
eiφ(t ). (3.24)

With this parametrization the dynamical metric ĝab(t ) takes
the form shown in Eq. (3.4) and used in Ref. [37]. Note that in
this parametrization, one should always choose Q(t ) � 0 so
that there is no redundancy in the description (all information
about the phase of β(t ) should be packaged in the parameter
φ(t )). In this case, we find that Q(t ) is related to β(t ) as

Q(t ) = 2 tanh−1[
√

|β(t )|2], φ(t ) = arg[β(t )]. (3.25)

For small anisotropy, the parameter Q(t ) in the solution for
the dynamical metric is expected to be small, and so in this
case, we can write

β(t ) ≈ Q(t )

2
eiφ(t ). (3.26)

On the other hand, for small A, the exact solution for β(t ) from
the CSMM takes the form

β(t ) ≈ A

1 − i cot(ωt )

= A sin(ωt )e−iωt+i π
2 . (3.27)

By comparing these two expressions for β(t ), we obtain the
solution for Q(t ) and φ(t ) for the case of small A (we assume

Linearized solution
Full solution
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Linearized solution
Full solution
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0.0

0.5

1.0

1.5

2.0

(A=5)

FIG. 1. Plots of the linearized solution for Q(t ) (dotted red line)
and the full nonlinear solution (blue line) for the case of medium
anisotropy A = 1.4 and large anisotropy A = 5, both normalized by
dividing by 2A. The time axis is plotted in units with ω = 1. The
maximum value of Q(t )/(2A) is 1 and occurs (for ω = 1) when t =
π/2 + πn for any integer n. For smaller A, the linearized solution
is close to the full solution, while for larger A, the full nonlinear
solution has a much rounder profile than the linearized solution.

A > 0),

Q(t ) = 2A

∣∣∣∣sin

(
E2

2h̄
t

)∣∣∣∣, (3.28)

φ(t ) = π − E2

2h̄
t − π

2
sgn

[
sin

(
E2

2h̄
t

)]
, (3.29)

where E2 = 2h̄ω is the gap for the spin-2 mode in the CSMM.
These equations exactly match the predictions of bimetric
theory, as these solutions are identical to Eq. (5) of Ref. [37],
which is a solution to the linearized equations of motion Eqs.
(20) and (21) of Ref. [37] for the geometric quench in bimetric
theory.6

For the case of arbitrary anisotropy A, the CSMM predicts
that the dynamical metric ĝab(t ) undergoes nonlinear oscil-
lations, in the sense that the amplitude of the function β(t )
is a nonlinear function of A. However, these oscillations still
have a definite period T = 2π h̄

E2
set by the energy gap E2 of the

spin-2 mode in the CSMM, so the period of the oscillations is
independent of the amplitude.

6For comparison to Ref. [37] note that h̄ = 1 in that paper. Also,
here we use the convention that Q(t ) � 0 to avoid redundancy in
the parametrization of β(t ) in terms of Q(t ) and φ(t ). This explains
the slight difference between our linearized solution and Eq. (5) of
Ref. [37].
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For small anisotropy A  1, the linearized solution and
the full solution are nearly identical. However, the difference
between these two solutions can be seen clearly in the case of
a quench with large anisotropy (see Fig. 1 for details).

D. Extension to the non-Abelian Blok-Wen states

We close this section with a discussion of how our results
extend to the matrix model for the non-Abelian Blok-Wen
series of FQH states [57,58] (see also Ref. [60] for the
calculation of the Hall viscosity in this matrix model).

The main difference between the CSMM and the non-
Abelian matrix model (NAMM) is that instead of having just
one complex vector ϕ, the NAMM has p complex vectors ϕα ,
α = 1, . . . , p, for some positive integer p. The action for the
NAMM takes the form

S(NA)
0 = −eB

2

∫ T

0
dt Tr{εabX aD0X b + 2θA0

+ωδabX aX b} + i
p∑

α=1

∫ T

0
dt ϕT

αD0ϕα, (3.30)

and one can see that this action has an additional SU(p) global
symmetry which rotates the different ϕα into each other. In
this model, it is also convenient to parametrize θ (which is
still quantized to be an integer) as

θ = �2
B(k + p), (3.31)

for some other integer k, and we assume that k is chosen so
that k + p � 0. The NAMM then describes the subset of the
Blok-Wen states at filling

ν = p

k + p
, (3.32)

and the ν = 1/(k + 1) Laughlin state is recovered from this
model upon setting p = 1 (so for p = 1, set k + 1 = m to
compare with our previous results on the CSMM). In addition,
it is known [60] that the anisospin ς for these states is
independent of p and given by

ς = k

2
. (3.33)

We now give a brief summary of the quantization of this
model. First, the b j variables from earlier acquire an ad-
ditional index α, so that we now have pN oscillator vari-
ables bj

α and their Hermitian conjugates b†
α, j , and these obey

[bj
α, b†

β,�] = δ
j
�δαβ . Next, the constraint enforced by A0 is now

modified to

G := ieB[X 1, X 2]M + eBθI −
p∑

α=1

ϕαϕT
α = 0. (3.34)

The SU(N ) part of this constraint still requires physical states
to be SU(N ) singlets, but the U(1) part of the constraint now
takes the form

p∑
α=1

b†
α, jb

j
α|phys〉 = Nk|phys〉 (3.35)

for all physical states |phys〉. On the other hand, the Hamil-
tonian H0 (in the A0 = 0 gauge) and angular momentum

operator Lz for the NAMM are identical to those in the
CSMM. Thus, anisotropy parametrized by gab is introduced
into the Hamiltonian in the same way as for the CSMM and
the geometric quench protocol for the NAMM is exactly the
same as for the CSMM.

Finally, we come to the construction of the quantum ground
state of the NAMM. Here we consider only the case where N
is divisible by p, because in this case the ground state is unique
(see Refs. [57,58] for more details and the general case). To
construct the ground state, we first construct, for any integer
r � 0, the operator

B†(r) j1··· jp := εα1···αp[b†
α1

(Z†)r] j1 · · · [b†
αp

(Z†)r] jp . (3.36)

This operator is a singlet under the global SU(p) symmetry
of the model, but it is not invariant under the SU(N ) gauge
symmetry. An operator which is invariant under both the
SU(p) global symmetry and the SU(N ) gauge symmetry can
then be constructed from the B†(r) j1··· jp operators as

B̃ := ε j1··· jNB†(0) j1··· jpB†(1) jp+1··· j2p

· · ·B†(N/p − 1) jN−p+1··· jN . (3.37)

Finally, the unique ground state of the NAMM can be con-
structed using B̃ as ∣∣ψ (NA)

0

〉 = B̃k|0〉. (3.38)

In particular, the power of k here ensures that Eq. (3.35) is
satisfied. The energy of the ground state is

E (NA)
0 = h̄ω

[(
k + p

p

)
N2

2
− k

2
N

]
, (3.39)

and we again define the dimensionless quantity

ε
(NA)
0 := E (NA)

0

h̄ω
. (3.40)

We are now ready to explain how our results generalize to
the NAMM. The key point is that one can still construct the
su(1, 1) generators K0, K± as before and, crucially, we still
have the property that K−|ψ0〉 = 0. The proof of this fact is
exactly the same as the proof we gave in the CSMM case. This
fact implies that our results for the geometric quench in the
CSMM carry over to the NAMM with the trivial replacement
ε0 → ε

(NA)
0 in all formulas. For the postquench state in the

NAMM, we find

|ψ (NA)(t )〉 = [δ(t )]
ε
(NA)
0

2 e−β(t )K+
∣∣ψ (NA)

0

〉
. (3.41)

Here we emphasize that even though the NAMM has an
excitation spectrum which is much more complicated than
the CSMM, the geometric quench still only excites the spin-2
excitations, which are created by K+. For the quantum fidelity,
we find (again, assuming that |ψ (NA)

0 〉 has been properly
normalized)

∣∣〈ψ (NA)
0

∣∣ψ (NA)(t )
〉∣∣2 = [1 + sinh2(A) sin2(ωt )]−ε

(NA)
0 . (3.42)

In particular, Eqs. (3.15) still hold in this case, with the
appropriate values ν = p

k+p and ς = k
2 for the Blok-Wen

states. Finally, we define the dynamical metric in the NAMM
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as [compare to Eq. (3.2)]

ĝab(t ) := 2

ε
(NA)
0

〈ψ (NA)(t )|Λab|ψ (NA)(t )〉, (3.43)

and with this definition we find that ĝab(t ) for the NAMM is
identical to the answer found for the CSMM.

We conclude that the geometric quench excites the same
dynamics in the Laughlin and Blok-Wen states, despite the
fundamentally different topological order. Indeed, both states
support the gapped GMP mode, and the geometric quench
excites the same dynamics for this mode in both sets of states.

IV. COMPARISON WITH BIMETRIC THEORY

In this section, we present a more detailed comparison
between the geometric quench in the CSMM7 and in bimetric
theory. We derive the differential equation obeyed by the
dynamical metric ĝab(t ) in the CSMM, and we show that this
differential equation is not an exact match to the differential
equations obtained within bimetric theory in Ref. [37]. We
then suggest an alternative (and simpler) potential energy
term for the bimetric theory Lagrangian, and we show that
the equations of motion for bimetric theory with this simpler

potential energy exactly match the equations of motion for
ĝab(t ) in the CSMM.

A. Differential equations obeyed by the dynamical metric

To derive the differential equation obeyed by the dynamical
metric in the CSMM, we return to the relation

ĝab(t ) = 2

ε0
〈ψ (t )|Λab|ψ (t )〉 (4.1)

and differentiate with respect to time,

˙̂gab(t ) = 2

ε0

i

h̄
〈ψ (t )|[Hg, Λab]|ψ (t )〉

= −i
2ω

ε0
gcd〈ψ (t )|[Λab, Λcd ]|ψ (t )〉, (4.2)

where we used Hg = h̄ωgabΛ
ab. Next, we use the commutation

relations of the sl (2,R) generators [Eq. (2.27)] to find that
ĝab(t ) obeys the linear differential equation

˙̂gab(t ) = ω

2
gcd [εbcĝad (t ) + εbd ĝac(t ) + εacĝbd (t )

+ εad ĝbc(t )]. (4.3)

We now choose the anisotropy metric gab as in Eq. (3.3)
and we parametrize ĝab(t ) in terms of two variables Q(t ) and
φ(t ) as in Eq. (3.4). This means that the inverse metric ĝ−1(t )
takes the form

ĝ−1(t ) =
(

cosh(Q) − cos(φ) sinh(Q) − sin(φ) sinh(Q)
− sin(φ) sinh(Q) cosh(Q) + cos(φ) sinh(Q)

)
. (4.4)

In this case, the linear differential equation (4.3) for ĝab(t )
reduces to two coupled nonlinear differential equations for φ

and Q,

Q̇ = 2ω sinh(A) sin(φ), (4.5a)

φ̇ sinh(Q) = 2ω(sinh(A) cos(φ) cosh(Q)

− cosh(A) sinh(Q)). (4.5b)

B. Comparison with bimetric equations

We now compare Eq. (4.5) to the predictions of bimetric
theory. Here we briefly recall the form of the Lagrangian for
bimetric theory (as considered in the quench calculation of
Ref. [37]). For more details on bimetric theory, we refer the
reader to Refs. [3,4].

The degree of freedom in bimetric theory is a dynamical
unimodular metric, which we denote here by ĝab(x, t ), where
x = (x1, x2) are coordinates on two-dimensional space, and t

7For brevity, in the rest of the paper, we mostly refer to our results
on the CSMM. However, the reader should keep in mind that we have
demonstrated in the previous section that our results on the geometric
quench in the CSMM also apply to the non-Abelian matrix model for
the Blok-Wen states.

is the time.8 Physically, the field ĝab(x, t ) corresponds to the
gapped spin-2 mode, which is equal to the long-wavelength
(small k) limit of the gapped GMP mode [2] (recall that the
GMP mode has a definite angular momentum equal to 2h̄ near
k = 0). Note also that because of the constraint that ĝab(x, t )
is a unimodular metric (i.e., it has determinant equal to one),
the bimetric theory of Refs. [3,4] does not contain a spin-0
“dilaton” mode.

In the specific case of the geometric quench problem, in
which anisotropy is represented by the constant metric gab

of Eq. (3.3), the dynamical metric in bimetric theory can be
taken to be independent of space, ĝab(x, t ) → ĝab(t ), and the
Lagrangian of bimetric theory consists of two terms

L = Ltop + Lpot. (4.6)

The first term Ltop is the topological term in the bimetric
theory Lagrangian, and it has the form [here we assume a

8References [3,4,37] use i, j, k, . . . for spatial indices and
a, b, c, . . . for internal SO(2) indices on frame and coframe fields.
Here we depart from their convention and use a, b = 1, 2 for spatial
indices in order to match our conventions for the CSMM. No
confusion should arise as our discussion here does not require the
introduction of frame or coframe fields.
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parametrization of ĝab(t ) as in Eq. (3.4)]

Ltop = ςρ

2
(1 − cosh(Q))φ̇, (4.7)

where ς is the anisospin of the FQH state and ρ = ν

2π�2
B

is the
mean particle density of the state. The potential energy term
incorporates the anisotropy metric gab and takes the form

Lpot = −m

2

[
1

2
gabĝab − γ

]2

, (4.8)

where m > 0 and γ are parameters appearing in the bimetric
theory. In particular, the parameter γ allows for the possibility
to realize the nematic quantum Hall transition within bimetric
theory, and this transition occurs at γ = 1 (the gapped FQH
phase corresponds to γ < 1).

The differential equations for the geometric quench in
bimetric theory, which were obtained in Ref. [37] by varying
the Lagrangian L = Ltop + Lpot, take the form (Eqs. (15)
and (16) of Ref. [37])

Q̇ = 2� sinh(A) sin(φ)(−γ − sinh(A) sinh(Q) cos(φ)

+ cosh(A) cosh(Q)) (4.9)

and

φ̇ sinh(Q) = 2�(sinh(A) cos(φ) cosh(Q) − cosh(A) sinh(Q))

× (−γ − sinh(A) sinh(Q) cos(φ)

+ cosh(A) cosh(Q)), (4.10)

where � = m
ρς

. The only difference between these equations
and Eqs. (4.5) for the quench in the CSMM is that the constant
factor of 2ω in Eqs. (4.5) is replaced by the large factor

2�(−γ − sinh(A) sinh(Q) cos(φ) + cosh(A) cosh(Q))

= 2�
(

1
2 gabĝab − γ

)
, (4.11)

which has explicit dependence on the dynamical fields Q(t )
and φ(t ), which parametrize ĝab(t ).

For small anisotropy (small A and, hence, small Q), we
have

2�
(

1
2 ĝabgab − γ

) → 2�(1 − γ ), (4.12)

and

Eγ := 2�(1 − γ ) (4.13)

is interpreted in bimetric theory as the gap of the spin-2 mode
at k = 0. On the other hand, we know that E2 = 2ω (we
set h̄ = 1 here to compare with Ref. [37]) is the gap for the
spin-2 excitation in the CSMM. Thus it appears that while
the CSMM has a constant gap of 2ω for the spin-2 mode,
the bimetric theory with potential Lpot can be interpreted
as having a field-dependent gap 2�( 1

2 gabĝab − γ ), and this
field-dependent gap only reduces to a constant in the regime
of small anisotropy and small fluctuations of the dynamical
metric. This field-dependent gap can be thought of as arising
from the nontrivial interaction in bimetric theory with the
potential Lpot, which is quadratic in the dynamical metric
and, therefore, quartic in the coframe field which is the true
degree of freedom in bimetric theory.

These findings suggest that the main difference between
the predictions of the CSMM and of bimetric theory stems
from the particular choice of potential energy term Lpot for
bimetric theory. This raises the question of whether there
exists a different choice of potential energy term, say L ′

pot,
such that the equations of motion in the bimetric theory with
this new potential energy term coincide with the equations
derived from the CSMM. We construct such a potential energy
term in the next section.

C. A new potential energy term for bimetric theory,
and an exact match with the CSMM

In this section, we show that the differential equations
for the intrinsic metric ĝab(t ) derived in the CSMM can be
reproduced by a variant of the bimetric theory which features
a different potential energy term than the one used in Ref. [37].
The modified potential energy term that we consider has the
form

L ′
pot = −m′

2
gabĝab, (4.14)

where m′ > 0 is a new phenomenological parameter with
units of (length)−2(time)−1. This term is chosen to mimic the
form of the Hamiltonian Hg = h̄ωgabΛ

ab in the CSMM. The
main difference between Lpot and L ′

pot is that the latter allows
for a single, isotropic phase, whereas the former supports
two phases: isotropic and (gapless) nematic phase, which
spontaneously breaks rotational symmetry. In terms of Q, φ,
and A this term takes the form

L ′
pot = m′(sinh(A) sinh(Q) cos(φ) − cosh(A) cosh(Q)).

(4.15)

The equations of motion for the modified bimetric theory with
Lagrangian

L ′ = Ltop + L ′
pot (4.16)

exactly match the CSMM equations (4.5) if the parameters
of bimetric theory are related to the parameter ω in the
CSMM as

ω = m′

ρς
. (4.17)

Therefore we find that there exists an alternative potential
energy function for the bimetric theory such that the bimetric
theory and the CSMM give identical answers for the dynamics
of the metric ĝab(t ) after a geometric quench.

Finally, we emphasize that the main qualitative difference
between the two potentials considered here is that L ′

pot does
not support a nematic transition. This has to be the case since
the CSMM describes only the gapped quantum Hall phase.
Implementing the nematic transition within the CSMM is
presently an open problem.

V. HIGHER-SPIN COLLECTIVE MODES

In this section, we show that in addition to the spin-2
collective mode ĝab(t ) in the CSMM, it is possible to introduce
an infinite tower of higher-spin collective modes, ĝabcd...(t ).
We then show that the higher-spin modes with even spin are
excited by the geometric quench and undergo oscillations at
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frequencies determined by their gap. Higher-spin modes in the
FQH effect have quite a long history [2,37,39,45,46,48,65–
68]. Despite previous theoretical efforts, the dynamics of these
modes is still not well understood.

A. Dynamics of the higher-spin modes

The higher spin collective modes are introduced by gener-
alizing the K± and K0 operators studied in the previous sec-
tions. Specifically, we will consider the single trace operators

Kα1α2α3α4··· = Tr{Zα1 Zα2 Zα3 Zα4 · · · } , (5.1)

where each α j = ±. To connect these operators with K± and
K0, we simply note that

K± = 1

2
K±±, (5.2a)

K0 = 1

2
K+− + N2

4
. (5.2b)

The extra constant factor in the relation between K0 and
K+− = K−+ is not important since K0 and 1

2 K+− still have
identical commutators with any other operator. The total spin
of the operator Kα1α2α3α4··· is given by the number of indices
equal to “+” minus the number of indices equal to“−”. More
concretely, acting with Kα1α2α3α4··· on a state will change the
angular momentum of that state by −h̄

∑
j α j . In particular, it

is clear that operators with greater than two indices can have
spin higher than 2.

For every state |χ〉 in the Hilbert space of the CSMM,
we can define intrinsic higher-spin collective variables
according to

ĝα1α2α3α4···
χ = 〈χ |Kα1α2α3α4···|χ〉 . (5.3)

Our objective is to quantify the dynamics of ĝα1α2α3α4···
χ (t ), for a

particular choice of |χ〉, namely, the quenched state |ψ (t )〉 =
e−i

Hgt
h̄ |ψ0〉. We will assume that the quenched Hamiltonian is

given by (3.5)9. It turns out that finding ĝα1α2α3α4···(t ) is already
quite a formidable task because the operators Kα1α2α3α4··· do
not possess simple commutation relations with each other,
with the exception of the spin-2 sl (2,R) subalgebra formed
by {K++, K−−, K+−}. It is believed that when properly de-
fined the operators Kα1α2α3α4··· should obey a W∞ algebra.
Identifying the “right” basis in the set of Kα1α2α3α4··· that leads
to the W∞ algebra is an unsolved problem [54]. We give some
further discussion of this issue in Appendix C.

Given these complications, we limit our considerations in
this section to the spin-4 collective variable

ĝα1α2α3α4 (t ) := 〈ψ (t )|Kα1α2α3α4 |ψ (t )〉, (5.4)

9In principle, we could have studied more complicated Hamilto-
nians which depend on higher-spin operators as well as the spin-
2 operators. However, such Hamiltonians appear to lead to very
complicated dynamics, which is beyond the scope of the present
paper.

where |ψ (t )〉 = e−i
Hgt

h̄ |ψ0〉 is the postquench state. The equa-
tion of motion for ĝα1α2α3α4 (t ) takes the form

˙̂gα1α2α3α4 (t ) = i

h̄
〈ψ (t )|[Hg, Kα1α2α3α4 ]|ψ (t )〉. (5.5)

To evaluate the right-hand side of this equation, recall that
the quench Hamiltonian Hg can be written in terms of the
su(1, 1) generators as in Eq. (3.5). Then we can evaluate the
commutators [Hg, Kα1α2α3α4 ] using the following commutation
relations:

[K0, (Z±) j
k] = ± 1

2 (Z±) j
k, (5.6)

[K−, (Z+) j
k] = (Z−) j

k, (5.7)

[K+, (Z−) j
k] = −(Z+) j

k, (5.8)

which are easily derived from the commutation relations
of Z± and the definition of the su(1, 1) generators. These
commutation relations make it clear that the Hamiltonian Hg

mixes the 16 operators Kα1α2α3α4 among themselves, but does
not mix them with any other operators. This is because taking
the commutator of (Z±) j

k with any of the su(1, 1) generators
does not have any effect on the U(N ) indices j and k.

The resulting evolution equations for the 16 variables
ĝα1α2α3α4 (t ) can be written in a matrix form. To write down
this equation we first define a 16-dimensional vector whose
components V J (t ), J = 1, . . . , 16, are defined in Eq. (B1) of
Appendix B. We also define a 16 × 16 matrix M, which is
displayed in Eq. (B2) of Appendix B. Using V (t ) and M,
the evolution equations for the 16 variables ĝα1α2α3α4 (t ) can
be written in the concise form

V̇ (t ) = iωMV (t ). (5.9)

Let us pause here to discuss some properties of the matrix
M. This matrix is too big to be manipulated by hand, but it
can be handled using MATHEMATICA [69]. We find that M has
eigenvalues ±4 with multiplicity one for each sign, ±2 with
multiplicity four for each sign, and 0 with multiplicity six. In
addition, one can show that M has sixteen linearly indepen-
dent eigenvectors.10 It seems, however, that the eigenvectors
of M cannot be chosen to be orthogonal while still remaining
eigenvectors of M.

The fact that M possesses a set of 16 linearly independent
eigenvectors means that we can decompose M as

M = SDS−1, (5.10)

where D is a diagonal matrix whose entries are the eigenvalues
of M and S is an invertible (but in general not orthogonal)
matrix whose columns are the eigenvectors of M. We can

10MATHEMATICA’s “Eigenvectors” command yields 16 eigenvectors
for this matrix which are clearly not orthonormal. However, one can
check that these eigenvectors are linearly independent by studying
the determinant of the matrix whose rows are these eigenvectors.
We have checked that this determinant is nonzero for any value of
A, and so M really does have a full set of 16 linearly independent
eigenvectors.
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use this decomposition to solve the differential equation by
defining a new vector

W (t ) = S−1V (t ). (5.11)

Then one can show that Ẇ (t ) = iωDW (t ) and so

W (t ) = eiωDtW (0). (5.12)

Since D is diagonal it follows that the components W J (t ) of
the new vector W (t ) evolve in time by simply being multiplied
by a phase eidJ ωt , where dJ are the elements on the diagonal of
D (i.e., the eigenvalues of M, which are 0,±2, and ±4). The
components W J (t ) are all linear combinations of the original
collective variables ĝα1α2α3α4 (t ), and we can think of them as
a new set of collective variables with especially simple time
dependence. The presence of the frequency 4ω shows that
the quench has indeed excited higher-spin collective variables
with angular momentum ±4h̄.

The reader may wonder about a certain difference between
our present study of higher-spin excitations in the CSMM
and the previous numerical study of higher-spin excitations
in Ref. [37]. In the CSMM we find that the matrix M
discussed above has eigenvalues 0,±2, and ±4, indicating
that excitations with angular momentum 0,±2h̄, and ±4h̄
are excited by the quench. On the other hand, in Ref. [37]
the authors investigated a quench involving the anisotropic
Haldane pseudopotential V̂0,4 and found that modes with
angular momentum ±2h̄ were not excited, but higher-spin
modes were. The difference between these two studies is
the following. In Ref. [37], the pseudopotential V̂0,4 has an
octopolar structure in momentum space [see their Fig. 2(b)],
indicating that V̂0,4 excites a pure angular momentum ±4h̄
mode. Therefore, in a quench driven by the introduction of
V̂0,4, one expects to only see modes with angular momentum
that is a multiple of ±4h̄. On the other hand, the anisotropy
that we introduce in the geometric quench in the CSMM,
which is parametrized by gab, has a dipolar structure, and it
excites angular momentum ±2 modes. As we can see from
Eq. (3.8), in the CSMM, the postquench state |ψ (t )〉 is a
superposition of states with all possible numbers of spin-2
quanta excited, and so this state has nonzero overlap with
states of any even angular momentum. This is why the quench
that we considered in the CSMM is capable of exciting modes
with angular momentum ±2h̄, ±4h̄, etc.

One final comment is in order regarding the dynamics of
these higher-spin observables. The initial values W J (0) of
the components of W (t ) are determined by the initial values
V J (0), which are in turn determined by ĝα1α2α3α4 (0). It follows
that if W J (0) = 0 for a particular J , then Eq. (5.12) implies
that W J (t ) = 0 for all time.

Let us assume that we have ordered the eigenvectors of
M in S in such a way that d1 = 4 and d2 = −4. Then the
components W 1(t ) and W 2(t ) evolve in time with the phase
factors ei4ωt and e−i4ωt , respectively. We would like to check
that W 1(0) and W 2(0) are not both zero. If they were both
zero, then we would have W 1(t ) = W 2(t ) = 0 for all time and
we could not legitimately claim that the geometric quench had
excited the collective variables with spin 4.

We now perform a simple check which gives evidence that
W 1(0) and W 2(0) are not zero. Specifically, we will check this
for the case N = 1 (i.e., the matrix model with one-component

matrices). In this case, we just have Z− = z0, Z+ = z†
0, and the

normalized ground state |ψ0〉 takes the form

|ψ0〉 = 1√
(m − 1)!

(b†
1)m−1|0〉, (5.13)

where b†
1 = 1√

h
ϕ1 is proportional to the single component

of the row vector ϕT , and |0〉 is again the Fock vacuum
satisfying z0|0〉 = b1|0〉 = 0. We find that in this initial state,
the only nonzero components of V (0) are V 11(0) = 1 and
V 13(0) = 2. We have checked numerically for several values
of the anisotropy parameter A that W 1(0) and W 2(0) are not
zero in this case. Since we do not expect any sudden changes
in the properties of the CSMM when we increase N to values
N > 1, we believe that this check is good evidence that W 1(0)
and W 2(0) are not zero for the CSMM with N > 1, and so we
expect that the geometric quench really does excite these spin
4 observables in the CSMM.

VI. CONCLUSION

We have investigated the geometric quench protocol for
FQH states proposed in Ref. [37] in the context of exactly
solvable matrix models of the Laughlin and Blok-Wen FQH
states [44,57,58]. We were able to leverage the algebraic prop-
erties of these models to solve the quench exactly, and we then
compared the exact solution to previous results obtained using
the bimetric theory of FQH states. Our exact result for the
postquench dynamics of the spin-2 collective variable ĝab(t )
in the matrix models agrees with the results of bimetric theory
in the case of small anisotropy, and we also showed how
the bimetric theory Lagrangian could be altered so that the
matrix models and bimetric theory results match exactly for
any anisotropy. Beyond the comparison with bimetric theory,
we also presented an exact calculation for the quantum fidelity
|〈ψ0|ψ (t )〉|2 after the geometric quench in the matrix models,
and the expression that we derived seems to be in good agree-
ment with preliminary results of numerical simulations of the
geometric quench [64]. We also initiated an investigation of
the dynamics of higher-spin observables in the matrix models,
and we showed that the geometric quench leads to a nontrivial
dynamics for those observables. Our results here also give
further confirmation for the general picture put forward by two
of us in Ref. [59], which is that quantum Hall matrix models
are capable of describing geometric properties of FQH states
which are of current interest.

The major open problem that was partially addressed in
the present paper is the dynamics of the higher-spin collective
modes. It is clear both from numerical work of Ref. [37]
and the present considerations that there are well-defined
collective modes of higher angular momentum in FQH states.
However, the theoretical description of these modes is plagued
by the technical difficulties which we have reviewed in Ap-
pendix C. Presently it is not clear what is the fundamental
origin of these difficulties. Development of a unified approach
to the higher-spin modes in the language of quantum Hall
matrix models, effective field theory, and trial quantum Hall
states is an important open problem.

It is also important to generalize the matrix model de-
scription of FQH states to the paired states of Moore-Read
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[70] and Read-Rezayi [71]. These are major candidates for
the real-world realization of non-Abelian topological order.
Consequently, developing solvable microscopic models that
capture both topological and geometric features of these states
is an important unsolved problem.

Finally, electrons in a magnetic field support a variety of
spatially-ordered phases known as quantum Hall liquid crys-
tals [72]. It would be interesting to implement these phases
within the matrix model framework or, more generally, in
the framework of noncommutative fluids. This possibility is
particularly intriguing since both bimetric theory and general
noncommutative scalar field theories [73] support spatially
ordered phases.
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APPENDIX A: SOME USEFUL FORMULAS FOR SU(1,1)

In this appendix, we present several “rearrangement” iden-
tities for exponentials of the su(1, 1) generators K± and K0.
We use these identities in Sec. III of the main text to solve
the geometric quench in the CSMM. These identities are
essentially the same as those used to manipulate squeezed
coherent states of harmonic oscillators (see, for example,
Ref. [74]).

The first rearrangement identity is

e−iωt (sinh(A)K++2 cosh(A)K0+sinh(A)K− )

= e−β(t )K+eln(δ(t ))K0 e−β(t )K− (A1)

with

β(t ) = sinh(A)

cosh(A) − i cot(ωt )
, (A2)

δ(t ) = 1

[cos(ωt ) + i cosh(A) sin(ωt )]2
. (A3)

In addition, in this case, the functions β(t ) and δ(t ) obey the
relation (an overline denotes complex conjugation)

√
δ(t )δ(t )

1 − |β(t )|2 = 1. (A4)

The second rearrangement identity is

eaK−ebK0 ecK+ = ea′K+eln(b′ )K0 ec′K− , (A5)

where a′, b′, c′ are functions of a, b, c and are given explicitly
by

a′(a, b, c) = ceb

1 − aceb
, (A6)

b′(a, b, c) = eb

(1 − aceb)2
, (A7)

c′(a, b, c) = aeb

1 − aceb
. (A8)

The trick to proving these identities is to explicitly check
them in a specific representation of SU(1,1) which is easy
to work with. They are then guaranteed to hold in any other
representation (since the operators obey the same algebra in
any representation). The specific representation we use to
check these is the (nonunitary) 2 × 2 representation in which
K0 = 1

2σ z and

K+ =
(

0 1
0 0

)
, (A9)

K− =
(

0 0
−1 0

)
. (A10)

APPENDIX B: DETAILS OF THE CALCULATIONS
FOR SEC. V

Here we give the explicit formulas for the vector V (t ) and
matrix M used in Sec. V. The components of V (t ) are defined
as

V 1(t ) = ĝ++++(t ), (B1a)

V 2(t ) = ĝ+++−(t ), (B1b)

V 3(t ) = ĝ++−+(t ), (B1c)

V 4(t ) = ĝ++−−(t ), (B1d)

V 5(t ) = ĝ+−++(t ), (B1e)

V 6(t ) = ĝ+−+−(t ), (B1f)

V 7(t ) = ĝ+−−+(t ), (B1g)

V 8(t ) = ĝ+−−−(t ), (B1h)

V 9(t ) = ĝ−+++(t ), (B1i)

V 10(t ) = ĝ−++−(t ), (B1j)

V 11(t ) = ĝ−+−+(t ), (B1k)

V 12(t ) = ĝ−+−−(t ), (B1l)

V 13(t ) = ĝ−−++(t ), (B1m)

V 14(t ) = ĝ−−+−(t ), (B1n)

V 15(t ) = ĝ−−−+(t ), (B1o)

V 16(t ) = ĝ−−−−(t ). (B1p)
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The matrix M has the form

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4cA sA sA 0 sA 0 0 0 sA 0 0 0 0 0 0 0
−sA 2cA 0 sA 0 sA 0 0 0 sA 0 0 0 0 0 0
−sA 0 2cA sA 0 0 sA 0 0 0 sA 0 0 0 0 0

0 −sA −sA 0 0 0 0 sA 0 0 0 sA 0 0 0 0
−sA 0 0 0 2cA sA sA 0 0 0 0 0 sA 0 0 0

0 −sA 0 0 −sA 0 0 sA 0 0 0 0 0 sA 0 0
0 0 −sA 0 −sA 0 0 sA 0 0 0 0 0 0 sA 0
0 0 0 −sA 0 −sA −sA −2cA 0 0 0 0 0 0 0 sA

−sA 0 0 0 0 0 0 0 2cA sA sA 0 sA 0 0 0
0 −sA 0 0 0 0 0 0 −sA 0 0 sA 0 sA 0 0
0 0 −sA 0 0 0 0 0 −sA 0 0 sA 0 0 sA 0
0 0 0 −sA 0 0 0 0 0 −sA −sA −2cA 0 0 0 sA

0 0 0 0 −sA 0 0 0 −sA 0 0 0 0 sA sA 0
0 0 0 0 0 −sA 0 0 0 −sA 0 0 −sA −2cA 0 sA

0 0 0 0 0 0 −sA 0 0 0 −sA 0 −sA 0 −2cA sA

0 0 0 0 0 0 0 −sA 0 0 0 −sA 0 −sA −sA −4cA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B2)

where to save space we used a shorthand notation sA :=
sinh(A) and cA := cosh(A).

APPENDIX C: ON THE COMMUTATION RELATIONS FOR
THE HIGHER-SPIN OPERATORS IN THE CSMM

In this appendix, we comment on how the operators
Kα1α2α3α4 that we introduced in Sec. V are related to previous
work on the W∞ algebra in the CSMM [54]. The authors of
Ref. [54] considered higher-spin operators On,m in the matrix
model of the form

On,m = Tr{(Z+)n+1(Z−)m+1}, (C1)

for m, n � −1. For reasons that we explain below, they found
it necessary to also include operators Pn,m which depend on
the vector ϕ and which are defined as

Pn,m = ϕT (Z+)n+1(Z−)m+1ϕ, (C2)

where again we always have n, m � −1. For any n < m, one
can show that On,m and Pn.m annihilate the ground state |ψ0〉
of the CSMM (the proof is identical to our proof in Sec. II that
K−|ψ0〉 = 0). This fact, which expresses the incompressibility
of the CSMM ground state, is one piece of evidence that these
operators generate the W∞ algebra in the CSMM. However,
the algebra obeyed by these operators is not exactly the W∞
algebra, and the authors of Ref. [54] were unable to identify
a set of operators in the CSMM, which obey the W∞ algebra
exactly.

To understand what goes wrong in the algebra of these
operators, it is useful to study a specific example. We consider

the commutator

[O0,2,O1,1] = [K+−−−, K++−−]. (C3)

When evaluating this commutator one finds many different
terms. In some of these terms, the quantum operators and
the matrix indices are in the correct order so that the term
can be expressed in terms of the original operators On,m. For
example, we find a term proportional to O1,3 = K++−−−−. In
other terms, the matrix indices are in the correct order so that
the term can be expressed as a trace, but the operators Z+
and Z− (whose matrix elements do not commute as quantum
operators) are in the wrong order for the operator to be
identified with one of the On,m. For example, we find a term
proportional to K+−−+−−. Finally, we find a third kind of term
in which both the matrix ordering and the quantum ordering
prevent one from writing the term in terms of any of the
operators we previously defined. For example, we find a term
of the form

(Z+)i
j{(Z−)2}k

i{(Z+(Z−)2} j
k, (C4)

in which the ordering of the quantum operators clashes with
the matrix ordering so that the term cannot be identified
with any of the operators Kα1···α6 or On,m. In Ref. [54], the
authors proposed that within the physical Hilbert space of
the CSMM the constraint (2.7) could be used to simplify
complicated terms like this one which arise in commutators
of the On,m. After using the CSMM constraint one finds that
the commutator of two On,m operators now contains terms
involving the Pn,m operators, and this is why the authors of
Ref. [54] introduced the Pn,m operators in the first place. It
was conjectured in Ref. [54] that a proper linear combination
of On,m and Pn,m should satisfy the W∞ algebra exactly.
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