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We construct a two-parametric family of integrable models and reveal their underlying duality symmetry.
A modular subgroup of this duality is shown to connect noninteracting modes of different models. We apply
this solution and duality to a Richardson-Gaudin model and generate a novel integrable system termed the s-d
wave Richardson-Gaudin-Kitaev interacting chain, interpolating s- and d-wave superconductivity. The phase
diagram of this interacting model has a topological phase transition that can be connected to the duality, where
the occupancy of the noninteracting mode serves as a topological order parameter.
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I. INTRODUCTION

Integrable models (IM) play a crucial role in our un-
derstanding of low-dimensional statistical systems and con-
densed matter physics. The first problem of this kind was
solved by Bethe [1], who described the solution for the wave
function of the spin-1/2 Heisenberg chain in one dimension
in terms of a system of coupled nonlinear equations. This
method is now known as the analytic or continuum Bethe
ansatz and its many extensions (such as the algebraic Bethe
ansatz) have since been used to solve a plethora of low-
dimensional spin chains and continuum models. Due to the
relatively simple form and the linear scaling of the number of
Bethe equations with particle number, numerical calculations
are possible for systems containing a large number of parti-
cles, going beyond the reach of conventional numerical meth-
ods. Furthermore, in many cases the thermodynamic limit can
be taken analytically, allowing for the direct observation of
many interesting phenomena.

In particular, the 1D-Hubbard model [2] and its large-
interaction limit, the spin-1/2 Heisenderg model [1,3,4], were
instrumental in understanding the nature of quantum phase
transitions in low-D, fractionalized excitations, spin-charge
separation, and the importance of topological phenomena.
Eventually, accumulation of this knowledge resulted in the
universal paradigm of Luttinger liquids [5], a low-D counter-
part of the concept of a Fermi liquid.

Another broad class of solvable many-body models, the so-
called Richardson-Gaudin models [4,6–9], can be obtained as
the so-called quasiclassical limit of the spin-1/2 model. This
class of models embraces the Tavis-Cummings and Dicke
models of superradiance [10], Richardson’s reduced BCS
model of superconductivity [6,7,11,12], central spin model
of electrons in quantum dots and nitrogen vacancy centers in
diamond [13], Lipkin-Meshkov-Glick models of nuclei [14],
and many more. This class of models is popular because of

their relevance for solid-state based quantum computation,
quantum decoherence, quantum information and excitation
energy transfer.

Related continuum models can be solved using this
method, including the one-dimensional Bose gas interacting
via a short-range (δ function) contact potential, the so-called
Lieb-Liniger (LL) model [15]. Various predictions of the
Bethe ansatz solution of this model have now been extensively
checked experimentally in cold atomic systems [16–20], and
applications of this integrable model currently go far beyond
the physics of 1D cold gases [21–27].

Furthermore, integrable models have attracted increasing
interest in contemporary field and string theory. This interest
emerged in a 2D context [28] and independently in 3D with
invariants of knots [29], continuing in 4D with the AdS/CFT
correspondence [30] and supersymmetric gauge theories [31],
which led to contemporary developments in Ref. [32], where
it was shown that integrable lattice models of 2D classical
statistical mechanics can be understood in terms of quantum
gauge theory in four dimensions. Dualities in various forms
were always a close companion of these developments [33].
The recent echo of these ideas into the realm of condensed
matter physics [34] may become a powerful tool for better
understanding quantum criticality, correlated and topological
states of matter [35].

Underlying these various models are solutions to the Yang-
Baxter equation (YBE). Given a solution to this equation, it is
possible to either construct Richardson-Gaudin spin models,
integrable lattice models or a generalized LL model (which
is treated in Ref. [36]). In this work, we present a rational
solution to the YBE, allowing for the construction of such
integrable models, and use it to realize a specific case of a
Richardson-Gaudin model. The presented solution to the YBE
exhibits a duality symmetry, and we reveal that the symmetry
(which is reminiscent of the duality in certain string theories
[37] and the fractional Hall effect [38]) is present in this
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model as a result. Using this symmetry we reveal a novel
integrable model termed s-d wave Richardson-Gaudin-Kitaev
interacting chain, and we show how it displays a topological
phase and phase transition. The topological phase transition
can be directly connected to the duality symmetry, since the
ground state of the resulting Hamiltonian can be mapped to
two distinct limits of the rational Richardson model. Since
the solution of the YBE also reduces to that of the rational
Richardson model we can conclude that this duality sym-
metry connects the following different models: the s-d wave
Richardson-Gaudin-Kitaev interacting chain and both limits
of the rational Richardson model.

II. INTEGRABILITY AND THE YANG-BAXTER EQUATION

A key ingredient of the integrability of all the
above-mentioned models is the fact that any three-body
interaction factorizes into two-body interactions, which can
be parameterized by R or S matrices (respectively, for spin
chains or continuum models). Because the representations
of these matrices can be taken the same in both cases, the
integrability conditions can be expressed by a single relation
on R matrices: the celebrated Yang-Baxter equation (YBE),
R12(u, v)R13(u,w)R23(v,w) = R23(v,w)R13(u,w)R12(u, v),
which expresses the factorization property of scattering
between three particles (labeled by 1,2,3) with respective
rapidities u, v,w. The simplest known solution, suggested by
Yang [39,40], is the rational R matrix given by

R12(u, v) = b(u, v)I12 + c(u, v)P12, (1)

where I12 and P12 are the identity and permutation operators
acting in the direct product of the two Hilbert spaces for
particles 1 and 2, with the rational functions defined as

b(u, v) = u − v

u − v + η
, c(u, v) = η

u − v + η
, (2)

depending on a single free parameter η ∈ C and satisfying
b(u, v) + c(u, v) = 1. This R matrix then gives rise to
the XXX Heisenberg model, the Lieb-Liniger model, and
the rational class of Richardson-Gaudin models in the
quasiclassical limit η → 0 [41].

III. GENERALIZATION OF THE KNOWN SOLUTION

In this paper we are interested in a more general solution
for the R matrix of the rational form. For that we parametrize
it as [42]

R12(u, v) = I12 + F (u, v)P12. (3)

Substituting this ansatz into the YBE leads to the following
functional equation for F (u, v):

F (u, v)F (u,w) + F (u,w)F (v,w) = F (u, v)F (v,w). (4)

Manifestly, the well-known form of Eq. (2) for F (u, v) ≡
c(u, v)/b(u, v) = η/(u − v) is a direct solution of this equa-
tion. The first important observation is that a general two
parameter solution to Eq. (4) in the class of rational functions
can be found:

F (u, v) = c2
0 + c0c1(u + v) + c2

1uv

u − v
. (5)

This solution is parametrized by two free couplings c0 and
c1 and could generate new integrable many-body 1D systems
with possibly as many physical applications as the Lieb-
Liniger or spin models before.

This solution was obtained by considering the following
rational ansatz for the function F (u, v):

F (u, v) = 1

u − v

N∑
p,q=0

cp,qupvq, (6)

and imposing the condition Eq. (4). The coefficients cp,q can
then determined by solving for each order separately (see
Supplemental Material Ref. [41]). Here, the order N of the
polynomial is assumed to be finite [43]. Higher order poles
were also considered (up to third order), but these ansatze all
reduced to the above mentioned result.

IV. SL(2) DUALITY OF INTEGRABLE MODELS

The second important observation is an intrinsic SL(2)
duality symmetry associated with this solution. Namely, one
can notice that if both rapidities u and v of the matrix Eq. (3)
are simultaneously transformed according to the fractional-
linear conformal transformation k = (u, v),

k̃i = αki + β

γ ki + δ
, αδ − γ β = 1, (7)

the solution Eq. (5) remains the same iff the couplings c0 and
c1 are simultaneously transformed as(

c̃0

c̃1

)
=

(
δ β

γ α

)(
c0

c1

)
. (8)

Here, the unimodularity condition αδ − γ β = 1 is essen-
tial. The rapidities k = (u, v) are, in principle, allowed to
take arbitrary complex values, so the parameters α, β, γ , δ

could be complex as well, thus transforming under the group
SLk (2,C)/Z2 (the subscript k denotes that they act on the
rapidities). While at the moment the couplings c0,1 can be
considered complex as well, we however restrict ourselves to
the real domain.

While this symmetry is preserved at the level of the scatter-
ing matrix and the YBE equation, it acts, however, nontrivially
on a system with fixed external boundary conditions (say,
periodic). The condition of single-valuedness of the wave
function then leads to the Bethe equations, which are derived
in the general form in the Supplemental Material [41]. The
solutions of the Bethe equations are therefore not symmetric
with respect to the transformations Eqs. (7) and (8) but rather
generate a duality between different models, since they relate
different physical models. In this case, the SL(2,R) symmetry
is similar to the duality in string theory (e.g., in IIB superstring
theory) relating theories with different coupling constants
[37].

It is important to note that there are special points in
the space of rapidities when the scattering matrix trivializes
and R(u, v) ≡ I . This happens when one of the rapidities
satisfies u = −c0/c1. In this case the Bethe equations reduce
to quantization conditions for noninteracting particles. This
observation combined with the SL(2,R) duality implies that a
subgroup of the latter, the modular group SL(2,Z), connects,
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in a sense of duality transformation all free, noninteracting
modes of the model.

V. RICHARDSON-GAUDIN LIMIT

Starting from a solution to the Yang-Baxter equation,
exactly solvable models can be constructed containing ei-
ther Bosonic or spin degrees of freedom, depending on the
representation of the algebra. In this regard, a solution to
the functional Eq. (4) is also known to determine integrable
Richardson-Gaudin spin systems [4,6–9,12]. A class of in-
tegrable spin systems can be obtained by plugging in the
solution to Eq. (5) into the conserved charges Eq. (11) as
described below, and the influence of the SL(2,R) symmetry
can be made apparent.

Richardson-Gaudin models arise as the so-called quasi-
classical η → 0 limit of integrability, where the R-matrix
Eq. (1) can be expanded as

R12(u, v) = I12 − ηR12(u, v) + O(η2), (9)

leading to the quasiclassical R matrix as

R12(u, v) = F (u, v)(I12 − P12)

= −F (u, v)
(
S+

1 S−
2 + S−

1 S+
2 + 2Sz

1Sz
2 − 1

2

)
, (10)

where the permutation operator has been written in a spin-
1/2 representation. Through the usual transfer matrix con-
struction, this gives rise to a set of conserved charges (see
Supplemental Material [41] for a detailed derivation),

Qi = Sz
i −

∑
j �=i

Fi j

[
1

2
(S+

i S−
j + S−

i S+
j ) + Sz

i Sz
j

]
, (11)

where the demand [Qi, Qj] = 0 leads precisely to Eq. (4) with
Fi j ≡ F (εi, ε j ) with arbitrary inhomogeneities εi, j ∈ R.

Inserting Yang’s solution for Fi j into Eq. (10) leads to
the rational Richardson model, best-known in the context
of superconductivity and the BEC-BCS crossover [8], while
plugging the solution Eq. (5) leads to the rational limit of a
parametrization proposed in Ref. [11]. For this parametriza-
tion, the conserved charges are explicitly invariant under the
SL(2,R) symmetry. An integrable Hamiltonian can then be
constructed by taking a linear combination of these conserved
charges, satisfying [H, Qi] = 0 by construction. However,
the choice of linear combination can break the SL(2,R)
invariance, similar to the choice of boundary conditions in
the generic Bethe ansatz model [36], possibly leading to a
nontrivial phase diagram. This is reflected in the fact that,
while the conserved charges will be invariant under the duality
transformation, the coefficients in the linear combination need
not be, leading to a different Hamiltonian with the same
conserved charges. The resulting eigenstates will clearly
be independent of the linear combination, but the eigenstate
corresponding to the ground state will depend strongly on the
choice of Hamiltonian.

A large variety of resulting integrable Hamiltonians can
be obtained depending on the parametrization and the choice
of a Hamiltonian, but we will illustrate some of the result-
ing physics with a specific model based on the Richardson-
Gaudin-Kitaev chain describing topological superconductiv-
ity in fermion chains [44].
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FIG. 1. The energy per site e = E/L and its first and second
derivative as a function of the interaction strength g = GL for sys-
tems of length L at half-filling and periodic boundary conditions.
The system parameters are t1 = 1 and t2 = 0, with gc = GcL moving
toward g−1

c = −2(t1 + t2) in the thermodynamic limit (here −1/2).

By mapping the spin su(2) algebras to fermion pairing
operators, an integrable Hamiltonian can be found as

H =
∑

k

εkc†
kck − G

2
(C†C + CC†) − G

4
BB, (12)

C† =
∑
k>0

ηkc†
kc†

−k, B =
∑

k

ηkc†
kck, (13)

for one-dimensional fermions with momentum k and single-
particle spectrum εk = −2t1 cos k − 2t2 cos 2k, and interac-
tions modulated by ηk = 4 sin2(k/2)[t1 + 4t2 cos2(k/2)] with
interaction strength G. These are related to the previous
parametrization through

√
Gηk = c0 + c1εk with 2(t1 + t2) =

c0/c1 and G−1 = 2c−2
1 − ∑

k ηk; see Supplemental Material
Ref. [41].

This model is integrable for any choice of the momen-
tum k-distribution, and describes a chain with either nearest
neighbor-interactions (t2 = 0) or long-range interactions (t2 �=
0) in real space, on top of which pairing interactions (C†C)
and long-range interactions (B) have been added. This model
can be seen as a variant on the Richardson-Gaudin-Kitaev
chain [44] with pairing interactions interpolating between
s- and d-wave pairing [45], also motivating the choice of
parametrization. In the determination of the phase diagram, a
crucial element is that the interaction vanishes at certain finite
values of the momentum (here k = 0, for which ηk = 0 and
εk = −c0/c1 by construction). Equivalently, this corresponds
to trivial particle scattering with Fi j = 0 (5). The existence
of noninteracting modes in Richardson-Gaudin models has
previously been linked to the existence of Majorana fermions
in particle-number conserving models [44,46] and topolog-
ical phase transitions [45,47,48]. This can be illustrated on
the model at hand, since the ground-state energy for any
Richardson-Gaudin model can be obtained directly from
knowledge of the conserved charges Eq. (11) (see Ref. [49]
for details).
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In Fig. 1 we plot the energy per site and its first and
second derivative for varying interaction strength. For finite
system sizes, the discontinuity in the first derivative points to
a first-order quantum phase transition. In the thermodynamic
limit this discontinuity vanishes and the second derivative
diverges, indicating a second-order phase transition, consis-
tent with recent results on the thermodynamics of topological
phases [50]. Furthermore, this is a phase transition between
a topologically nontrivial phase (G > Gc) and a topologically
trivial phase (G < Gc). This can be obtained from mean-field
theory in the thermodynamic limit [45] or from the recently
proposed characterization of topological superconductivity in
number-conserving systems for finite system sizes [44,46].
Following this last route, the occupation of the single-particle
levels for vanishing momentum k can be seen as the one-
dimensional equivalent of a winding number [44,46,51], and
it can be checked that limk→0 n̂k = 1 in the topological phase
and limk→0 n̂k = 0 in the trivial phase.

This transition can be understood through symmetry
arguments. The Hamiltonian undergoes a quantum phase
transition at G−1

c = −∑
k ηk , which can be mapped back to a

limit where c1 → ∞ while c0/c1 remains fixed. In this limit,
the conserved charges reduce to those of the Gaudin model,
which has an additional su(2) total spin-symmetry compared
to the Richardson-Gaudin models [4]. This symmetry results
in level crossings in the spectrum between states with different
particle numbers (spin-projection). Combined with the exis-
tence of a noninteracting level, this leads to level crossings
between states with the same particle number at the symmetric
point, since changing the occupation of the noninteracting
level does not influence the energy. The quantum phase transi-
tion is then caused by a level crossing of two levels with differ-
ent occupations of this level, leading to a vanishing chemical
potential and a change in topological invariant [51]. Similarly,
the rapidity distribution in complex space also undergoes a
transition, as shown in the Supplemental Material and which
is expected for a quantum phase transition [52]. The SL(2,R)
symmetry can again be compared to the field theory dual-
ity which relates theories with different coupling constants,
since the ground state can be mapped to eigenstates of the
Richardson model in different regimes (c2

1 and c2
0 change sign

at the phase transition and using the duality to map the system
to one where either c̃0 = 0 or c̃1 = 0 results in a change
of c̃2

1 respectively c̃2
0 between −∞ and +∞ at the phase

transition). These limiting cases return the rational Richardson
model with interaction strength c̃2

0,1 [6,7], corresponding to
the standard solution of the YBE, and the phase transition is
then a transition between the ground states of this model at
infinite interaction strengths, but with different signs of the
interaction strength.

It should be stressed that the existence of such a transition
does not depend on the specific choice of Hamiltonian, but is
a fundamental property of the new parametrization (with c1 �=
0) and the resulting combination of total spin su(2)-symmetry
and the SL(2,R) symmetry.

VI. DISCUSSION AND CONCLUSIONS

In this paper we presented a general rational solution
of the Yang-Baxter relation in the fundamental (spin-1/2)
representation. A hidden duality of this solution was demon-
strated, connecting models different couplings, and a modular
subgroup SL(2,Z) of this duality connects special noninter-
acting modes of different systems. Constructing a Richardson-
Gaudin model from this solution, it was shown how in these
models the noninteracting modes serve as a topological order
parameter and are responsible for a topological phase transi-
tion. While here we mostly focused on a Richardson-Gaudin
limit of this solution it can be directly extended to inhomoge-
neous spin chains, higher spin models and Lieb-Liniger–type
models.
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