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In Weyl semimetals, the chiral charge is not conserved in the presence of external nonorthogonal magnetic and
electric fields; this chiral anomaly manifests itself in a negative longitudinal magnetoresistance. In this paper, we
report on detailed calculations of transport properties of type-I Weyl semimetals with broken time-reversal and
broken inversion symmetries, respectively, within a semiclassical Boltzmann approach. The use of Fermi surface
harmonics provides a comprehensive and closed solution of the Boltzmann equation including the influence of
the Lorentz force as well as k-dependent scattering-out and scattering-in terms. Respecting a modified phase
space volume, we identify additional contributions to the charge conductivity, which scale linearly with the
magnetic field and can change the sign of the magnetoresistance in systems with broken inversion symmetry.
Considering the scattering properties, the energy dependence of the chiral anomaly-related contribution to the
charge conductivity is more pronounced than usually discussed. On top of this, we show for the Weyl semimetal
TaAs that a misalignment of an applied magnetic field with the crystal axes can destroy the negative longitudinal
magnetoresistance.
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I. INTRODUCTION

Weyl semimetals (WSMs) [1–5] have attracted high at-
tention in the last few years due to their unique physical
properties related to the topological character of their bulk
band structure. Kramers degeneracy is lifted because at least
one of the two symmetries—time-reversal or inversion—is
broken. The conduction and valence bands touch at special
singular twofold degenerate points kW, called Weyl points,
at which the bands disperse linearly in all three directions in
reciprocal space. Hence, the bands close to the Weyl points
can be described by the Weyl Hamiltonian

Ĥχ (k) = χ h̄v0(k − kW) · σ̂. (1)

Here, χ = ±1 is the chirality of the Weyl point, σ̂ is in general
a pseudospin related to the conduction and valence bands, and
v0 characterizes the group velocity around the Weyl point.

WSMs are commonly interpreted as a solid-state realiza-
tion of Weyl fermions [6]. In solids, Weyl points always
occur in pairs, with partners of opposite chirality [7–9].
Corresponding to their chirality, they are either monopoles
or antimonopoles of Berry curvature and carry a topological
charge χ . This topological property gives rise to topological
surface states that connect the projections of the Weyl points
onto the surface Brillouin zone; their Fermi lines are called
Fermi arcs [2].

Due to their topologically nontrivial character, WSMs
provide promising transport properties, for example, a large
anomalous Hall effect [2,10,11] and a recently predicted
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large current-induced spin polarization originating from the
surface states [12]. However, their characterizing effect is
the Adler-Bell-Jackiw chiral anomaly [13–15], originally dis-
cussed in high-energy physics. In the presence of nonorthog-
onal magnetic (B) and electric (E) fields, the number of states
with a distinct chirality (or chiral charge) is not conserved.
For WSMs, the chiral anomaly is discussed either in the
ultraquantum limit, in which Landau quantization leads to
chiral linear modes [15], or in the semiclassical limit for
small magnetic fields and nonzero Fermi energy [16,17]. The
chiral anomaly causes an additional contribution to the longi-
tudinal (parallel to B) charge conductivity, which scales with
B in the ultraquantum limit and with B2 in the semiclassical
limit [15,16]. A detection of the resulting negative longitudi-
nal magnetoresistance (NLMR) is therefore often considered
a strong hint for the existence of Weyl points. However, since
the chiral anomaly is not the only origin of a NLMR [18],
other phenomena causing NLMR have to be excluded to
identify clearly a Weyl semimetal. Considering the above, it
is self-evident that the chiral anomaly in Weyl semimetals is
subject of theoretical and experimental investigations [18–28].

The aim of this work is to provide a full semiclassical
consideration of the transport properties in WSMs, which in-
cludes all charge conductivity tensor elements. For the discus-
sion of the chiral anomaly within the semiclassical Boltzmann
theory, usually the Lorentz force term as well as scattering-in
terms are neglected in order to solve the Boltzmann equation
analytically [16,17,24–26]. These approximations are suffi-
cient as long as only the longitudinal charge conductivity is
calculated. In our calculations, including the Lorentz force is
crucial since it strongly influences the transversal as well as
the diagonal tensor elements which are not aligned with B.
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An efficient way of solving the linearized Boltzmann
equation including the influence of the Lorentz force as well
as energy- and k-dependent scattering-out and scattering-in
terms is provided by the method of Fermi surface harmon-
ics (FSHs) [29–31], which will be applied in this paper.
To include Berry curvature effects and the nonconserva-
tion of phase space volume, which is due to the nontriv-
ial topology and is important especially for energies close
to the Weyl points [32], the established FSH formalism is
extended.

In a seminal paper [16], Son and Spivak discussed the
chiral anomaly in the semiclassical limit by modeling a pair
of Weyl points by two copies of the Weyl Hamiltonian (1).
Here, we describe Weyl pairs by an anisotropic Hamiltonian.
This inherent anisotropy produces additional contributions to
the charge conductivity, which can modify the LMR quantita-
tively as well as qualitatively; it even allows for a change of
sign [24–26]. On top of this, the energy and k dependencies
of the scattering term in the Boltzmann equation modify the
energy dependence of the transport coefficients.

Whereas the chiral anomaly is often discussed for sys-
tems of two or four Weyl points [16,17,24–26], we sys-
tematically increase the number of Weyl points consider-
ing system of two, four and 24 Weyl points. We elaborate
on the influence of inversion and time-reversal symmetry
on the transport properties, respectively, and demonstrate
that an increased number of Weyl points reduces anisotropy
effects.

Experimental data [18–22] often show a positive longitu-
dinal magnetoresistance (PLMR) for small magnetic fields,
which is usually attributed to weak antilocalization effects
[33]. At medium scale magnetic fields, the LMR signal is
negative and in good agreement with the semiclassical theory.
These findings call to recognize other reasons leading to a
PLMR in the semiclassical limit. In this work, we identify
such mechanisms. More precisely, in anisotropic systems with
broken time-reversal symmetry additional contributions ∝B to
the charge conductivity (Refs. [24–26]) can change the sign of
the LMR; these appear in addition to the conventional terms
∝B2 (Ref. [16]). Further, transport transversal to the magnetic
field can also modify the LMR due to the Lorentz force. In
particular, slightly misaligned external electric and magnetic
fields give rise to qualitative deviations from the LMR that has
been discussed in Ref. [16]; furthermore, such misalignment
may result in a sign change.

The paper is organized as follows. In Sec. II, a two-band
model Hamiltonian proposed by Okugawa and Murakami
[34,35] is presented, which will be used throughout the paper
to describe Weyl pairs. The method of Fermi surface harmon-
ics for solving the semiclassical Boltzmann transport equation
is introduced in Sec. III. Section IV gives an overview of the
contributions to the charge current in systems with nonzero
Berry curvature in the presence of external electric and mag-
netic fields. In Sec. V, the theory is applied to calculate the
charge conductivity as well as the magnetoresistance in model
systems of two (broken time-reversal symmetry) and four
(broken inversion symmetry) Weyl points. Finally, the model
Hamiltonian is extended to the realistic Weyl semimetal TaAs.
The transport properties are calculated and related to the
experimental results of Zhang et al. [18].

II. TWO-BAND MODEL FOR A PAIR OF WEYL POINTS

The Weyl Hamiltonian (1) approximates the band structure
close to a single Weyl point. Modeling a Weyl pair by two
copies of this Hamiltonian leaves these two isotropic band-
structures unconnected. In real systems, however, the bands
of a Weyl pair are connected at energies away from the Weyl
point energy; therefore, anisotropies occur. To model the band
structure more realistically, we use the two-band Hamiltonian
proposed by Okugawa and Murakami [34,35] for a pair of
Weyl points but in the slightly modified version [12]

Ĥp(k) = pγ
(
k2

p,x − m
)
σ̂y + h̄(vzkp,zσ̂z − vykp,yσ̂x ). (2)

σ̂ is the pseudospin of valence and conduction band, p = ±1
is the Weyl pair index and kp = k − pk0. The parameters γ ,
m, vy, and vz model the material-specific properties of the
band structure. In the following, m > 0.

The energy dispersion

Eν
p (k) = ν

√
γ 2

(
k2

p,x − m
)2 + h̄2

(
v2

y k2
p,y + v2

z k2
p,z

)
(3)

(ν = ±1) and constant-energy surfaces are depicted in Fig. 1.
The dispersion is almost linear around the Weyl points, which
are located at kW = pk0 ± (

√
m, 0, 0). The two Weyl cones

are connected at saddle points with energies ±ES = ±γ m.
There, a Lifshitz transition from a double-sheet (|E | < |ES|)
to a single-sheet Fermi surface (|E | > |ES|) occurs, which is
accompanied by a change of the Fermi surface chirality from
χ = ±1 to χ = 0.

A single Weyl pair can be realized in systems with inver-
sion symmetry and broken time-reversal symmetry. There, the
index p determines the orientation of the Weyl dipole moment
[36], which is given by the distribution of the Weyl points’
chiralities in reciprocal space. For a time-reversal invariant
system with broken inversion symmetry, the minimum num-
ber of Weyl pairs is two, which requires one copy of the
Hamiltonian (2) with p = 1 and another copy with p = −1;
a detailed discussion is given in Ref. [12]. A higher number
of Weyl pairs demands more Hamiltonian copies, which have
to be positioned in reciprocal space in accordance with the
system’s spatial symmetries.

III. SEMICLASSICAL BOLTZMANN EQUATION
AND FERMI SURFACE HARMONICS

A. Boltzmann equation

Within the semiclassical limit, the temporal evolution of
the distribution function fk(r, t ) of an electronic system un-
der the influence of external fields as well as potential and
temperature gradients is expressed by the Boltzmann transport
equation

∂ fk(r, t )

∂t
+ k̇∇k fk(r, t ) + ṙ∇r fk(r, t ) =

(
∂ fk(r, t )

∂t

)
sc

,

(4)

which comprises the field term k̇∇k fk(r, t ), the diffusion term
ṙ∇r fk(r, t ), and the scattering term(

∂ fk(r, t )

∂t

)
sc

=
∑

k′
(Pk←k′gk′ − Pk′←kgk ). (5)
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FIG. 1. Electronic structure of a Weyl pair modeled by the
Hamiltonian Eq. (2) (schematic). (Left) Band structure as given by
Eq. (3). At the saddle points with energies ±ES, the Fermi surfaces
undergo a Lifshitz transition from two sheets with χ = ±1 to one
sheet with χ = 0. (Right) Surfaces of selected constant energies, as
indicated.

Here, Pk′←k is the microscopic probability rate for transitions
from state |k〉 to state |k′〉, gk(r, t ) = fk(r, t ) − f 0

k (r, t ) is
the nonequilibrium deviation from the equilibrium distri-
bution function f 0

k (r, t ) (Fermi-Dirac distribution). Pk←k′gk′

and Pk′←kgk are called scattering-in and scattering-out terms,
respectively.

The semiclassical equations of motion [37]

k̇ = − e

h̄
E − e

h̄
ṙ × B,

ṙk = vk − k̇ × �k, (6)

relate k̇ and ṙk to the external fields and the electronic
structure. The first equation is Newton’s second axiom for the
Lorentz force (e > 0 elementary charge), while the second
equation contains the group velocity vk = ∇kEk/h̄ and the
anomalous velocity originating from the Berry curvature �k.

In the following, we consider a stationary and spatially
homogeneous system at zero temperature. By decoupling
Eq. (6), we rewrite the Boltzmann equation as

− e

h̄
ηk(B)−1

[
E + vk × B + e

h̄
(E · B) · �k

]
∇k fk

=
(

∂ fk(r, t )

∂t

)
sc

, (7)

with the definition

ηk(B) ≡ 1 + e

h̄
B · �k. (8)

The nonequilibrium distribution function is written as

gk = ∂ f 0
k

∂Ek
e�k · E, (9)

considering only terms linear in E (�k mean free path). By
assuming only elastic scattering Eq. (7) becomes linearized,

that is

�k − e

h̄
τk η−1

k (B)[(vk × B) · ∇k]�k

= τk

{
η−1

k (B)

[
vk + e

h̄
(�k · vk ) · B

]
+

∑
k′

Pk←k′�k′

}
.

(10)

The inverse momentum relaxation time

τ−1
k =

∑
k′

Pk′←k (11)

is calculated from the microscopic transition probability rates
using Fermi’s golden rule

Pk′←k = 2π

h̄
|Tk′←k|2δ(Ek − Ek′ ) (12)

for elastic scattering. The transition matrix elements

Tk′←k = 〈k′ | 
V | k〉 (13)

are calculated in Born approximation, in which the scattering
potential


V (r) = UV (d )
0

∑
j

δ(r − R j ) (14)

is a sum over δ-shaped impurity potentials at positions R j

and with scattering strength U . The latter is taken independent
from k and identical for all impurities (V (d )

0 volume of the unit
cell in d dimensions; here, d = 3).

To account for inter- as well as intracone scattering pro-
cesses, the Boltzmann equation is solved for each state |k〉. As
a consequence, the momentum relaxation time τk depends on
k and E . These dependencies remarkably influence the energy
dependence of the transport properties, in particular the chiral
anomaly-related charge conductivity discussed below. Recall
that in Ref. [16], the Boltzmann equation is transformed
into a Weyl-cone-dependent form containing the intercone
momentum relaxation time as a constant parameter.

Eventually, the charge current density

jc = − e

V (d )

∑
k

ṙk fk (15)

is a sum over all states that can be transformed into an
integration in k space (V (d ) volume of the system).

B. Phase space correction

In the presence of a nonzero Berry curvature and a mag-
netic field, the volume of an element in the 2d-dimensional
phase space that is spanned by k and r is not conserved during
the temporal evolution [32]. The joint effect of Berry curva-
ture and magnetic field can be interpreted as a deformation of
the phase space, slightly changing the isoenergy surfaces in
reciprocal space. In order to compensate for this deformation,
the density of states has to be corrected [32]. For example, the
k sum in Eq. (15) is replaced by a k integration,

∑
k

→ V (d )

(2π)d

∫
d3k ηk(B). (16)
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The correction factor ηk, defined in Eq. (8), enters the Boltz-
mann equation (10); it cannot be safely neglected in phase
space regions with large Berry curvature, that is close to the
Weyl points.

C. Fermi surface harmonics

The method of Fermi surface harmonics (FSHs) [29–31]
provides a closed solution of Eq. (10) in the presence of
electric as well as magnetic fields. The FSHs are a set of func-
tions that are orthonormal on the chosen isoenergy surface
(here Fermi surface). They are constructed from the Cartesian
components of the Fermi velocity,

�M (k) = vnx
x (k) v

ny
y (k) vnz

z (k) ξnFS (k). (17)

The multi-index M = (nx, ny, nz, nFS) comprises the integers
nx, ny, nz � 0 and nFS > 0. NFSH = nx + ny + nz is the order
of the FSH. For a multisheeted Fermi surface, the number of
FSHs has to be increased correspondingly, which is provided
by the Fermi surface sheet index nFS.

The weights ξnFS (k) ensure the orthogonality of FSHs that
belong to different Fermi surface sheets. In this paper, we use
the disjoint FSH representation: ξnFS are chosen to guarantee
that each FSH is nonzero only on one Fermi sheet; FSHs with
different indices nFS do not overlap [29]. In comparison to the
symmetric representation, in which each FSH is defined on all
Fermi sheets, this disjoint representation has the advantages
that it is numerically efficient and intuitive.

For an isotropic system, the FSHs in the first Brillouin
zone are identical to the spherical harmonics. The latter do
not obey the periodicity of the reciprocal lattice and are not
orthonormal for arbitrary Fermi surfaces.

In order to solve the linearized Boltzmann equation (10),
the k and B dependencies of �k(B) have to be separated,
which is accomplished by the ansatz

�k(B) =
∑

M

�M (B)�M (k). (18)

The Boltzmann equation can then be written as a system of
linear equations,∑

M ′
(BMM ′ + CMM ′ )�M ′ (B) = DM . (19)

The field term matrix

BMM ′ = − N−1(EF)
∑

k

δ(Ek − EF)�M (k)

× τk η−1
k (B)

e

h̄
(vk × B)

∂

∂k
�M ′ (k) (20)

contains the Lorentz force, the scattering term

CMM ′ = δMM ′ − N−1(EF)
∑
k,k′

δ(Ek − EF)

× �M (k)τkPk←k′�M ′ (k′) (21)

accounts for the scattering-in processes. The vectors

DM = N−1(EF)
∑

k

δ(Ek − EF)�M (k)

× τk η−1
k (B)

[
vk + e

h̄
(�k · vk ) · B

]
(22)

= DI
M + DII

M (23)

are sums of DI
M that include vk and DII

M that contain the
term e(�k · vk )B/h̄. The density of states (DOS) is given by
N (E ) = ∑

k δ(Ek − E ).
The method of FSHs allows to calculate the mean free

path up to arbitrary order in the Fermi velocity, which has the
advantage that the unknown quantity �k is expressed in terms
of the well-known group velocity. Further, the derivative of
�k, which is part of the Lorentz force term, is also expressed
in terms of the FSHs and can thus be calculated analytically.
Therefore, the Lorentz force term and the scattering-in term
can be included easily in the solution of the Boltzmann
equation.

IV. TRANSPORT PROPERTIES

Combining Eqs. (6), (9), (15), (18), and (19), we arrive at
the charge current density

j = − e

V

∑
k

η−1
k

[
vk + e

h̄
E × �k + e

h̄
(�k · vk )B

]

×
(

f0 + ∂ f 0

∂E e�k(B) · E
)

(24)

and

�k(B) =
∑
M,M ′

[(B + C)−1]MM ′DM ′�M (k). (25)

These expressions allow to distinguish individual contribu-
tions to the charge current and to clearly identify the terms
related to the chiral anomaly. For this purpose, we split the
mean free path into two parts, �k(B) = �I

k(B) + �II
k (B).

�I
k(B) and �II

k (B) are defined by Eq. (25), in which DM ′ is
replaced by DI

M ′ and DII
M ′ , respectively. This decomposition

produces nine contributions to the charge current.
(1) jeq = − e

V

∑
k

η−1
k vk f0 = 0 is an equilibrium contribu-

tion and vanishes for symmetry reasons.
(2) jAHE = − e2

V h̄

∑
k

η−1
k E × �k f0 represents the intrinsic

anomalous Hall effect. It vanishes in systems with time-
reversal symmetry.

(3) jCME = − e2

V h̄

∑
k

η−1
k (�k · vk )B f0 corresponds to a

charge current parallel to B, which exists even in the absence
of an electric field, that is an equilibrium chiral magnetic
effect. It vanishes in systems with inversion or time-reversal
symmetry. Its existence is controversially discussed [38–42].
However, it has been shown that this contribution is forbidden
by gauge symmetry [43,44].

(4) jcl = − e2

V

∑
k

η−1
k vk

∂ f0

∂E [�I
k(B) · E] is the conventional

charge current including the Lorentz force, called classical in
the following. Berry curvature-related effects enter via ηk in
the matrix B + C.

(5) jlinI = − e3

V h̄

∑
k

η−1
k (�k · vk )B ∂ f0

∂E [�I
k(B) · E] and

jlinII = − e2

V

∑
k

η−1
k vk

∂ f0

∂E [�II
k (B) · E] are approximately linear
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in B and exist only in systems with nonzero Berry curvature.
Both terms have been discussed for systems with broken
time-reversal symmetry in Refs. [24–26]. At first glance, they
seem to vanish for time-reversal invariant systems, but the
phase space correction ηk permits a finite contribution. For
special geometries, both terms are equivalent.

(6) j2ndI = − e3

V h̄

∑
k

η−1
k (E × �k ) ∂ f0

∂E [�I
k(B) · E] and

j2ndII = − e3

V h̄

∑
k

η−1
k (E × �k ) ∂ f0

∂E [�II
k (B) · E] are of second

order in E and, thus, not considered in the linearized approach.
(7) jCA = − e3

V h̄

∑
k

η−1
k (�k · vk )B ∂ f0

∂E [�II
k (B) · E] refers to

the contribution of the chiral anomaly [16]. It scales with B2

and gives rise to a negative longitudinal magnetoresistance as
well as a large planar Hall effect [45,46].

V. RESULTS AND DISCUSSION

We focus now on the nonequilibrium contributions jcl, jlinI,
jlinII, and jCA to the charge current and the corresponding
charge conductivities σ̂ in the presence of an external mag-
netic field. Beginning with simple systems, we increase the
level of complexity to end up with TaAs.

A. Two isotropic Weyl points

For the discussion of the chiral anomaly, the isotropic
Weyl Hamiltonian (1) is often employed for each Weyl point
separately [16]. Neglecting the phase space correction and the
scattering-in terms, a magnetic field B = (Bx, 0, 0) leads to
the longitudinal charge conductivity [16]

σxx = σ cl
xx + σ CA

xx = e2τ0(EF)E2
F

3π2h̄3v0
+ e4v3

0B2
xτ0(EF)

4π2h̄E2
F

. (26)

Here, σ̂ linI and σ̂ linII vanish for symmetry reasons because the
phase space correction is neglected. The momentum relax-
ation time is isotropic on an isoenergy surface. Since τ0 is not
assumed constant but calculated as energy-dependent,

τ0(E ) = πh̄4v3
0

|U |2ciV0E2
, (27)

the longitudinal classical charge conductivity is constant in
energy because the reduced density of states near the Weyl
points is compensated by an increased momentum relaxation
time. The chiral anomaly-related contribution scales with E−4.
This is in contrast to the E−2 dependence found in literature
[16,18], where τ0 is taken as a parameter. Including the phase
space correction would induce anisotropies of the momentum
relaxation time and would therefore modify the results for σ cl

xx
and σ CA

xx ; σ̂ linI and σ̂ linII may also be nonzero.

B. Two anisotropic Weyl points

A minimal inversion symmetric system of two Weyl points
described by the model Hamiltonian (2) allows to demonstrate
general and inversion symmetry-related features of the trans-
port properties.

The chosen model parameters–γ =130 eV Å
2
, m=1.73×

10−4 Å
−2

, vy = vz = 2.2 × 105 m/s–correspond approxi-
mately to those of a W1 point in TaAs (discussed below).

FIG. 2. Classical charge conductivity for a system of two Weyl
points vs magnetic field applied in x direction, which is the direction
of the Weyl dipole orientation (sketched by the green Fermi sheets).
The inset shows the overview of all tensor elements for fields up to
±5T, while the main figure provides details for small magnetic fields.

The Weyl cones are symmetric with respect to the ky and kz

direction, but along kx, that is the direction in which the Weyl
points are separated, asymmetries occur. The Fermi energy
is set to EF = 20 meV, similar to the Fermi level of the TaAs
W1 points, and lies below ES.

For the calculation of the momentum relaxation time, the
scattering potential is set constant to U = 1 eV, the impurity
concentration is 1 at %, and the volume of the unit cell is
6 × 6 × 11 Å

3
. These parameters enter the results as con-

stant factors and are qualitatively insignificant for the results.
The k points on the Fermi surface are calculated using an
adaptive tetrahedral method. It turned out that FSHs up to
N = 3 are sufficient since contributions from higher order
FSHs are negligibly small.

1. Classical charge conductivity

The classical charge conductivity σ̂ cl is shown in Fig. 2
for an external magnetic field B = (Bx, 0, 0), pointing in the
direction of anisotropies in k space. For Bx = 0, the con-
ductivity tensor is diagonal. σ cl

yy = σ cl
zz are not equivalent to

σ cl
xx because of the anisotropic Fermi surface. With increasing

Bx, the influence of the Lorentz force becomes pronounced.
As expected from analytical model calculations [47], σ cl

yy

decreases with −B2
x for small fields, that is when scattering is

dominant, and with B−2
x for higher fields, forcing the electrons

to move on cyclotron orbits.
The xx component provides an unconventional asymmetry

with respect to Bx. For the highly symmetric system discussed
here, it is expected to be constant in Bx. However, the asym-
metry of the phase space correction factor with respect to
B ↔ −B for systems with broken time-reversal symmetry
makes the momentum relaxation time also asymmetric in B.
Symmetry dictates that τk(B) = τ (k2

x , E, Bx ). The magnetic
field does not break inversion symmetry but influences the
momentum relaxation time by coupling to the Berry cur-
vature. Its influence on τk is asymmetric with respect to
B ↔ −B, which leads to asymmetries in the transport prop-
erties. A more detailed overview of the momentum relaxation
time is given in Appendix A.

075114-5



ANNIKA JOHANSSON, JÜRGEN HENK, AND INGRID MERTIG PHYSICAL REVIEW B 99, 075114 (2019)

FIG. 3. Longitudinal transport properties for a system of two
Weyl points separated in kx direction for magnetic field applied
in x direction. (Top) Charge conductivity σxx . The total charge
conductivity as well as the individual contributions are shown. σ cl,
σ linI, σ linII, and σ CA, are defined in Sec. IV. (Bottom) Longitudinal
magnetoresistance MR‖. The magnetoresistance considering only
the classical charge conductivity (green) as well as the MR including
σ cl and σ CA (blue) are shown. The LMR which takes into account
all contributions to the charge conductivity is given in red. The inset
sketches the sample with the directions of the magnetic field and the
charge current.

The transversal (off-diagonal) components σ cl
yz = −σ cl

zy
represent the Hall effect. As expected from analytics [47],
σ cl

yz ∼ Bx for small fields, and σ cl
yz ∼ B−1

x for larger fields.

2. Berry curvature-related charge conductivity

For the considered system, the contributions σ̂ linI, σ̂ linII,
and σ̂ CA to the charge conductivity that are related to the
Berry curvature (defined in Sec. IV) have only nonzero xx
components (depicted in the upper panel of Fig. 3).

σ linI
xx and σ linII

xx are identical. For this system with broken
time-reversal symmetry, they can be of the same order as
σ CA

xx , which scales with B2
x . From Fig. 3, it seems that σ linI

xx
and σ linII

xx depend approximately linearly on the magnetic
field. However, they also have a small symmetric contribution
(approximately 3% of the antisymmetric one) due to the phase
space correction. The sign of the linear term depends on the
orientation of the magnetic field with respect to the Weyl point
dipole moment: it vanishes if B is perpendicular to the Weyl
dipole and changes sign if the Weyl points’ chiralities or the
magnetic field are reversed. The small symmetric contribution
is negative if B is aligned with the Weyl dipole moment and
positive if B is perpendicular to it. However, the sign of this

symmetric term is not a universal property but results from the
specific model Hamiltonian used here.

Equation (24) tells that the contributions σ̂ linI, σ̂ linII, and
σ̂ CA are not a direct consequence of the nonzero chirality but
result from the nonvanishing Berry curvature of the states.
Therefore, these terms contribute also in energy regions in
which the Weyl points’ Fermi surfaces are connected (there
χ = 0). Since the Berry curvature scales approximately with
E−2, these are however comparably small.

The energy-dependent charge conductivity for an
anisotropic system of two Weyl points is shown in
Appendix B. As in the isotropic Weyl model, σ cl

xx is
approximately constant with respect to E . The Berry
curvature-related contribution σ CA

xx scales with ≈E−4, as
in the isotropic model. Deviations occur near the Weyl point
energy because of the enhanced phase space correction factor.

3. Longitudinal magnetoresistance

To demonstrate the influence of σ̂ linI and σ̂ linII, the LMR is
decomposed as shown in the lower panel of Fig. 3. First, only
the classical charge conductivity is considered. Due to the
phase space correction, the MR is not symmetric with respect
to Bx. The second curve represents the LMR for which σ cl

xx as
well as σ CA

xx are taken into account. The LMR is dominated by
the term σ CA

xx , which increases with B2
x and leads to a NLMR,

as discussed in literature [16]. The third curve includes all
contributions. Due to the nearly linear Bx dependences of σ linI

xx
and σ linII

xx , the LMR is asymmetric with respect to Bx, and the
additional contributions can induce a sign change. However,
for fields larger than those shown in Fig. 3, the quadratic
contribution σ CA

xx dominates and the LMR becomes negative.
By exchanging the positions of the Weyl points, that is a

reversal of the Weyl dipole moment, the sign of the Berry
curvature is reversed at each k. Since the magnetic field
couples to the Berry curvature, this exchange has the same
effect on the longitudinal transport properties as a reversal of
the magnetic field.

C. Four anisotropic Weyl points

A minimal time-reversal symmetric system of four Weyl
points is discussed in this section; we take the same model
parameters as before. The classical charge conductivity shows
qualitatively the same Bx dependence as the system of two
Weyl points (not shown here). The only difference is that for
four Weyl points the longitudinal charge conductivity σ cl

xx is
symmetric and increases slightly with |Bx|. As before, this
Bx dependence originates from the phase space correction
which is invariant under (B ↔ −B) ∧ (k ↔ −k). Further, the
energy dependencies are identical to those of the two Weyl
points system (see Appendix B).

The slight increase with |Bx| of the classical contribution
is irrelevant (upper panel of Fig. 4), σ CA

xx scales with B2
x .

Without the phase space correction, σ linI
xx and σ linII

xx would
vanish because of time-reversal symmetry. However, since the
applied magnetic field breaks this symmetry and couples to
the Berry curvature, these terms can be nonzero (this feature is
illustrated by means of the k-dependent momentum relaxation
time in Appendix A). For B = 0, the momentum relaxation
time is constant on an isoenergy surface. If time-reversal
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FIG. 4. As Fig. 3 but for a system with four Weyl points (see
sketch of the Fermi surfaces).

symmetry is broken by the magnetic field, the momentum
relaxation time becomes anisotropic, τk �= τ−k, which allows
finite contributions σ linI

xx and σ linII
xx . For the chosen parameters

these are negative, small, and scale approximately as −B2
x ;

their absolute value is up to 20% of σ CA
xx . Thus they com-

pensate partially the contribution σ CA
xx but do not induce a

sign change of the LMR. Recall that in general σ linI
xx and

σ linII
xx can be positive, depending on the orientation of B:

they are negative if B is oriented in the direction of Weyl
point separation and become positive of B is perpendicular to
that direction because of the scattering-in terms. However, in
general, the sign of σ linI

i j and σ linII
i j in a time-reversal symmetric

system also depends on the specific model Hamiltonian.
As a result, the LMR is negative (lower panel of Fig. 4),

and its Bx dependence agrees with that derived in Ref. [16]. It
is thus evident that the additional terms modify the magnitude
of the NLMR but do not change its qualitative Bx dependence.

D. TaAs

The theory, so far applied to systems with two or four Weyl
points, is now extended to a more realistic system: the type-I
time-reversal symmetric Weyl semimetal TaAs [48–55] which
hosts 24 Weyl points near the Fermi level. The band structure
in the vicinity of these points is approximated by the model
Hamiltonian (2) using the parameters derived in Ref. [12]
from Ref. [51] (reproduced in Table I).

The Weyl points, separated into eight Weyl points of class
W1 and 16 Weyl points of class W2, are arranged in groups
of eight in three planes parallel to the kz = 0 plane; one of
these planes is sketched in the inset of Fig. 5. The Cartesian
axes x, y, and z are parallel to the [100], [010], and [001]

TABLE I. Model parameters for the TaAs band structure close
to the W1 and W2 Weyl points (adapted from Ref. [51]). EFW is the
energy distance from the Fermi level to the Weyl points.

EFW ES vy vz m0 γ

Number (meV) (meV) (105 m/s) (10−4 Å−2) (eVÅ2)

W1 8 22.1 22.5 2.2 0.2 1.73 130
W2 16 8.9 47.9 2.6 3.1 11.4 42

directions, respectively. The Fermi surface is invariant with
respect to fourfold rotations about the z axis.

1. Energy dependence of the conductivity

Since the Bx dependence of the contributions to the charge
conductivity is qualitatively equivalent to those for four Weyl
points, we focus on the energy dependence of the transport
coefficients. Due to the complicated arrangement of Weyl
points, this dependence is not as simple as for two or four
Weyl points.

For B = 0, σxx and σyy are equivalent for symmetry rea-
sons, whereas σzz is strongly reduced (Fig. 5). The low σzz

value results from the asymmetry of the Fermi surface: the W1
Fermi surfaces are strongly extended in kz direction leading to
a low charge conductivity. The longitudinal charge conduc-
tivities are almost constant because the energy dependencies
of DOS and momentum relaxation time approximately com-
pensate. Due to the Lifshitz transition, at E (1)

S (saddle point
of W1) a step occurs. Here, the DOS exhibits a Van Hove
singularity, N (E ) ∝ √

ES − E (E < ES) leading to a steplike
energy dependence of τ and σ̂ .

The presence of a magnetic field in x direction (Bx = 2 T)
leads to a decrease of σyy and σzz because of the Lorentz force.
The amount of reduction depends strongly on the energy; at
energies near the Weyl points, the scattering rates are low,
the electrons move along the isoenergy orbits almost unper-
turbed by scattering. Thus, the influence of the Lorentz force
is pronounced (strong fields). At higher energies, scattering

FIG. 5. Charge conductivities σxx , σyy, and σzz of TaAs vs energy
without (B = 0) and with (Bx = 2 T) magnetic field, respectively.
The positions of W1 and W2 as well as the associated saddle point
E (1)

S are indicated. E (2)
S is not within the depicted energy range. The

gray dashed line marks the position of the Fermi level. The inset
sketches the eight W1 points that lie in the kz = 0 plane.
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FIG. 6. Energy dependence of the Berry curvature-related con-
tribution σ CA

xx for Bx = 1 T for energies above the W2 energy. The
double logarithmic plot shows that σ CA

xx scales approximately with
E−3 (dashed).

dominates, the influence of the magnetic field on the electrons
is less distinct (weak fields).

The most noticeable effect of the magnetic field is the
strong increase of the longitudinal charge conductivity σxx

due to the chiral anomaly. The additional contributions are
maximum around the W1 and W2 points.

The qualitative energy dependence of the Berry curvature-
related σ CA

xx is examined by a double logarithmic representa-
tion for energies above the W2 energy (Fig. 6). In general,
the data points follow an E−3 dependence. Closer to the Weyl
points, an E−2 dependence seems as well reasonable, which
would support data observed by Zhang et al. [18]. The E−4

dependence calculated for Weyl points at a single energy
is not reproduced because the different energies of the W1
and W2 points result in a complicated scattering behavior. A
similar energy dependence is found for energies below W1
(not shown here). In between the energies of W1 and W2,
σ CA

xx is nearly constant because of the energy overlap of the
Weyl cones. The energy dependence of σ linI

xx and σ linII
xx (not

shown here) reminds to that of σ CA
xx . At EF, the contributions

σ linI
xx and σ linII

xx are ≈4.5% of σ CA
xx . Here, the large number of

Weyl points and the fourfold rotational symmetry of the Fermi
surface lead to a reduction of these anisotropy related terms,
as discussed in Appendix A.

The semiclassical approach is not appropriate for energies
closer to the Weyl points than about 1 meV because of in-
terband contributions and lifetime broadening, which are not
taken into account [12]. Within this narrow energy region, a
Kubo approach is appropriate. On top of this, the phase space
correction term diverges at the Weyl points, thereby increasing
numerical errors. We estimate the energy range around the
Weyl points in which the semiclassical Boltzmann method
cannot be safely applied to ±1 meV for W1 and ±2.5 meV for
W2, respectively. Within this energy range, the phase space
correction factor is >100 for magnetic fields up to 10 T.

2. Angular dependence of the LMR

The Fermi level in TaAs given in Ref. [51] and used
throughout this paper (Table I) is not very close to the Weyl
points. Thus the chiral anomaly-related charge conductivity is
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FIG. 7. LMR of TaAs. The magnetic field is applied in the x (B ‖
x) and z (B ‖ z) direction, respectively. In addition, it is slightly tilted
by 1◦ of the crystal axes within the xz plane (inset). The current for
detecting the LMR is always parallel to the magnetic field.

not extraordinary large. However, due to the B2 dependence,
a clear NLMR signal is calculated at the Fermi level.

For B in the direction of one of the Cartesian axes of
the system, the LMR is negative because the chiral-anomaly
terms dominate the B dependence of the charge conductivity
(Fig. 7). However, if B is tilted off the x axis by 1◦ (θ = 89◦), a
PLMR is observed for fields less than 2 T. This B dependence
resembles the data measured in various experiments [18–22]
for which the PLMR at small fields is usually explained by
weak antilocalization [33]. Interestingly, the PLMR calculated
here occurs only if B is nearly parallel to the x axis, but not if
B is slightly tilted off the z axis.

In order to understand the conditions under which a PLMR
occurs for misaligned B, we examine the magnetoresistance
parallel to the crystal axes—MRxx, MRyy, and MRzz, de-
fined as MRii = (ρii(B) − ρii(0))/ρii(0) with ρ̂ the resistivity
tensor—as a function of the B direction (Fig. 8). The magnetic
field is set to B = 1.5 T and is rotated by θ within the xz plane.
In what follows, the labels longitudinal and transversal refer
to the orientation of the charge current with respect to the
magnetic field.
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FIG. 8. Magnetoresistance (MR) along the three crystal axes x,
y, and z as a function of the angle θ of the magnetic field B. The
field is rotated in the xz plane, with θ = 0 corresponds to B ‖ z and
θ = π/2 corresponds to B ‖ x (see sketch). The absolute value of B
is 1.5 T. The inset depicts details around θ = π/2.
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MRyy is always transversal and positive, the latter ex-
plained by the fact that only the classical charge conductivity
contributes, which is strongly influenced by the Lorentz force,
and the chiral anomaly-related terms vanish. The oscillations
with θ originate from the anisotropy of the Fermi surfaces.

MRxx and MRzz have both longitudinal as well as transver-
sal components, depending on the direction of B. For sym-
metry reasons, MRxx = MRyy if B ‖ z. If Bx �= 0, the chiral
anomaly produces a negative contribution to MRxx, whereas
the Lorentz force contributes positively to the magnetore-
sistance. For θ near π/2, the contributions from the chiral
anomaly dominate the classical term, and MRxx becomes
negative. For the same reason, MRzz is negative for θ near
0 and positive around θ = π/2.

Importantly, the amplitude of MRzz is larger than those
of MRxx and MRyy because of the anisotropy of the Fermi
surfaces. The Fermi surfaces are elongated in z direction
which leads to a small σzz, a large resistivity ρzz, and a large
magnetoresistance MRzz in z direction: the relative change
of resistivity is more pronounced in z direction. Due to this
anisotropy of the system, the amplitudes of MRzz are en-
hanced and the angular region with MRzz < 0, which means
the chiral anomaly dominates the sign of MRzz, is larger than
the region with MRxx < 0.

The LMR, which is associated with the current in the
direction of the magnetic field, is the projection of the mag-
netoresistivity onto the direction of B and therefore contains
components of MRxx as well as MRzz,

MR‖(B) = (
MRxx(B)ρ0

xx sin2 θ + MRzz(B)ρ0
zz cos2 θ

+ 2ρxz(B) sin θ cos θ
)/(

ρ0
xx sin2 θ + ρ0

zz cos2 θ
)
,

(28)

with ρxx and ρzz are diagonal elements of the resistivity tensor
ρ̂. The superscript 0 refers to ρ̂(B = 0). The influence of the
nondiagonal elements of ρ̂(B) is less important here and will
be neglected in the qualitative discussion.

For B with θ ≈ 0 or ≈π, the negative contribution from
MRzz (originating from the chiral anomaly) dominates the
classical positive contribution from MRxx (Lorentz force con-
tribution) in a wide angular range. Thus, even if the magnetic
field is tilted by 10◦, the LMR would be negative for B =
1.5 T. By contrast, around θ = π/2 or 3π/2, the positive MRzz

component dominates over the negative MRxx component
already for a tilt angle of 1◦, leading to a PLMR.

In other words, due to the Lorentz force, the charge current
is not aligned with the electric field. Since the current direction
is fixed to be parallel to B by definition of the longitudinal
MR, E and B are not parallel, which reduces the chiral
anomaly-related transfer of states between the Weyl cones and
consequently also the associated charge conductivity. Thus
the classical PLMR contribution can dominate the total LMR
for small magnetic fields, whereas for larger fields the chiral
anomaly contribution is sufficiently large to induce a total
negative LMR signal. Hence, the PLMR for small tilt angles
is a consequence of including the Lorentz force term in the
Boltzmann equation. Revealing this feature is one of the main
advantages of using the Fermi surface harmonics approach.

The above discussed PLMR is not a specific property of
TaAs but can in general occur in any Weyl system with
anisotropic Fermi surfaces. However, its magnitude as well
as the tilt angle under which the PLMR occurs strongly
depend on the specific properties of the system. In general, for
Fermi energies close to the Weyl points the chiral anomaly is
expected to be the dominant term leading to a NLMR whereas
for energies further away from the Weyl points the Lorentz
force can lead to a more pronounced PLMR.

In Ref. [18], Zhang et al. present measurements of the
LMR of five different TaAs samples with various Fermi
levels. The magnetic field and the electric charge current are
pointing in x and z direction, respectively. For both experi-
mental geometries, the characteristic curves show a PLMR for
small fields and a NLMR for larger fields attributed to weak
antilocalization and the chiral anomaly, respectively.

As discussed above, a slight tilt of the magnetic field and
the charge current off the crystal symmetry axes could also
give rise to the characteristic curves measured in Ref. [18].
However, as our calculations show, these features occur only
if B is slightly tilted off the x direction, but not if B is almost
parallel to z. Further, all transport properties depend strongly
on the Fermi level since the DOS of a Weyl pair vanishes
at the Weyl point energy. The Fermi levels observed for the
samples of Ref. [18] are almost all closer than 5 meV to the
W2 points. For these energies, our model calculations do not
show a pronounced PLMR for tilt angles up to 5◦. Thus we
conclude that a slight tilt of the sample cannot be the reason
for the observed PLMR, what supports the argument of the
weak antilocalization.

VI. CONCLUSION

In this work, we derived a Fermi surface harmonics (FSHs)
formalism for solving the semiclassical Boltzmann transport
equation for systems with nonvanishing Berry curvature in the
presence of electric and magnetic fields. This method provides
an elegant way to account for scattering-in terms, Lorentz
force term and phase space corrections.

As applications, we calculated the transport properties for
different Weyl systems. Taking into account the energy depen-
dence of the relaxation time qualitatively modifies the energy
dependence of the chiral anomaly-related charge conductivity
from E−2 to E−4 in isotropic systems. We identified contri-
butions to the charge conductivity that scale linearly with B
and can change the sign of the magnetoresistance in systems
with broken time-reversal symmetry. These anisotropy-related
terms are less pronounced in time-reversal symmetric systems
with a large number of Weyl points.

Further, a slight tilt of the B field with respect to the
crystal axes can give rise to a PLMR for small magnetic fields,
with a signal similar to the PLMR induced by weak antilo-
calization. Nevertheless, for the Weyl semimetal TaAs, these
tilting effects appear not to reproduce the PLMR observed in
experiments with small fields.

The presented method is not restricted to Weyl semimetals
but can be applied to many more systems, especially to
any topological materials with nonzero Berry curvature. The
method could also be used for a more detailed analysis of
the planar Hall effect; the latter is included in the formalism

075114-9



ANNIKA JOHANSSON, JÜRGEN HENK, AND INGRID MERTIG PHYSICAL REVIEW B 99, 075114 (2019)

FIG. 9. Momentum relaxation time (color scale) for a system
of two Weyl points [(a)–(c)], four Weyl points [(d)–(f)], and TaAs
[(g)–(i)]. The relaxation time is calculated on the iso-energy surfaces
and projected onto the kxky plane. Therefore, for TaAs, 16 of the 24
Weyl points are visible. The magnetic field of ±2 T is assumed in ±x
direction, respectively. The color scale differs for each row but rows
share a common color scale.

but its discussion is beyond the purpose of this paper. In
future work, the FSH formalism may be extended to surface
states in order to study their contributions to the transport
properties.

Note added. During the course of the review process, a
paper considering the chiral anomaly and the Lorentz force in
isotropic Weyl systems within a Fourier harmonics approach
for solving the Boltzmann equation was published [56]. In
contrast to Ref. [56], we calculate the momentum relaxation
time k and E dependently, include scattering-in processes as
well as anisotropies of the system and discuss TaAs as a
realistic system.
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APPENDIX A: MOMENTUM RELAXATION TIME IN THE
PRESENCE OF A MAGNETIC FIELD

The momentum relaxation time τk is calculated from
Eq. (11) and depicted in Fig. 9 for systems hosting two and
four Weyl points as well as TaAs (24 Weyl points). In general,
the relaxation time decreases with increasing number of Weyl
points due to the enhanced phase space for scattering.

For B = 0, the momentum relaxation time is isotropic for
systems with time-reversal symmetry, which is the four Weyl
points system (e) and TaAs (h), in line with the symmetries
of the Hamiltonian and its eigenstates. When time-reversal
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FIG. 10. Longitudinal charge conductivity vs energy for sys-
tems with two and four Weyl points. The Weyl point energy is at
E = 0, the magnetic field reads B = (1 T, 0, 0). (Top) Classical
charge conductivity σ cl

xx . (Bottom) Chiral anomaly-related contribu-
tion σ CA

xx in a double-logarithmic representation.

symmetry is broken, as for a system of two Weyl points (b),
anisotropies along the kx direction show up, that is along the
Weyl dipole moment.

A magnetic field enters the momentum relaxation time via
the phase space correction factor when the integration in k
space is performed; confer Eq. (16). Therefore the momentum
relaxation time becomes B-dependent. Symmetry dictates that
only the component of the magnetic field in the direction
of the Weyl point separation (direction of Weyl pair dipole
moment) influences the momentum relaxation time. Further,
τk varies only in the Weyl dipole direction and is constant on
planes perpendicular to this direction. This finding is a special
property of the model Hamiltonian.

In the inversion symmetric system of two Weyl points,
the momentum relaxation time is slightly changed by the
magnetic field (top row). If the magnetic field is pointing in the
direction of the Weyl dipole [pointing from χ = −1 to χ = 1,
(a)], the anisotropy of the momentum relaxation time is in
general less pronounced, whereas it is more distinct when B
is antiparallel to the Weyl dipole moment (c). This asymmetry
of the momentum relaxation time with respect to Bx explains
the asymmetric behavior of the transport properties discussed
in Sec. V B.

In the systems with four Weyl points (center row) and
in TaAs (bottom row), the time-reversal symmetry is broken
by the magnetic field. Therefore τk �= τ−k. This symmetry
breaking is the reason for nonzero additional contributions
σ linI

xx and σ linII
xx to the charge conductivity, which vanish if
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time-reversal symmetry is conserved. The influence of the
magnetic field on τk depends on the orientation of B with
respect to each Weyl pair’s dipole moment, as shown in (d),
(f), (g), and (i), respectively.

For TaAs, whose 24 Weyl points are arranged symmetric
with respect to the x and y axes, it becomes evident [(g) and
(i)] that the magnetic field influences only the momentum re-
laxation time of the Weyl point pairs separated in the direction
of the magnetic field (x). The influence of the magnetic field
becomes less pronounced here because due to the fourfold
rotational symmetry of the Fermi surface, the phase space for
scattering and the number of scattering processes that are not
affected by the phase space correction is enhanced. Thus, the
anisotropy-related charge conductivity contributions σ̂ linI and
σ̂ linII are reduced due to the larger number of Weyl points.

APPENDIX B: ENERGY DEPENDENCE OF
CHARGE CONDUCTIVITIES

We focus on systems with two and four Weyl points mod-
eled by the Hamiltonian (2). As expected from the isotropic
model, the classical charge conductivity is almost constant
with respect to the Fermi level (top in Fig. 10). The increase
near the Weyl points originates from the enhanced phase space
correction factor. The numerical values for the system of
two and four Weyl points are close to each other. The larger
number of contributing states (phase space) in the system with
four Weyl points is compensated by a smaller momentum
relaxation time. The longitudinal contribution σ CA

xx related to
the chiral anomaly exhibits a clear E−4 dependence (bottom),
confirming analytical calculations for the isotropic model.
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