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Three-dimensional photonic band gap cavity with finite support:
Enhanced energy density and optical absorption
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We study numerically the confinement of light in a three-dimensional (3D) photonic crystal cavity in a
diamondlike inverse-woodpile structure. We present a versatile field-field cross-correlation method to identify
resonances in the finite-support crystal with defect states in the 3D band gap of the infinite crystal. We argue
that the five eigenstates of our 3D photonic band gap cavity have quadrupolar symmetry, in analogy to d-like
orbitals of transition metals. It is remarkable that quality factors up to Q = 1000 appear in such thin structures
of only three unit cells, which is attributed to the relatively small Bragg length of the perfect crystal. We find
that the optical energy density is remarkably enhanced at the cavity resonances by up to 2400× the incident
energy density in free space or up to 1200× the energy density of the equivalent effective medium. We find
that an inverse woodpile photonic band gap cavity with a suitably adapted lattice parameter reveals substantial
absorption in the visible range. Below the 3D band gap, Fano resonances arise due to interference between the
discrete fundamental cavity mode and the continuum light scattered by the photonic crystal. Hence, our study
concludes that inverse woodpile cavities offer interesting perspectives for applications in optical sensing and
photovoltaics.
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I. INTRODUCTION

Confining light in a minuscule volume in space is a main
topic in nanophotonics [1–4]. Notable interests include trap-
ping or slowing down of photons [5], sensing for bioap-
plications [6], Purcell enhancement of spontaneous emis-
sion [7,8], and cavity quantum electrodynamics [9–14]. To
achieve micro- and nanoscale light confinement, many types
of devices have been reported such as microspheres [15,16],
micropillars [8,12,14,17], microdisks [18], plasmonic cavities
[19–21], toroidal rings [22], or 2D photonic crystal slab
cavities [23,24].

A cavity formed by a defect embedded in a three-
dimensional (3D) photonic band gap crystal has a prime sig-
nificance [25,26], since the confinement of light is truly three
dimensional [27,28]. A defect in a photonic crystal is formed
by the addition or by the removal of high-index material to
break the periodic spatial symmetry [29]. A defect formed by
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adding high-index material is called a donor defect since the
defect state derives from the high frequency (“conduction”)
bands, whereas a defect formed by removing high-index ma-
terial is called an acceptor defect since the defect state derives
from the low frequency (“valence”) bands [29–32].

Among all 3D photonic band gap crystals, the class of
crystals with a diamondlike symmetry stand out for their
broad 3D photonic band gap [33], which makes them ro-
bust to unavoidable fabrication disorder [34] and which is
favorable to shield embedded cavities from the surrounding
free space [35]. Following the seminal microwave studies of
Yablonovitch et al. [36] and Bayindir et al. [37,38], Ogawa
et al. [39] studied the modified emission spectra of quantum
wells in the presence of a 3D photonic band gap cavity in
direct woodpile crystals made from GaAs [39]. Okano et al.
performed a group-theoretical study to identify the symmetry
properties of the sizable number of cavity resonances that
appear in woodpile crystals (between 17 and 32, depending on
the cavity geometry) [40]. Recently, Tajiri et al. demonstrated
a quality factor Q = 12 800 in emission spectra of quantum
dots in a GaAs woodpile crystal [41].

Here, we pursue the so-called inverse woodpile photonic
crystal structures that consists of two 2D orthogonal arrays of
pores [42]. Since this structure is relatively straightforward to
define, it has been realized by various nanofabrication tech-
niques and high-index backbones [43–46]. Moreover, 3D in-
verse woodpile photonic crystals made from silicon have been
fabricated by our group using CMOS-compatible nanofab-
rication methods that were developed in collaboration with
high-tech industry [47–49]. To functionalize inverse woodpile
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crystals, our group has proposed a design to create a resonant
cavity in the 3D inverse woodpile crystal structure, whereby
the photons are tightly confined in the proximal region of
two orthogonal defect pores that have a radius smaller than
all other pores in the bulk of the crystal, as illustrated in
Fig. 1(a) [50]. Up to five cavity defect bands were found
inside the band gap for defect pores smaller than all other
pores, corresponding to donor states [51]. The occurrence
of five resonances suggests that the defect cavity has d-like
character—in analogy to an atomic defect in a semiconductor
band gap [52]—or quadrupole character in terms of electro-
dynamic resonances [53], as is also borne out of a parallel
theoretical study of a 3D superlattice of cavities [54]. Each of
the resonances has a resonance frequency ωm (m = 1, . . . , 5)
that is nearly independent on wave vector, as expected for
a defect state [50]. Since the calculations in Ref. [50] were
performed for infinite crystals with no surrounding free space,
however, the cavity quality factor could not be calculated and
thus the energy enhancement and potential absorption in such
a cavity could not be assessed.

Therefore, we investigate here the optical properties of
a 3D photonic band gap cavity with finite support that is
surrounded by free space as in real devices, as guidance
for experimental work. By cross correlating the fields for a
crystal with finite support with those of the defect states in
the infinite crystal, we identify the resonances in the crystal
with finite support and their field patterns. We verify the angle
independence of the reflectivity resonances to confirm the 3D
localization of the cavity resonances in real space. We study
the quality factors of the resonances and calculate the electric-
field energy enhancement due to these resonances and assess
their potential application to enhance absorption, notably for
photovoltaic applications. We also address resonances below
the 3D band gap of the perfect crystal structure and find
evidence for Fano resonances.

II. METHODS

A. Structure

The two 2D arrays of pores in a 3D inverse woodpile crys-
tal structure have a radius r and run in the orthogonal X and
Z directions [42]. The 2D arrays have a centered-rectangular
lattice with lattice parameters c (in the X and Z directions)
and a (in the Y direction). The diamondlike structure is cubic
when a

c
= √

2. For pores with a relative radius r
a

= 0.24, cu-
bic inverse woodpile crystals have a maximum band gap width
with a broad relative bandwidth �ω/ωc = 25.3% relative to
the central band gap frequency ωc [55,56].

Woldering et al. [50] calculated the photonic band struc-
ture for a supercell of the 3D inverse woodpile photonic
crystal with a cavity by employing a plane-wave expansion
(PWE) method [57] that assumes the structure to be infinitely
extended. They reported that defect pores with radius r ′ =
0.5r yield an optimal light confinement. In order to relate
to previous work, we tuned the parameters to be the same
as previously, namely an optimal ideal pore radius r

a
= 0.24

[34,55], an optimal defect pore radius r ′
r

= 0.50 (or r ′
a

= 0.12)
[50], and a dielectric permittivity ε = 12.1 that is typical for
silicon in the near infrared and telecom ranges [34,50,58,59].
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FIG. 1. (a) Schematic view of a 3 × 3 × 3 supercell of a cubic
inverse woodpile photonic crystal with a point defect, as a YZ cut
through the center of the cavity. The proximal region of the two
defect pores with a radius smaller than all other pores has excess
high-index material that functions as a 3D photonic band gap cavity,
as indicated by the orange ellipse. (b) YZ cross section of the
computational cell through the center of the cavity, showing the
discretization mesh. The cell with thickness L3DPC = 3c is bounded
by absorbing boundaries at ±Z and by periodic boundary conditions
at ±X and ±Y . The blue color represents the high-index backbone
(silicon), and the green color represents free space.

To investigate the consequences of the finite support and
of the defect cavity, we study the reflectivity spectra for a
3D photonic band gap crystal with a point defect and with
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a finite thickness (slab geometry). Since our recent results
revealed that a thin perfect crystal with a thickness of only
three unit cells is sufficient to reveal strong reflectivity and
strongly attenuated transmission [60], we selected 3 × 3 × 3
as the size of the super cell, as shown in Fig. 1, to keep the
computations tractable. Thus, there is one point defect in the
direction of propagation of the incident plane wave in the
thickness LZ = 3c of the photonic crystal slab.

B. Computation

We employ the finite-element method (FEM) to solve
the time-harmonic Maxwell equations (using the commercial
solver COMSOL [61]). In order to describe reflectivity (or
transmission) from a photonic crystal slab oriented perpen-
dicular to the Z direction, we employ Bloch-Floquet periodic
boundaries in the ±X and the ±Y directions and absorbing
boundaries in the −Z and +Z directions [32]. The incident
field starts from a plane in the −Z direction that is sepa-
rated from the crystal by free space. The plane represents a
boundary condition rather than a true current source since
it also absorbs the reflected waves [62]. We launch incident
plane waves with either s polarization—with the electric field
perpendicular to the plane of incidence—or p polarization—
with magnetic field normal to the plane of incidence—and
with an angle of incidence between 0◦ and 80◦.

We investigate the effects of the symmetry disruption of
the infinite crystal by the interfaces by comparing the re-
flectivity spectra for a thin slab to the corresponding pho-
tonic band structure for an infinitely extended crystal [60].
To eliminate possible deviations arising from differences in
numerical methods or in the detailed dielectric permittivity
distributions ε(�r ), we employ the eigenvalue solver of our
FEM solver [61] to compute the photonic band structure.
Differences occurring between band structures computed with
the plane-wave expansion (PWE) method and with FEM are
discussed in Appendix A. Since a photonic band structure
pertains to an infinitely extended crystal, we alter our finite
reflectivity computational cell by employing Bloch-Floquet
periodic boundaries in all three dimensions ±X, ±Y , and ±Z

[32]. Hence, the point defect sits at the center of a 3 × 3 × 3
supercell that is replicated infinitely.

We use tetrahedra as basic elements in our finite element
mesh to subdivide the 3D computational cell into elements.
Further details and an analysis of the mesh convergence are
presented in Appendix B. For comparison, the PWE method
requires Cartesian meshing which results in a less faith-
ful discretization of the crystal structure and hence greater
systematic errors than with the adaptive mesh in FEM, as
discussed in Appendix A.

To detect narrow reflectivity resonance troughs (as ana-
lyzed in Appendix C), we used a frequency resolution δω̃ =
0.001 [63] below the 3D band gap and δω̃ = 0.0005 in the
3D band gap, therefore we were able to resolve quality factors
as high as Q = 1000. All calculations are performed on the
“Serendipity” cluster in the MACS group at the MESA+

Institute [64]. Even on this powerful computer cluster, the
computation of a single spectrum as shown in Fig. 2 takes
more than 122 hours or six days.

Γ

ω
FIG. 2. Reflectivity spectra in the range of the 3D band gap

calculated for a 3D inverse woodpile photonic crystal with a point
defect [see Fig. 1(b)] for light at normal incidence (�Z direction)
for s polarization (top panel, red dashed-dotted curve) and for p

polarization (bottom panel, green dashed curve). Central panel: band
structure for wave vectors between � and Z, where the 3D band
gap of the perfect crystal is indicated with the yellow bar. Red
dashed-dotted lines are s-polarized bands and green dashed lines
p-polarized bands. The reduced frequency ω̃ is defined here [63].

III. RESULTS

A. Reflectivity resonances within the 3D band gap

The central panel of Fig. 2 shows the polarization-resolved
band structure in the �Z high symmetry direction for a 3 ×
3 × 3 supercell of the infinite 3D inverse woodpile photonic
crystal with a point defect. For reference, the 3D photonic
band gap of the perfect crystal spans from ω̃ = 0.51 to ω̃ =
0.645. With increasing frequency from the bottom of the band
gap, we observe that there is one isolated s-polarized defect
band S1 at ω̃1 = 0.5144 and four isolated p-polarized defect
bands P1, P2, P3, and P4 at ω̃2 = 0.5140, ω̃3 = 0.5213, ω̃4 =
0.5376, and ω̃5 = 0.5441, respectively, where the S1 and P1
bands are nearly degenerate. The observation of five nearly
dispersionless defect bands agrees very well with Ref. [50]
who also reported five defect states, although the polarization
of the states was not identified [65]. The central panel of Fig. 2
reveals numerous other s and p-defect bands beyond ω̃ =
0.55 that are possibly due to waveguiding along the defect
pores. Since these bands are neither isolated nor dispersion-
less, we do not consider these to be cavity resonances, similar
to Ref. [50]. For clarity, we note that these defect modes are
fully vectorial in character. In this paper, we refer to the modes
as s or p polarized to indicate their symmetry properties
while being excited either with s- or p-polarized incident light
incident from a high-symmetry direction. The frequencies
reported in Ref. [50] are nearly �ω̃ = 0.007 higher than the
present results, which is attributed to the different numerical
methods (PWE versus FEM) with concomitant different spa-
tial meshing and resolutions, see Appendix A.

Naively, one may expect a resonance trough in reflectivity
for each of the five defect bands. To identify such reso-
nance troughs, we calculate reflectivity inside the 3D band
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gap at normal incidence for a 3 × 3 × 3 supercell of the
finite-support 3D inverse woodpile photonic crystal with a
point defect. The top and bottom panels of Fig. 2 show the
reflectivity spectra for s and p polarizations, respectively. For
both polarizations, however, we observe only four reflectivity
resonances, namely one s-polarized one at ω̃ = 0.519 and
three p-polarized ones at ω̃ = 0.538, 0.540, 0.545. More-
over, it is remarkable that there do not seem to be reflectivity
counterparts for the S1 band at ω̃1 = 0.5144 and for the
two p bands at ω̃2 = 0.5140 and ω̃3 = 0.5213. Thus, this
straightforward inspection of the reflectivity spectra does not
allow us to identify reflectivity resonances in the finite-support
crystal with defect states in its infinite counterpart, and a more
advanced approach is needed.

To match a reflectivity trough of a finite crystal slab
to a corresponding defect band of an infinite crystal, we
cross correlate the spatial distribution of the electric-field
norm |E(ω̃m, �r )| of a defect band at frequency ω̃m with
the field |E(ω̃, �r )| in the finite crystal slab calculated as a
function of frequency ω̃. To keep the computation tractable
[66], we consider the field distributions |E(ω̃m, y, z, �r0)| and
|E(ω̃, y, z, �r0 + ��r )| in the YZ cross section through the
center of the cavity at the reference position �r0 for the infinite
crystal and at ( �r0 + ��r ) for the finite-support crystal, see
Fig. 5 for such field patterns. The normalized cross-correlation
C(ω̃, ω̃m, ��r )) is defined as

C(ω̃, ω̃m, ��r )

≡
∫ 3c

z=0

∫ 3a

y=0
|E(ω̃m, y, z, �r0)||E(ω̃, y, z, �r0 + ��r )|dydz

× 1[ ∫ 3c

z=0

∫ 3a

y=0 |E(ω̃m, y, z, �r0)|2dydz
] 1

2

× 1[ ∫ 3c

z=0

∫ 3a

y=0 |E(y, z, �r0 + ��r, ω̃)|2dydz
] 1

2

. (1)

When the position of the cavity in the finite-support crystal
is matched to the position in the infinite crystal, the difference
vanishes ( ��r = 0), and the correlation C(ω̃, ω̃m, ��r ) is at a
maximum; in Fig. 3 we plot C(ω̃, ω̃m, ��r = 0). A reflectivity
resonance with a field that cross correlates to C = 1 at its
central frequency ω̃c will then correspond to a defect state at
ω̃m. In addition to the field cross correlation, we also confirm
the cavity resonance by the visual inspection of the cross
sections of the electric-field distributions, and we verify the
3D band gap confinement of light by checking the angular
independence of a reflectivity resonance. Since from the five
resonances, the P1, P2, and P4 ones show relatively straight-
forward behavior, we first discuss these three resonances,
before analyzing the more complex behavior of the S1 and
P3 resonances.

1. P1 resonance

In Fig. 3(b), the cross correlation of the field of the
P1 defect band at ω̃m=2 = 0.5140 with the finite-crystal
fields equals about 0.6 at most frequencies, with a marked
peak at ω̃ = 0.5140. This cross-correlation peak with C =
1 corresponds to a weak resonance trough in reflectivity

FIG. 3. Normalized cross correlation between the cross sections
of the electric-field distribution |E| at the defect bands ω̃m in the band
structure and fields at discrete frequencies ω̃ in the reflectivity spectra
for a finite 3D inverse woodpile photonic crystal with a point defect.
The 3D band gap of the perfect crystal is shown with the yellow bar.
S1 indicates the single s-polarized cavity resonance inside the 3D
band gap. Similarly, P1, P2, P3, and P4 indicate the four p-polarized
cavity resonances inside the 3D band gap.

(Rmin � 99%) at normal incidence. Upon varying the angle of
incidence, we observe that the reflectivity resonance becomes
a bit more prominent (Rmin � 95%) and that the reflectivity
resonance frequency is independent of angle, as shown in
Fig. 4. In addition, Fig. 5 shows that the spatial YZ field
distribution for the defect band in the infinite crystal matches
very well with the field distribution of the resonance in the
photonic crystal with finite support. Therefore, from all three
main observations (correlation, angle-independent reflectivity
resonance, and spatial field distribution) we identify the P1
defect band to occur in reflectivity at ω̃m = 0.5140 with a field
distribution shown in Fig. 5.

2. P2 and P4 resonances

The cross correlation of the field of the P2 defect band at
ω̃m=3 = 0.5213 in the infinite crystal has a maximum C =
1 at a frequency ω̃ = 0.522 that agrees well with a weak
reflectivity resonance at ω̃ = 0.522 at normal incidence, see
Fig. 4(b). Similarly, the cross correlation of the infinite-crystal
P4 defect band field at ω̃m=5 = 0.5441 and the finite-crystal
field has a maximum C = 1 at ω̃ = 0.5445 where a strong
reflectivity resonance (Rmin � 0%) occurs, see Fig. 4(b).
With increasing angle of incidence the reflectivity resonances
deepen to Rmin � 30% for P2 and Rmin � 20% for the P4
resonance. The frequencies of both reflectivity resonances are
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FIG. 4. Reflectivity near the bottom of the 3D band gap for (a) s-
and (b) p-polarized light for a 3D inverse woodpile photonic crystal
with a point defect. In both upper panels, the red dashed-dotted and
green dashed curves are calculated results at normal incidence, as in
Fig. 2. Blue solid and black curves in the upper panels are reflectivity
spectra for angles of incidence 40◦ and 80◦, respectively. Both lower
panels show the band structures in the �Z direction for (a) s- (red)
and (b) p-polarized light (green). The wave vector is reduced as k

′ =
(ka/2π ). The 3D band gap of a perfect infinite crystal is indicated
with the yellow bar. (c) The central frequency of a resonance trough
versus angle of incidence. S1−, S1+, P1, P2, P3−, P3+, and P4 label
reflectivity resonances.

FIG. 5. Left: YZ cross sections of the spatial distribution of the
electric-field modulus |E| of the P1, P2, P3, and P4 resonances in an
infinitely replicated 3 × 3 × 3 super cell of a 3D inverse woodpile
photonic crystal with a point defect. Right: YZ cross sections of
the electric-field modulus |E| for the P1, P2, P3−, P3+, and P4
resonances in a finite 3D inverse woodpile photonic crystal with a
point defect for p-polarized light at normal incidence and a 3 × 3 × 3
super cell.

independent of incident angle (Fig. 4) as expected for a cavity
resonance in a 3D band gap. Finally, Fig. 5 shows that the
spatial field distributions in the infinite crystal agree very well
with the field distributions in the finite crystal slab. Thus, we
identify the P2 resonance to occur at ω̃m = 0.522 with a field
distribution as shown in Fig. 5. We identify the P4 defect band
to occur at ω̃m = 0.5445 with a field distribution as shown in
Fig. 5. We note that the P2 field distribution resembles the P1
field distribution, since there is a secondary cross-correlation
peak at the P1 resonance at ω̃ = 0.514 in Fig. 3. Similarly,
the cross correlation shows that the P4 field distribution
resembles the P3 field distribution in view of a secondary
cross-correlation peak at ω̃ = 0.537 and ω̃ = 0.5385 in Fig. 3.

3. P3 resonance

The P3 defect band at ω̃m=4 = 0.5376 in the infinite
crystal reveals a surprising double cross correlation peak
with C = 1 at ω̃− = 0.537 and ω̃+ = 0.5385, see Fig. 3.
Indeed the reflectivity spectrum also shows two correspond-
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FIG. 6. Left: YZ cross section of the spatial distribution of the
x component of the magnetic-field Hx for the P3 defect state in an
infinitely extended 3 × 3 × 3 super cell of a 3D inverse woodpile
photonic crystal with a point defect. Right: YZ cross section of the
magnetic-field Hx for the P3− and P3+ resonances in a 3D inverse
woodpile photonic crystal with a point defect with finite support for
p-polarized light at normal incidence and a 3 × 3 × 3 super cell.

ing resonance troughs at ω̃− = 0.537 and ω̃+ = 0.5385, see
Fig. 4(b). These two troughs are symmetrically located on
either side of the defect band ω̃m = 0.537. Both troughs de-
velop deep minima (Rmin � 20%) versus angle of incidence,
and their resonance frequencies are independent of angle
(Fig. 4), typical of 3D photonic band gap cavity resonances.
Figure 5 shows that the spatial electric-field distribution of the
P3 defect band matches very well with both field distributions
at the lower (ω̃− = 0.537) and upper (ω̃+ = 0.5385) reflectiv-
ity resonances. Since the magnetic field of an electromagnetic
wave is complementary to the electric field and thus holds
additional information [67,68], we show the magnetic-field
distributions for both the infinite crystal and the finite-support
crystal in Fig. 6. We see that both the field distributions and
the phases of both finite-crystal resonances match very well
with the distribution and phase of the single P3 defect state
in the infinite crystal, which confirms that both finite-size
resonances derive from one and the same resonance in the
infinite crystal.

4. S1 resonance

The S1 field distribution at ω̃m=1 = 0.5144 in the infinite
crystal also reveals a double cross correlation peak in Fig. 3
with maxima C = 1 at ω̃− = 0.505 and at ω̃+ = 0.5190, the
latter being remarkably broad, which only occurs here for S1.
In reflectivity [Fig. 2(a)] we observe two matching resonances
at normal incidence at ω̃− = 0.505 and ω̃+ = 0.5190. With
increasing angle of incidence the two reflectivity resonances
reveal remarkably different behavior: The upper resonance at
ω̃+ = 0.5190 does not shift with angle of incidence (Fig. 4),
as expected for a photonic band gap cavity. The lower reso-
nance at ω̃− = 0.505 (at θ = 0◦), however, shifts with angle
of incidence since different resonances occur at θ = 40◦ or
θ = 80◦. The shift makes intuitive sense in view of the striking

FIG. 7. Left: YZ cross section of the spatial distribution of the
electric-field modulus |E| in an infinitely extended 3 × 3 × 3 super
cell of a 3D inverse woodpile photonic crystal with a point defect.
Right: YZ cross sections of the same electric-field moduli for the
S1− and S1+ resonances in a 3D inverse woodpile photonic crystal
with a point defect with finite support for s-polarized light at normal
incidence and a 3 × 3 × 3 super cell.

occurrence of this resonance outside the photonic band gap,
hence no 3D confinement is expected. Nevertheless, this
resonance occurs inside the s-polarized �Z stop band so at
least one-dimensional (1D) confinement is expected. Another
remarkable feature of the S1 resonances (with the electric-
field distributions shown in Fig. 7) is that the two reflectivity
resonances are asymmetrically located on either sides of the
defect state in the infinite crystal at ω̃m = 0.5144.

At this time, we do not yet have a physical explanation for
the remarkable frequency splitting of the S1 and P3 defect
states in the crystal with finite support. We speculate whether
a hybridization with surface modes or the leaking of modes
of the surrounding free space into the finite crystal slab may
cause the splitting, although we are unaware why or how
there could be resonant structure in the free space. It is also
conceivable that the double reflectivity resonances are the
result of the coupling of the defect state with another, as yet
unidentified, resonance.

B. Quality factor and energy enhancement

1. Quality factor

Since we consider here a 3D photonic crystal with finite
support, our study allows us to investigate the quality factor Q

of all resonances. Since we perform time-harmonic computa-
tions, we calculate the cavity quality factor Q from the ratio of
the central frequency ω̃c and the full width at half maximum
of the reflectivity resonance �ω̃ [67,69]

Q = ω̃c

�ω̃
. (2)

From the reflectivity spectra in Fig. 4 we obtain the band-
widths of the resonances S1−, S1+, P3−, P3+, and P4 to
be �ω̃ = 1.1 × 10−3, 2.0 × 10−3, 5.3 × 10−3, 0.5 × 10−3,
and 1.0 × 10−3, respectively, which corresponds to the cavity
quality factors Q shown in Fig. 8 [70]. The P1, P2, P3−,
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FIG. 8. Quality factor Q (green triangles) for the reflectivity
resonances S1−, S1+, P3−, P3+, and P4. The frequency resolution in
the calculation places a lower bound Q = 1000 to the quality factors
of the P1 and the P2 resonances.

P3+ resonances have the highest cavity quality factors near
Q = 1000 and the S1+ resonance has the lowest quality factor
of about Q = 250. Since the bandwidth of the P1 and the P2
resonances is close to the numerical resolution, we take the
minimum bound for their bandwidth to be the frequency res-
olution �ω̃ = δω̃ = 0.0005 and thus a corresponding quality
factor as a lower bound: Q � 1000.

For a strong confinement of light by an optical cavity, a
large quality factor is most desirable [1,8]. Hence, the P2
reflectivity resonance with ω̃c = 0.522 has the best potential
for the 3D spatial confinement of light. This conclusion
matches with Ref. [50] though interestingly for a different
underlying motivation: Woldering et al. concluded that the
j = 3 resonance is the best, since it is most isolated as
it has the greatest frequency difference to the other defect
states [50].

2. Energy enhancement

Considering the electric-field distributions of Figs. 5 and 7,
we note that the electric field is strongly concentrated in the
proximal region of the two orthogonal defect pores for all
cavity resonances. We observe that the cavity resonances are
localized both in silicon and in free space, e.g., the S1+ and
P1 resonances have field maxima in the silicon backbone,
whereas the P2 resonance has maxima both in free space
and in silicon. Therefore, to accurately quantify the energy
enhancement ηE at a frequency ω in the reflectivity spectra
with respect to the reference frequency ωref, we employ the
definition

ηE ≡
∫
V

ε(�r )|E(�r, ω)|2dV∫
V

ε(�r )|E(�r, ωref )|2dV
, (3)

where we choose the integration volume as V = ac2, the
volume of one unit cell of the cubic inverse woodpile photonic
crystal. To normalize the energy density, we consider two
reference states, namely free space (by computing the energy
density outside the crystal), or the homogeneous effective
medium (by considering light at a low frequency ω̃ = 0.04
below the gap [71]). Figure 9 shows the enhancement ηE

between ω̃ = 0.5 and ω̃ = 0.55 for both polarizations. We
observe large ηE > 800-fold energy enhancements at frequen-

FIG. 9. Energy enhancement for a 3D inverse woodpile photonic
crystal with a point defect. Red dashed-dotted curves are the en-
hancement with respect to the effective medium, green solid curves
are with respect to incident light in free space. The 3D band gap is
indicated with the yellow bar. S1−, S1+, P3−, P3+, and P4 are the
reflectivity resonances.

cies pertaining to the reflectivity resonances, i.e., S1−, S1+,
P3−, P3+, and P4, which confirms our results regarding the
identification of these resonances. The enhancement of the
S1+ resonance is nearly equal to the one for the P2 resonance.
The energy enhancement is maximum for the P3−, P3+, and
P4 resonances, reaching up to ηE = 2400×.

C. Enhanced absorption

To benefit from the large energy enhancement at the re-
flectivity resonances, we investigate the possibility of using
a 3D silicon inverse woodpile with a resonant cavity as an
absorbing medium in the visible part of the spectrum, for
instance, for an optical sensor or a solar cell. It is well known
that a thin submicron silicon film absorbs weakly in the
wavelength range from 600 to 1000 nm [72,73]. To enhance
the absorption in this range we tailor the lattice parameters
of the inverse woodpile to a = 425 nm and c = 300 nm
such that the reflectivity resonances occur in this range. To
make our calculations relevant to future experimental work,
we employ a realistic refractive index of silicon including
dispersion and absorption taken from Ref. [74].

Figures 10(a) and 10(b) show reflectivity and absorption
spectra for s and p polarizations, respectively. For an ideal
inverse woodpile crystal with the same dispersive and com-
plex refractive index, we find in separate calculations [75]
that the s-stop band appears between ω̃ = 0.476 and ω̃ =
0.670 [Fig. 10(a)] and the p-stop band in between ω̃ = 0.486
and ω̃ = 0.657 [Fig. 10(b)]. Compared to an ideal inverse
woodpile crystal with a refractive index typical of silicon in
the near infrared below its electronic band gap, including the
telecom ranges (see Ref. [60], Fig. 7), we find that the s- and
p-stop bands in Figs. 10(a) and 10(b) are shifted to lower
reduced frequency. This shift makes sense since the refractive
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ω

ω

FIG. 10. Reflectivity, absorption, and absorption enhancement
spectra calculated for an inverse woodpile photonic crystal with a
cavity in the near IR to visible range at normal incidence for (a) s

and (b) p polarization. The yellow bar indicates the stop band for a
crystal without defects. Upper panels in (a) and (b): Black dashed
curves are reflectivity for dispersion and no absorption [Im(nSi ) =
0]. Red dashed-dotted and green dashed curves are reflectivity for
both dispersion and absorption (Im(nSi ) 	= 0). Middle panels: Red
dashed-dotted and green dashed curves are absorption for both
dispersion and absorption. Blue dashed-dotted curves are absorption
ASi for a thin silicon film (LSi = 3c = 900 nm). Bottom panels: Red
dashed-dotted and green dashed curves are absorption enhancement
of the crystal relative to the thin Si film; blue dashed-dotted lines are
the reference level (=1).

index in the visible range is greater than at optical frequencies
below the electronic band gap [74].

For the inverse woodpile crystal with cavity, we observe
in Figs. 10(a) and 10(b) that there are numerous narrow res-
onance troughs in the absence of imaginary refractive index.

For instance, for s polarization we see narrow resonances at
ω̃ = 0.47, 0.49, 0.59, 0.64, and for p polarization at ω̃ = 0.47,
0.52, 0.55, 0.64. When we introduce the imaginary part of
the silicon refractive index, there are still resonances that even
appear at the same frequencies as for zero imaginary refractive
index. To profit from the identification of the finite-support
resonances in Sec. III A where a purely real refractive index
was used, we compare the reflectivity spectra in the top panels
of Figs. 10(a) and 10(b) both without and with the imaginary
part of the silicon refractive index. It is remarkable that several
resonances are more pronounced in the presence of the imag-
inary part of the refractive index than without, for instance,
at ω̃ = 0.50 and 0.51 for s polarization and at ω̃ = 0.57 and
0.58 for p polarization. In terms of a 1D planar Fabry-Perot
microcavity model [11], we propose that the imaginary index
effectively increases the reflectivity of the (photonic crystal)
mirrors that surround the defect cavity, hence the resonance’s
amplitude increases.

As a first step to investigate possible photovoltaic func-
tionality of the 3D inverse woodpile photonic crystal, we
calculate absorption and enhancement spectra that are shown
in the middle and bottom panels of Figs. 10(a) and 10(b)
for both s and p polarizations. We compare the absorption
of an inverse woodpile crystal with thickness L3DPC = 3c =
900 nm to the absorption of a thin homogeneous silicon film
of equal thickness LSi = 900 nm. We observe that at reduced
frequencies beyond 0.55, an inverse woodpile crystal has
substantially greater absorption than a homogeneous thin film,
especially for p polarization with enhancement as high as
10×, see Figs. 10(a) and 10(b) bottom panels. The absorption
peaks near ω̃ = 0.49 for s polarization and ω̃ = 0.52 for p

polarization are similar to corresponding cavity resonances
identified above in Sec. III A.

In addition to remarkable absorption, a 3D inverse wood-
pile photonic crystal has the advantageous feature that it is
much rarified compared to bulk silicon, as it contains only
20% volume fraction silicon [75] and is thus 4× lighter
than a bulk silicon device with the same thickness. On
the other hand, it is known that the photocurrent density
depends not only on the optical absorption but also on
the surface recombination of excited charge carriers [76].
Since an inverse woodpile crystal has a large surface area
per unit cell compared to a thin homogeneous film, sur-
face recombination requires further investigation to ascer-
tain whether the enhanced absorption indeed leads to en-
hanced photovoltaic efficiency. Hence, a 3D inverse wood-
pile photonic crystal with a resonant cavity is an interesting
candidate as absorbing medium to enhance the absorption
of photons at multiple discrete frequencies in the visible
range.

D. Fano resonances below the 3D band gap

The reflectivity spectra for a perfect 3D inverse woodpile
photonic crystal reveal Fabry-Pérot fringes below the stop
band as a result of interference between the front and back sur-
faces [60]. To investigate the effect of a point defect on these
Fabry-Pérot fringes, we calculate the polarization-resolved (s
or p) reflectivity below ω̃ = 0.50 at normal incidence to the
3 × 3 × 3 supercell of an inverse woodpile photonic crystal
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Γ

ω

FIG. 11. Reflectivity below the 3D band gap for a 3D inverse
woodpile photonic crystal with a point defect for light (a) at normal
incidence for s polarization (top panel, red dashed-dotted curve)
and for p polarization (bottom panel, green dashed curve). The
corresponding band structure for the �Z direction is shown in the
central panel. The wave vector is expressed as k

′ = (ka/2π ). Black
curves in top and bottom panels indicate the reflectivity spectra
for a perfect 3D inverse woodpile photonic crystal for s and p

polarizations, respectively. Beyond ω̃ = 0.21, the reflectivity spectra
for a crystal with a defect deviates increasingly from perfect crystal
spectra. (b) Reflectivity for p-polarized incident light, where the
green dashed and blue solid curves are the spectra for incident angles
θ = 0◦ and θ = 40◦, respectively, off the normal in the �Z direction.

with and without a point defect, see Fig. 11. Below ω̃ = 0.21
we observe in Fig. 11(a) that the spectra for a photonic crystal
with two line defects matches very well with the one for a
perfect photonic crystal. Beyond ω̃ = 0.21, however, several
peaks appear, e.g., at ω̃ = 0.22 in the s-polarized spectrum
in Fig. 12(a). These peaks are narrow and sometimes have
a reflectivity up to 100%. The band structure in Fig. 11(a)
reveals the characteristic band folding due to the supercell.
The bands increase linearly up to ω̃ = 0.12 and then fold
back to ω̃ = 0.21. By comparing this band structure to the
corresponding reflectivity spectra, we note that fringes for a
photonic crystal with a defect match with the fringes for a
perfect crystal only when the bands are in the linear dispersion
regime (ω = c · k), below ω̃ = 0.21. Therefore, these narrow

FIG. 12. Fano resonances below the 3D band gap for a 3D
inverse woodpile photonic crystal with a cavity. The red squares in
(a) and the green circles in (b) are zoomed-in reflectivity spectra
calculated at normal incidence for s and p polarizations, respectively.
The red dashed-dotted and green dashed curves denote the Fano
resonance model Eq. (4) fitted to the reflectivity peaks.

peaks in the fringes correspond to frequency ranges of band
folding.

To verify the confinement of light in real space at these
peak frequencies, we investigate the angle dependence of
the peaks. Figure 11(b) shows the reflectivity for a photonic
crystal with a point defect between ω̃ = 0.21 and ω̃ = 0.5
at incident angles 0◦ and 40◦. We observe peaks on the
low-frequency Fabry-Pérot fringes for both incident angles
that vary with incident angle, unlike the cavity resonances in
Sec. III A. Thus, these peaks are not cavity resonances [77].
We interpret this behavior as the electromagnetic interference
of reflectivity from the continuum contribution of the film
and from the discrete contribution of the defect pores. This
interference leads to sharp asymmetric peaks, commonly re-
ferred to as Fano resonances in solid-state and atomic physics
[78–81].

When the continuum contribution and the discrete contri-
bution to the interference are comparable, the Fano resonance
has a characteristic sharp asymmetrical shape, e.g., at ω̃ =
0.225 for s polarization in Fig. 12(a) and at ω̃ = 0.44 for
p polarization in Fig. 12(b). To confirm this reasoning, we
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modeled the reflectivity data R with the functional form of
the Fano resonance [78] in Figs. 12(a) and 12(b) [79]

R(ω) = (F� + ω − ω0)2

(ω − ω0)2 + �2
, (4)

where ω0 and � are the center frequency and width of the
resonance, respectively, and F is the Fano parameter that
describes the asymmetry. In the models in Fig. 12 for s

and p polarization, the adjusted parameters are ω0 = 0.2205,
and 0.439, respectively, � = 0.0053, and 0.0105, and F =
6.7206 and 4.5152. The s-polarized resonance model is more
asymmetric than the p resonance, where we note that the
s-polarized data are even more asymmetric (beyond what the
model captures). Hence, these Fano resonances are angle-
dependent and asymmetric in shape, unlike the cavity reso-
nances that are angle-independent and have symmetric line
shapes.

IV. DISCUSSION

A. Quadrupolar and group symmetry

Since Ref. [50] did not provide a symmetry assignment of
the cavity resonances, we propose an assignment here based
on three main arguments. Firstly, the consistent observation
of five resonances by three independent studies (Refs. [50,54]
and the present work) strongly suggests that a cavity in an
inverse woodpile photonic band gap crystal has eigenstates
with quadrupole symmetry, since a quadrupole in electrody-
namics has five components [53]. Conversely, a cavity in an
inverse woodpile crystal is analogous to d orbitals in atomic
solid-state physics, since d orbitals have five states (dxy , dxz,
dyz, dx2−y2 , dz2 ) [52].

Secondly, the degeneracy of two bands at the � high-
symmetry point in Figs. 4(a) and 4(b) agrees with the occur-
rence of two degenerate bands out of five 3d-orbital bands of
transition metal nickel at the conventional cubic � points, see
Fig. 10.6(a) in Ref. [52]. Simultaneously, the degeneracy of
the S1 and P1 bands both at � and at about 2/3 along �Z in
Figs. 4(a) and 4(b) agrees with the occurrence of a degeneracy
of two bands in the nickel case both at � and at 0.9 of the
�K direction (see Fig. 10.6(c) in Ref. [52]), where the second
point corresponds to 0.67 along �Z in our tetragonal Brillouin
zone [82].

Thirdly, Woldering et al. presented (but did not interpret)
in their Fig. 5 a cross section of the energy density distribu-
tions in the (x, z) plane of the crossing defect pores for the
third resonance that corresponds to our P2 resonance. This
cross section revealed that four sharp field maxima occur at
four sharp corners in the high-index dielectric material, with
the same spatial distribution as the four potential minima
and maxima of an electric quadrupole [53]. Since the field
distribution pertains strictly to a single resonance, one can
immediately exclude the naive suggestion whether the four
field maxima pertain to a double dipole state. Taking these
arguments together, we conclude that the resonances of the
inverse woodpile cavity have quadrupolar symmetry and are
the optical analogues of d orbitals in solid-state physics.

In a finite crystal, it is known that perfect symmetries
that pertain to infinitely extended crystals are disrupted [83].

FIG. 13. Quality factor Q of a photonic band gap cavity versus
thickness L of the embedding photonic band crystal with finite
support. The thickness is reduced with the spacing d between lattice
planes (d = a/2 for diamond structures) as L/d . The solid red circle
is our FEM result for a Si inverse woodpile cavity, black triangles
are FDTD results for GaAs woodpile cavities [39], blue diamonds
are FDTD results for GaAs woodpile cavities [84], magenta inverted
triangles are FDTD results for cavities in 〈110〉-layered diamond
structures [84], and the green square is the FDTD result on a
woodpile structure [85]. The black dashed line is the model [Eq. (5)]
with S = �ω̃s/ω̃s = 0.62.

Indeed, we have seen in the cross-correlation analysis above
(Fig. 3) that for several finite-crystal resonances, a nonzero
amount of other states is admixed, on account of the obser-
vation of secondary maxima in the cross-correlation plots,
e.g., the P1 resonance containing admixtures of the P2 and
P4 resonances. Hence, a future extensive computation of
the full field distributions will shed light on the question of
the “purity” of the resonances and also in as much as the
admixture of other states depends on finite-size effects.

As a future step, it will be interesting to further analyze the
cavity resonances with the help of group theory, see Ref. [86].
Since inverse woodpiles have a diamond structure, the factor
group is Oh. This group has irreducible representations that
are singly, doubly, or even triply degenerate. We have seen
above that the two resonances P1 and S1 are degenerate in
most parts of the Brillouin zone, whereas the three others
are nondegenerate. Therefore, we conclude that the P1 and
S1 likely have E symmetry, whereas the other three reso-
nances have either A1 or A2 symmetry. Further assignment—
including possible gerade or ungerade character—can only
be done if the full 3D field distributions of the resonances are
available, which requires extensive computations.

B. Thickness-dependent quality factor

Let us put the quality factors above in context with other
3D photonic band cavities [39,41,85]. In Fig. 13, we plot
the available data for all photonic band gap cavities. It is
exhilarating that our result (Q = 1000 for L = 6d [87])
matches very well with the results from Ogawa et al. [39] and
with two sets of data from Tajiri et al. [84]. This agreement
represents a remarkable correspondence between direct and
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inverse structures. We surmise that the apparent bendover
at L = 12d in the Tajiri et al. data occurs since the finite
lateral width of their structures becomes comparable to the
thickness, hence lateral confinement becomes the limiting
factor. The simulation result of Taverne et al. [85] (Q = 105

for L/d = 18.5 lattice spacings) are somewhat lower, for
currently unknown reasons.

Since all data in Fig. 13 pertain to 3D photonic band gap
crystals with different thickness, different high-index back-
bone, and direct and inverse structures, we propose an analytic
model. To this end, we invoke a simplified one-dimensional
(1D) model for a photonic band gap cavity that corresponds
to a microcavity consisting of two Bragg stacks surrounding
a central defect layer (cf. Refs. [11,88]), see Appendix D
for details. We derive that the quality factor Q increases
exponentially with the thickness L of the cavity structure

Q = π. exp

(
π

L

2d

�ω̃s

ω̃s

)
, (5)

with d the lattice spacing (between lattice planes [52]) of the
photonic crystal, and �ω̃s the band width and ω̃s the central
frequency of the stop band. We model the data with Eq. (5)
where the only adjustable parameter is the ratio S = �ω̃s/ω̃s

that is interpreted as the photonic interaction strength S of
a photonic crystal [35,89] and that is inversely proportional
to the Bragg length that gauges the typical length scale for
interference in a photonic stop gap. We find a very good match
of the model with the data in the exponential regime, with
a large photonic strength of S = 0.62. The large photonic
strength derived here matches with the previously reported in-
tense reflectivity of R = 95% for a thin woodpile crystal with
only four layers (L = 4d/2 = a) that was also considered
remarkable at that time [90]. The derived photonic parameter
S = 0.62 is remarkably larger than the relative width of the
dominant �-X or �-Z stop bands (�ω̃s/ω̃s = 0.2) and than
the width of the �-Y stop band (�ω̃s/ω̃s = 0.3). At this time,
we surmise that the difference occurs because the derivation
of the photonic parameter invokes approximations that pertain
to photonic crystals in the weakly interacting limit (i.e., at
low S).

V. CONCLUSION

We have numerically studied the reflectivity and the ab-
sorption of a resonant cavity in a three-dimensional photonic
crystal with finite support. We employed the finite element
method to study crystals with the cubic diamondlike inverse
woodpile structure with a high-index backbone having a
dielectric function similar to silicon. The point defect func-
tioning as a cavity is formed in the proximal region of two
orthogonal pores with a radius that differs from all others
in the bulk of the crystal. By comparing defect bands in
the band structure for an infinite crystal with resonances in
the reflectivity spectra for a finite crystal, we identify cavity
resonances and their field patterns. Out of five observed cavity
resonances, one is s polarized and four are p polarized.
These cavity resonances are angle independent, indicating
a strong confinement of light in the crystal slab. The P1,
P2, and P4 resonances reveal normal behavior with single
cross-correlation peaks (between field distributions) and sin-

gle reflectivity resonances. The P3 and S1 resonances in finite
crystals reveal an intriguing splitting into two subresonances.
We find large energy enhancement at cavity resonances, i.e.,
up to ηE = 2400 times the incident energy and up to ηE =
1200 times the energy at a lower frequency. Our results
indicate that 3D photonic band gap crystals with resonant
cavities are potential candidates for the absorbing medium
of a solar cell in order to enhance the photovoltaic efficiency
and reduce the weight of the absorbing component by nearly
80%. Fano resonances are observed below the band gap due
to the electromagnetic interference between the discrete con-
tribution of the fundamental cavity mode and the continuum
contribution of the light scattered by the photonic crystal. Our
study indicates that the five eigenstates of our 3D photonic
band gap cavity have quadrupolar symmetry, in analogy to
d-like orbitals in solid-state physics. We conclude that inverse
woodpile cavities have intriguing potential to applications in
optical sensing, photovoltaics, and quantum optics.
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APPENDIX A: COMPARISON OF THE NUMERICAL
SOLVERS

To compute the photonic band structure for the supercell
of a 3D inverse woodpile photonic crystal with a point defect,
Ref. [50] employs a plane-wave expansion (PWE) method
eigenvalue solver, whereas we employ the COMSOL finite-
element method (FEM) [61] eigenvalue solver [57]. We com-
pute the polarization-resolved (both s and p) band structures.
Figure 14 shows the bands between ω̃ = 0.51 and ω̃ = 0.56
obtained using both the FEM solver and the PWE method. We
observe that there are five isolated and nearly dispersionless
bands obtained using both methods. Out of these five bands,
the FEM solver gives one s-polarized band, namely S1, and
four p-polarized bands, namely P1, P2, P3, and P4. We
note that all bands obtained using the FEM occur at lower
frequencies compared to the corresponding bands obtained
using the PWE method.

In order to characterize this frequency shift between the
FEM and the PWE results, we compare cross sections of the
dielectric-permittivity distribution of the supercell structure
obtained from both methods in Fig. 15. We take the cross
section through the center of the cavity and parallel to the YZ

plane. We observe that the curved boundaries between the free
space and the high-index backbone material are smoother in
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FIG. 14. Band structures in the �Z direction calculated with
the finite-element method (FEM) solver (red dashed-dotted line and
green dashed lines) and with the MPB plane-wave expansion (PWE,
black lines). Due to higher spatial resolution, the bands calculated by
FEM are shifted to lower frequencies compared to those calculated
by MPB. S1 is the s-polarized cavity resonance, and P1, P2, P3, and
P4 are the four p-polarized cavity resonances in the photonic band
gap.

Fig. 15(a) compared to Fig. 15(b). This difference is more pro-
nounced for the sharp interface surrounding the point defect.
Compared to the PWE solver, we use a smaller element size
in the FEM solver to subdivide the computational domain and
hence the sharp interfaces and the curved boundaries are better
approximated. Reference [50] also reports in Appendix A
that the resonance bands shift to lower frequencies with a
higher spatial resolution. Therefore, we conclude that the
frequency shift between the two numerical methods is due to
the differences in the spatial resolution that result in different
dielectric-permittivity distributions.

The computational time using the FEM solver is 2× longer
than the PWE method. In order to minimize the computational
time, we subdivide the frequency regime into two ranges:
below the 3D band gap and the 3D band gap. Since there are
no isolated resonance bands below the 3D band gap, we do
not need the calculation to have the FEM spatial resolution.

FIG. 15. Cross sections of the dielectric-permittivity distribution
ε(�r ) in the YZ plane of the 3 × 3 × 3 super cell of a 3D inverse
woodpile photonic crystal with a point defect, using (a) COMSOL
finite-element method (FEM) and (b) MPB plane-wave expansion
(PWE) method with a grid resolution of 24 × 34 × 24. The black
color represents the high-index backbone and the white color repre-
sents free space. Two orthogonal defect pores result in a region with
an excess of high-index backbone, as highlighted by orange ellipses.

FIG. 16. Mesh convergence analysis of the finite-element
method for the calculation of reflectivity spectra for a 3D inverse
woodpile photonic crystal with a point defect. Black circles and blue
triangles pertain to frequencies below and near the upper edge of the
3D band gap, respectively. Red squares denote the frequency at the
P3 cavity resonance. Black dashed, blue dashed-dotted, and red solid
curves are guides to the eye showing modulations in the reflectivity
with the varying edge length of a tetrahedron.

Hence, we employ the faster option of the PWE method to
calculate the photonic band structure below the band gap.
However, we employ a spatial resolution of 24 × 34 × 24,
which is a 2 × 2 × 2 times greater 3D spatial resolution than
in Ref. [50]. Since we explicitly aim at identifying isolated
cavity resonances, we compute the photonic band structure
inside the 3D band gap using the FEM solver, which is the
same numerical method used for the reflectivity calculations.

APPENDIX B: MESH CONVERGENCE

In this study, we use tetrahedra to subdivide the 3D compu-
tational domain in the finite element method. To determine the
edge length of the tetrahedra to completely mesh the complex
geometry, we investigate the mesh convergence of the reflec-
tivity results. We perform reflectivity calculations using upper
limits of �l ≤ λ0

4
√

ε
, �l ≤ λ0

8
√

ε
, and �l ≤ λ0

12
√

ε
to the edge

length �l on any tetrahedra, with λ0 the shortest wavelength
of the incident plane waves in free space. Figure 16 shows the
reflectivity at frequencies below, inside, and near the upper
edge of the 3D band gap. These reflectivity values change
less than ∼0.1% with the maximum edge length. From the
nearly constant results of these three mesh resolutions, we
conclude that our calculated reflectivity spectra have con-
verged. These three mesh resolutions take 4300 s, 5330 s,
and 11020 s computation time on the Serendipity cluster,
respectively. Therefore, to keep the computational time for
many frequencies tractable while maintaining the quantitative
convergence of the results, we set an upper limit of �l ≤ λ0

8
√

ε

to the edge length of any tetrahedra used in the finite-element
mesh.
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APPENDIX C: FREQUENCY CONVERGENCE

The reflectivity troughs corresponding to the cavity reso-
nances have bandwidths as narrow as �ω̃ = 0.0005. Thus,
a calculation performed for an insufficient number of dis-
crete frequencies will not detect these reflectivity resonances.
Moreover, the calculation may not show the actual minima of
a given trough due to saturation. Therefore, we perform the
frequency convergence analysis to determine the appropriate
frequency resolution to detect these resonance troughs. We
define the frequency resolution as the spacing between two
adjacent frequency bins. We choose three frequency regimes:
below the band gap (0.30 < ω̃ < 0.35), inside the band gap
(0.53 < ω̃ < 0.54), and near the upper band gap edge (0.58 <

ω̃ < 0.59).
Figure 17(a) shows the reflectivity spectra below the band

gap. A comparison between the spectra for a perfect inverse
woodpile and an inverse woodpile with a point defect reveals
a Fano resonance at ω̃ = 0.335, as shown in Sec. III D. The
maximum of this Fano resonance increases with frequency
resolution. Also, a new Fano resonance appears at ω̃ = 0.335
at higher frequency resolution. Since we performed calcula-
tions using δω̃ = 0.005 for the frequency range below the 3D
band gap, there could be more Fano resonances than the ones
shown in Fig. 11.

Figure 17(b) shows the reflectivity spectra inside the band
gap. The P3 cavity resonance troughs at ω̃ = 0.536 and ω̃ =
0.538 are detected only at frequency resolutions δω̃ = 0.0005
and 0.0001. Since we employed a frequency resolution δω̃ =
0.0005 for all calculations inside the 3D band gap, we have
successfully detected all possible troughs. However, we note
that the minima of the trough at ω̃ = 0.536 changes around
25% upon fivefold increased frequency resolution. Thus the
observed cavity resonances may show even lower minimum
reflectivity at even higher frequency resolution than shown
here.

Figure 17(c) shows the reflectivity spectra near the upper
edge of the band gap between ω̃ = 0.582 and ω̃ = 0.591. We
see two troughs at ω̃ = 0.583 and ω̃ = 0.588. We observe that
the trough at ω̃ = 0.583 is invariant with frequency resolution,
whereas the minimum value for the trough at ω̃ = 0.588
changes. Therefore, we surmise that the trough at ω̃ = 0.583
is a numerical speckle due to the finite sized calculations
whereas the trough at ω̃ = 0.588 corresponds to one of the
resonance bands near the upper edge of the band gap.

APPENDIX D: QUALITY FACTOR VERSUS CRYSTAL
THICKNESS

We derive an analytic expression for the quality factor Q as
a function of the thickness L of the photonic crystal slab. We
invoke a one-dimensional (1D) model for a photonic band gap
cavity that corresponds to a Fabry-Perot microcavity consist-
ing of two Bragg mirrors surrounding a central defect layer,
cf. Refs. [11,88]. For a 1D planar Fabry-Perot microcavity,
the finesse F is expressed in terms of the transmission T of
the mirrors as [91]

F = mQ = π

√
(1 − T )

T
, (D1)

FIG. 17. Reflectivity spectra for a 3D inverse woodpile photonic
crystal with a point defect for p-polarized light at normal incidence
in the �Z direction. (a) Fano resonance below the band gap, (b) P3
cavity resonance inside the band gap, and (c) resonance near the
upper edge of the band gap. Green dashed, blue dashed, and pur-
ple dashed curves are results calculated with frequency resolutions
δω̃ = 0.002, 0.0005, and 0.0001, respectively. The black solid line
indicates the reflectivity for a perfect crystal without defect.

where the finesse is equal to the mth order resonance times
the quality factor Q. The Bragg mirrors have a photonic
stop gap, where the transmission decreases exponentially with
thickness L as

T = exp(−L/	B ), (D2)
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where 	B is the characteristic Bragg length that can be ex-
pressed in terms of the photonic strength (relative stop gap
width (�ωs/ωs), with �ω̃s the band width and ω̃s the central
frequency of the stop band) as

	B = 2d

π

ωs

�ωs

, (D3)

with d the lattice spacing. Taking Eqs. (D1), (D2), and (D3)
together, considering that a typical microcavity resonance is
of a low order (m � 1), and considering that in the stop gap
the transmission is very small (T << 1), we arrive at the
expression for the quality factor Q increasing exponentially
with the thickness L of the cavity structure

Q ≈ π. exp

(+L

	B

)
= π. exp

(
π

L

2d

�ω̃s

ω̃s

)
. (D4)
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[17] M. Pelton, J. Vučkovíc, G. S. Solomon, A. Scherer, and Y.
Yamamoto, Three-dimensionally confined modes in micropost
microcavities: quality factors and Purcell factors, IEEE J. Quan-
tum Electron. 38, 170 (2002).

[18] B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and
J. L. Pelouard, High-Q wet-etched GaAs microdisks containing
InAs quantum boxes, Appl. Phys. Lett. 75, 1908 (1999).

[19] H. T. Miyazaki and Y. Kurokawa, Squeezing Visible Light
Waves into a 3-nm-thick and 55-nm-long Plasmon Cavity, Phys.
Rev. Lett. 96, 097401 (2006).

[20] M. Kuttge, F. J. G. de Abajo, and A. Polman, Ultrasmall mode
volume plasmonic nanodisk resonators, Nano Lett. 10, 1537
(2010).

[21] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A.
Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J.
J. Baumberg, Single-molecule strong coupling at room tem-
perature in plasmonic nanocavities, Nature (London) 535, 127
(2016).

[22] D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J.
Vahala, Ultra-high-Q toroid microcavity on a chip, Nature
(London) 421, 925 (2003).

[23] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P.
D. Dapkus, and I. Kim, Two-dimensional photonic band-gap
defect mode laser, Science 284, 1819 (1999).

[24] Y. Akahane, T. Asano, B. S. Song, and S. Noda, High-Q pho-
tonic nanocavity in a two-dimensional photonic crystal, Nature
(London) 425, 944 (2003).

[25] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-
State Physics and Electronics, Phys. Rev. Lett. 58, 2059
(1987).

[26] S. John, Strong Localization of Photons in Certain Dis-
ordered Dielectric Superlattices, Phys. Rev. Lett. 58, 2486
(1987).

[27] K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Eds.,
Photonic crystals: advances in design, fabrication, and char-
acterization (Wiley, Weinheim, 2004).

[28] M. Minkov, V. Savona, and D. Gerace, Photonic crystal slab
cavity simultaneously optimized for ultra-high Q/V and vertical
radiation coupling, Appl. Phys. Lett. 111, 131104 (2017).

[29] P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Microcavities
in photonic crystals: Mode symmetry, tunability, and coupling
efficiency, Phys. Rev. B 54, 7837 (1996).

[30] E. Özbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho,
Defect structures in a layer-by-layer photonic band-gap crystal,
Phys. Rev. B 51, 13961 (1995).

075112-14

https://doi.org/10.1038/nature01939
https://doi.org/10.1038/nature01939
https://doi.org/10.1038/nature01939
https://doi.org/10.1038/nature01939
https://doi.org/10.1038/nphoton.2008.146
https://doi.org/10.1038/nphoton.2008.146
https://doi.org/10.1038/nphoton.2008.146
https://doi.org/10.1038/nphoton.2008.146
https://doi.org/10.1364/OL.27.000512
https://doi.org/10.1364/OL.27.000512
https://doi.org/10.1364/OL.27.000512
https://doi.org/10.1364/OL.27.000512
https://doi.org/10.1103/PhysRevLett.81.1110
https://doi.org/10.1103/PhysRevLett.81.1110
https://doi.org/10.1103/PhysRevLett.81.1110
https://doi.org/10.1103/PhysRevLett.81.1110
https://doi.org/10.1103/PhysRevLett.68.1132
https://doi.org/10.1103/PhysRevLett.68.1132
https://doi.org/10.1103/PhysRevLett.68.1132
https://doi.org/10.1103/PhysRevLett.68.1132
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1038/nature02969
https://doi.org/10.1038/nature02969
https://doi.org/10.1038/nature02969
https://doi.org/10.1038/nature02969
https://doi.org/10.1038/nature03119
https://doi.org/10.1038/nature03119
https://doi.org/10.1038/nature03119
https://doi.org/10.1038/nature03119
https://doi.org/10.1103/PhysRevLett.95.067401
https://doi.org/10.1103/PhysRevLett.95.067401
https://doi.org/10.1103/PhysRevLett.95.067401
https://doi.org/10.1103/PhysRevLett.95.067401
https://doi.org/10.1364/OL.21.000453
https://doi.org/10.1364/OL.21.000453
https://doi.org/10.1364/OL.21.000453
https://doi.org/10.1364/OL.21.000453
https://doi.org/10.1364/OL.23.000247
https://doi.org/10.1364/OL.23.000247
https://doi.org/10.1364/OL.23.000247
https://doi.org/10.1364/OL.23.000247
https://doi.org/10.1109/3.980269
https://doi.org/10.1109/3.980269
https://doi.org/10.1109/3.980269
https://doi.org/10.1109/3.980269
https://doi.org/10.1063/1.124894
https://doi.org/10.1063/1.124894
https://doi.org/10.1063/1.124894
https://doi.org/10.1063/1.124894
https://doi.org/10.1103/PhysRevLett.96.097401
https://doi.org/10.1103/PhysRevLett.96.097401
https://doi.org/10.1103/PhysRevLett.96.097401
https://doi.org/10.1103/PhysRevLett.96.097401
https://doi.org/10.1021/nl902546r
https://doi.org/10.1021/nl902546r
https://doi.org/10.1021/nl902546r
https://doi.org/10.1021/nl902546r
https://doi.org/10.1038/nature17974
https://doi.org/10.1038/nature17974
https://doi.org/10.1038/nature17974
https://doi.org/10.1038/nature17974
https://doi.org/10.1038/nature01371
https://doi.org/10.1038/nature01371
https://doi.org/10.1038/nature01371
https://doi.org/10.1038/nature01371
https://doi.org/10.1126/science.284.5421.1819
https://doi.org/10.1126/science.284.5421.1819
https://doi.org/10.1126/science.284.5421.1819
https://doi.org/10.1126/science.284.5421.1819
https://doi.org/10.1038/nature02063
https://doi.org/10.1038/nature02063
https://doi.org/10.1038/nature02063
https://doi.org/10.1038/nature02063
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1063/1.4991416
https://doi.org/10.1063/1.4991416
https://doi.org/10.1063/1.4991416
https://doi.org/10.1063/1.4991416
https://doi.org/10.1103/PhysRevB.54.7837
https://doi.org/10.1103/PhysRevB.54.7837
https://doi.org/10.1103/PhysRevB.54.7837
https://doi.org/10.1103/PhysRevB.54.7837
https://doi.org/10.1103/PhysRevB.51.13961
https://doi.org/10.1103/PhysRevB.51.13961
https://doi.org/10.1103/PhysRevB.51.13961
https://doi.org/10.1103/PhysRevB.51.13961


THREE-DIMENSIONAL PHOTONIC BAND GAP CAVITY … PHYSICAL REVIEW B 99, 075112 (2019)

[31] M. Okano, A. Chutinan, and S. Noda, Analysis and design of
single-defect cavities in a three-dimensional photonic crystal,
Phys. Rev. B 66, 165211 (2002).

[32] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D.
Meade, Photonic crystals: Molding the flow of light (Princeton
University Press, Princeton, NJ, 2008).

[33] M. Maldovan and E. L. Thomas, Diamond-structured photonic
crystals, Nat. Mater. 3, 593 (2004).

[34] L. A. Woldering, A. P. Mosk, R. W. Tjerkstra, and W. L. Vos,
The influence of fabrication deviations on the photonic band gap
of three-dimensional inverse woodpile nanostructures, J. Appl.
Phys. 105, 093108 (2009).

[35] W. L. Vos and L. A. Woldering, in Ref. [4], Chap. 8, p. 180, also
available from http://arxiv.org/abs/1504.06803.

[36] E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D.
Brommer, and J. D. Joannopoulos, Donor and Acceptor Modes
in Photonic Band Structure, Phys. Rev. Lett. 67, 3380 (1991).

[37] M. Bayindir, B. Temelkuran, and E. Ozbay, Tight-Binding De-
scription of the Coupled Defect Modes in Three-Dimensional
Photonic Crystals, Phys. Rev. Lett. 84, 2140 (2000).

[38] M. Bayindir and E. Ozbay, Heavy photons at coupled-cavity
waveguide band edges in a three-dimensional photonic crystal,
Phys. Rev. B 62, R2247 (2000).

[39] S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda,
Control of light emission by 3D photonic crystals, Science 305,
227 (2004).

[40] M. Okano and S. Noda, Analysis of multimode point-defect
cavities in three-dimensional photonic crystals using group
theory in frequency and time domains, Phys. Rev. B 70, 125105
(2004).

[41] T. Tajiri, S. Takahashi, Y. Ota, J. Tatebayashi, S. Iwamoto, and
Y. Arakawa, Demonstration of a three-dimensional photonic
crystal nanocavity in a 110-layered diamond structure, Appl.
Phys. Lett. 107, 071102 (2015).

[42] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M.
Sigalas, Photonic band gaps in three dimensions: new layer-by-
layer periodic structures, Solid State Commun. 89, 413 (1994).

[43] J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand and
U. Gösele, Three-dimensional macroporous silicon photonic
crystal with large photonic band gap, Appl. Phys. Lett. 86,
011101 (2005).

[44] F. García-Santamaría, M. Xu, V. Lousse, S. Fan, P. V. Braun,
and J. A. Lewis, A germanium inverse woodpile structure with
a large photonic band gap, Adv. Mater. 19, 1567 (2007).

[45] A. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener,
and G. von Freymann, Fabrication of silicon inverse woodpile
photonic crystals, Adv. Funct. Mater. 17, 2273 (2007).

[46] B. Jia, S. Wu, J. Li, and M. Gu, Near-infrared high refractive-
index three-dimensional inverse woodpile photonic crystals
generated by a sol-gel process, J. Appl. Phys. 102, 096102
(2007).

[47] R. W. Tjerkstra, L. A. Woldering, J. M. van den Broek, F.
Roozeboom, I. D. Setija, and W. L. Vos, A method to pattern
masks in two inclined planes for three-dimensional nano- and
microfabrication, J. Vac. Sci. Technol. B 29, 061604 (2011).

[48] J. M. van den Broek, L. A. Woldering, R. W. Tjerkstra, F.
B. Segerink, I. D. Setija, and W. L. Vos, Inverse-woodpile
photonic band gap crystals with a cubic diamond-like structure
made from single-crystalline silicon, Adv. Funct. Mater. 22, 25
(2012).

[49] D. A. Grishina, C. A. M. Harteveld, L. A. Woldering, and W. L.
Vos, Method to make a single-step etch mask for 3D monolithic
nanostructure, Nanotechnology 26, 505302 (2015).

[50] L. A. Woldering, A. P. Mosk, and W. L. Vos, Design of a
three-dimensional photonic band gap cavity in a diamondlike
inverse woodpile photonic crystal, Phys. Rev. B 90, 115140
(2014).

[51] Reference [50] also explored greater defect pores in search of
acceptor states, but none were found.

[52] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saun-
ders, Holt, and Rinehart, Philadelphia, PA, 1976).

[53] J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, New
York, 1999).

[54] S. A. Hack, J. J. W. van der Vegt, and W. L. Vos, Cartesian light:
Unconventional propagation of light in a 3D superlattice of cou-
pled cavities within a 3D photonic band gap, arXiv:1812.04472
[Phys. Rev. B (to be published)].

[55] R. Hillebrand, S. Senz, W. Hergert, and U. Gösele,
Macroporous-silicon-based three-dimensional photonic crystal
with a large complete band gap, J. Appl. Phys. 94, 2758 (2003).

[56] L. A. Woldering, R. W. Tjerkstra, H. V. Jansen, I. D. Setija,
and W. L. Vos, Periodic arrays of deep nanopores made in
silicon with reactive ion etching and deep UV lithography,
Nanotechnology 19, 145304 (2008).

[57] S. G. Johnson and J. D. Joannopoulos, Block-iterative
frequency-domain methods for Maxwell’s equations in a
planewave basis, Opt. Express 8, 173 (2001).

[58] S. R. Huisman, R. V. Nair, L. A. Woldering, M. D. Leistikow,
A. P. Mosk, and W. L. Vos, Signature of a three-dimensional
photonic band gap observed with silicon inverse woodpile
photonic crystals, Phys. Rev. B 83, 205313 (2011).

[59] M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A.
Lagendijk, and W. L. Vos, Inhibited Spontaneous Emission of
Quantum Dots Observed in a 3D Photonic Band Gap, Phys.
Rev. Lett. 107, 193903 (2011).

[60] D. Devashish, S. B. Hasan, J. J. W. van der Vegt, and W. L. Vos,
Reflectivity calculated for a three-dimensional silicon photonic
band gap crystal with finite support, Phys. Rev. B 95, 155141
(2017).

[61] COMSOL Multiphysics® v. 5.2. (COMSOL AB, Stockholm,
Sweden), http://www.comsol.com.

[62] J. M. Jin, The finite element method in electromagnetics (Wiley-
IEEE Press, New York, 2000).

[63] We express frequency as a reduced frequency ω̃ = ωa/(2πc′)),
with ω the frequency, a the lattice parameter, and c′ the speed
of light (not to be confused with the lattice parameter c). The
reduced frequency ω̃ equals (a/λ).

[64] “Serendipity” is a high performance computing cluster whose
main features are 16 Dell Power edge R430 servers with each
2× Intel Xeon E5-2698 processors at 2.2GHz, with in total
640 cores and about 3.6 terabyte memory, connected through
Infiniband. The head node is a Dell Power Edge R730.

[65] In Ref. [54], the dispersion of the defect bands is studied in
a superlattice of cavities and interpreted in terms of coupling
between many cavities.

[66] Since the spatial distribution of the electric field is computa-
tionally memory intensive, the norm of electric field in the YZ

plane is input in the correlation calculation.
[67] D. J. Griffiths, Introduction to electrodynamics (Prentice Hall,

Upper Saddle River, NJ, 1999).

075112-15

https://doi.org/10.1103/PhysRevB.66.165211
https://doi.org/10.1103/PhysRevB.66.165211
https://doi.org/10.1103/PhysRevB.66.165211
https://doi.org/10.1103/PhysRevB.66.165211
https://doi.org/10.1038/nmat1201
https://doi.org/10.1038/nmat1201
https://doi.org/10.1038/nmat1201
https://doi.org/10.1038/nmat1201
https://doi.org/10.1063/1.3103777
https://doi.org/10.1063/1.3103777
https://doi.org/10.1063/1.3103777
https://doi.org/10.1063/1.3103777
http://arxiv.org/abs/1504.06803
https://doi.org/10.1103/PhysRevLett.67.3380
https://doi.org/10.1103/PhysRevLett.67.3380
https://doi.org/10.1103/PhysRevLett.67.3380
https://doi.org/10.1103/PhysRevLett.67.3380
https://doi.org/10.1103/PhysRevLett.84.2140
https://doi.org/10.1103/PhysRevLett.84.2140
https://doi.org/10.1103/PhysRevLett.84.2140
https://doi.org/10.1103/PhysRevLett.84.2140
https://doi.org/10.1103/PhysRevB.62.R2247
https://doi.org/10.1103/PhysRevB.62.R2247
https://doi.org/10.1103/PhysRevB.62.R2247
https://doi.org/10.1103/PhysRevB.62.R2247
https://doi.org/10.1126/science.1097968
https://doi.org/10.1126/science.1097968
https://doi.org/10.1126/science.1097968
https://doi.org/10.1126/science.1097968
https://doi.org/10.1103/PhysRevB.70.125105
https://doi.org/10.1103/PhysRevB.70.125105
https://doi.org/10.1103/PhysRevB.70.125105
https://doi.org/10.1103/PhysRevB.70.125105
https://doi.org/10.1063/1.4928666
https://doi.org/10.1063/1.4928666
https://doi.org/10.1063/1.4928666
https://doi.org/10.1063/1.4928666
https://doi.org/10.1016/0038-1098(94)90202-X
https://doi.org/10.1016/0038-1098(94)90202-X
https://doi.org/10.1016/0038-1098(94)90202-X
https://doi.org/10.1016/0038-1098(94)90202-X
https://doi.org/10.1063/1.1842855
https://doi.org/10.1063/1.1842855
https://doi.org/10.1063/1.1842855
https://doi.org/10.1063/1.1842855
https://doi.org/10.1002/adma.200602906
https://doi.org/10.1002/adma.200602906
https://doi.org/10.1002/adma.200602906
https://doi.org/10.1002/adma.200602906
https://doi.org/10.1002/adfm.200601074
https://doi.org/10.1002/adfm.200601074
https://doi.org/10.1002/adfm.200601074
https://doi.org/10.1002/adfm.200601074
https://doi.org/10.1063/1.2803714
https://doi.org/10.1063/1.2803714
https://doi.org/10.1063/1.2803714
https://doi.org/10.1063/1.2803714
https://doi.org/10.1116/1.3662000
https://doi.org/10.1116/1.3662000
https://doi.org/10.1116/1.3662000
https://doi.org/10.1116/1.3662000
https://doi.org/10.1002/adfm.201101101
https://doi.org/10.1002/adfm.201101101
https://doi.org/10.1002/adfm.201101101
https://doi.org/10.1002/adfm.201101101
https://doi.org/10.1088/0957-4484/26/50/505302
https://doi.org/10.1088/0957-4484/26/50/505302
https://doi.org/10.1088/0957-4484/26/50/505302
https://doi.org/10.1088/0957-4484/26/50/505302
https://doi.org/10.1103/PhysRevB.90.115140
https://doi.org/10.1103/PhysRevB.90.115140
https://doi.org/10.1103/PhysRevB.90.115140
https://doi.org/10.1103/PhysRevB.90.115140
http://arxiv.org/abs/arXiv:1812.04472
https://doi.org/10.1063/1.1593796
https://doi.org/10.1063/1.1593796
https://doi.org/10.1063/1.1593796
https://doi.org/10.1063/1.1593796
https://doi.org/10.1088/0957-4484/19/14/145304
https://doi.org/10.1088/0957-4484/19/14/145304
https://doi.org/10.1088/0957-4484/19/14/145304
https://doi.org/10.1088/0957-4484/19/14/145304
https://doi.org/10.1364/OE.8.000173
https://doi.org/10.1364/OE.8.000173
https://doi.org/10.1364/OE.8.000173
https://doi.org/10.1364/OE.8.000173
https://doi.org/10.1103/PhysRevB.83.205313
https://doi.org/10.1103/PhysRevB.83.205313
https://doi.org/10.1103/PhysRevB.83.205313
https://doi.org/10.1103/PhysRevB.83.205313
https://doi.org/10.1103/PhysRevLett.107.193903
https://doi.org/10.1103/PhysRevLett.107.193903
https://doi.org/10.1103/PhysRevLett.107.193903
https://doi.org/10.1103/PhysRevLett.107.193903
https://doi.org/10.1103/PhysRevB.95.155141
https://doi.org/10.1103/PhysRevB.95.155141
https://doi.org/10.1103/PhysRevB.95.155141
https://doi.org/10.1103/PhysRevB.95.155141
http://www.comsol.com


DEVASHISH, OJAMBATI, HASAN, VAN DER VEGT, AND VOS PHYSICAL REVIEW B 99, 075112 (2019)

[68] M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R.
Heideman, A. Leinse, and L. Kuipers, Probing the magnetic
field of light at optical frequencies, Science 326, 550 (2009).

[69] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures
on Physics (Addison Wesley, New York, 1964).

[70] Since the double reflectivity resonance may be the result of
a (currently) unknown coupling, it is uncertain whether the
widths of either resonance can be attributed to a true resonance
width and thus a quality factor. In absence of further infor-
mation, we derive the bandwidths of P3− and P+ reflectivity
resonances to be �ω̃− = 0.00053 and �ω̃+ = 0.0005.

[71] S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, Effective
dielectric constant of periodic composite structures, Phys. Rev.
B 48, 14936 (1993).

[72] K. L. Chopra, P. D. Paulson, and V. Dutta, Thin-film solar cells:
an overview, Progr. Photovoltaics: Research and Applications
12, 69 (2004).

[73] M. A. Green, Thin-film solar cells: review of materials, tech-
nologies and commercial status, J. Mater. Sci.: Mater. Electron.
18, 15 (2007).

[74] M. A. Green, Self-consistent optical parameters of intrinsic
silicon at 300K including temperature coefficient, Sol. Energy
Mater. Sol. Cells 92, 1305 (2008).

[75] Devashish, 3D periodic photonic nanostructures with disrupted
symmetries (Ph.D. thesis, University of Twente, 2017), see
Chap. 1, available from www.photonicbandgaps.com.

[76] J. Pankove, Optical processes in semiconductors (Dover Publi-
cations, New York, 2001).

[77] To understand the origin of these peaks, we first studied a
simplified problem, see Sec. 4.3.3 in Ref. [75].

[78] U. Fano, Effects of configuration interaction on intensities and
phase shifts, Phys. Rev. 124, 1866 (1961).

[79] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P.
Nordlander, H. Giessen, and C. T. Chong, The Fano resonance
in plasmonic nanostructures and materials, Nat. Mater. 9, 707
(2010).

[80] S. Fan and J. D. Joannopoulos, Analysis of guided resonances
in photonic crystal slab, Phys. Rev. B 65, 235112 (2002).

[81] J. P. Vasco, H. Vinck-Posada, P. T. Valentim, and P. S. S.
Guimaraes, Modeling of Fano resonances in the reflectivity of
photonic crystal cavities with finite spot size excitation, Opt.
Express 21, 31336 (2013).

[82] We verified that the Z point in our coordinate system is in
the same direction as the K point in the conventional cu-
bic reciprocal lattice. The modulus of the Z point is |�Z| =√

2(2π )/a, whereas the modulus of the K point is |�K| =√
2(3π )/(2a), corresponding to 3

4 of �Z, in good mutual
agreement.

[83] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge,
1995).

[84] T. Tajiri, S. Takahashi, A. Tandaechanurat, S. Iwamoto, and
Y. Arakawa, Design of a three-dimensional photonic crystal
nanocavity based on a 〈110〉-layered diamond structure, Jpn. J.
Appl. Phys. 53, 04EG08 (2014).

[85] M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, Investigation of
defect cavities formed in three-dimensional woodpile photonic
crystals, J. Opt. Soc. Am. B 32, 639 (2015).

[86] P. Y. Yu and M. Cardona, Fundamentals of semiconductors
(Springer, Heidelberg, 1996).

[87] For the inverse or direct woodpile structures, N unit cells
correspond to 2N lattice planes [60], which corresponds to 4N

layers of pores (or rods in the direct structure).
[88] E. Yüce, G. Ctistis, J. Claudon, J.-M. Gérard, and W. L. Vos,

Role of the local density of optical states in frequency conver-
sion of light in confined media, arXiv:1406.3586.

[89] W. L. Vos, R. Sprik, A. van Blaaderen, A. Imhof, A. Lagendijk,
and G. H. Wegdam, Strong effects of photonic band structures
on the diffraction of colloidal crystals, Phys. Rev. B 53, 16231
(1996).

[90] T. G. Euser, A. J. Molenaar, J. G. Fleming, B. Gralak, A.
Polman, and W. L. Vos, All-optical octave-broad ultrafast
switching of Si woodpile photonic band gap crystals, Phys. Rev.
B 77, 115214 (2008).

[91] W. Demtröder, Laser Spectroscopy: Basic Concepts and Instru-
mentation (Springer, Berlin-Heidelberg, 2009).

075112-16

https://doi.org/10.1126/science.1177096
https://doi.org/10.1126/science.1177096
https://doi.org/10.1126/science.1177096
https://doi.org/10.1126/science.1177096
https://doi.org/10.1103/PhysRevB.48.14936
https://doi.org/10.1103/PhysRevB.48.14936
https://doi.org/10.1103/PhysRevB.48.14936
https://doi.org/10.1103/PhysRevB.48.14936
https://doi.org/10.1002/pip.541
https://doi.org/10.1002/pip.541
https://doi.org/10.1002/pip.541
https://doi.org/10.1002/pip.541
https://doi.org/10.1007/s10854-007-9177-9
https://doi.org/10.1007/s10854-007-9177-9
https://doi.org/10.1007/s10854-007-9177-9
https://doi.org/10.1007/s10854-007-9177-9
https://doi.org/10.1016/j.solmat.2008.06.009
https://doi.org/10.1016/j.solmat.2008.06.009
https://doi.org/10.1016/j.solmat.2008.06.009
https://doi.org/10.1016/j.solmat.2008.06.009
http://www.photonicbandgaps.com
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1038/nmat2810
https://doi.org/10.1038/nmat2810
https://doi.org/10.1038/nmat2810
https://doi.org/10.1038/nmat2810
https://doi.org/10.1103/PhysRevB.65.235112
https://doi.org/10.1103/PhysRevB.65.235112
https://doi.org/10.1103/PhysRevB.65.235112
https://doi.org/10.1103/PhysRevB.65.235112
https://doi.org/10.1364/OE.21.031336
https://doi.org/10.1364/OE.21.031336
https://doi.org/10.1364/OE.21.031336
https://doi.org/10.1364/OE.21.031336
https://doi.org/10.7567/JJAP.53.04EG08
https://doi.org/10.7567/JJAP.53.04EG08
https://doi.org/10.7567/JJAP.53.04EG08
https://doi.org/10.7567/JJAP.53.04EG08
https://doi.org/10.1364/JOSAB.32.000639
https://doi.org/10.1364/JOSAB.32.000639
https://doi.org/10.1364/JOSAB.32.000639
https://doi.org/10.1364/JOSAB.32.000639
http://arxiv.org/abs/arXiv:1406.3586
https://doi.org/10.1103/PhysRevB.53.16231
https://doi.org/10.1103/PhysRevB.53.16231
https://doi.org/10.1103/PhysRevB.53.16231
https://doi.org/10.1103/PhysRevB.53.16231
https://doi.org/10.1103/PhysRevB.77.115214
https://doi.org/10.1103/PhysRevB.77.115214
https://doi.org/10.1103/PhysRevB.77.115214
https://doi.org/10.1103/PhysRevB.77.115214



