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Kramers doublet ground state in topological Kondo insulators
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We consider the simplest variant of a Kondo insulator where a doublet of localized f electrons hybridizes with
spin-degenerate conduction electrons. We analyze the symmetries of f orbitals involved in the hybridization
and point out that the effective four-band model of such systems provides further descriptions of clean Kondo
insulators; namely the spin texture of the surface states is described by an integer winding number. We discuss
general conditions for the appearance of topological nontrivial states and implications for rare-earth-based
compounds. As an example, we derive the full phase diagram of tetragonal Kondo insulators. In particular,
our findings describe the spin texture in the physically interesting nontrivial topological phase, i.e., when the
bandwidth of conduction electrons sets the largest energy scale, and a new weak topological phase appears as a
function of the normalized distance between the bands’ center.
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I. INTRODUCTION

Kondo insulators recently have attracted a lot of attention
due to their promise to realize topological phases with a
large bulk gap generated by strong electron correlations [1–8].
Different effective models have been proposed for several can-
didate materials, but not all of them are in a strong topological
phase protected by a nontrivial Z2 invariant [9–11]. In the
context of SmB6, one promising candidate for a topologi-
cal Kondo insulator, the consequences of mirror symmetries
have been pointed out [12,13]. The latter allow for a refined
topological characterization and are reflected in the surface-
state spin structure; for instance, spin expectation values of
surfaces were observable in SmB6 from spin-resolved ARPES
experiments [14]. Improving the topological characterization
of Kondo insulators is, from a broader perspective, relevant
for the identification of further promising materials.

In this work we revisit the simplest variant of a three-
dimensional Kondo insulator where a doublet of localized
f electrons hybridizes with spin-degenerate conduction elec-
trons. We point out that not only the lattice symmetry of the
material but also the symmetry of the f orbitals involved in the
hybridization can allow for an improved characterization of
the Kondo insulator, which results from a rotational invariance
of the involved orbital wave functions. Specifically, we show
that the surface-state spin texture in topological insulators
involving localized Kramers doublets with the lowest angular
momentum projection, �J

1/2 = |J, mJ = ±1/2〉, can be un-
derstood from a fine-tuned Hamiltonian characterized by an
integer winding number. This work enlightens this connection
and the conditions to relate this winding number to the spin
texture of the Z2 Kondo insulators.

*tharnier@csrc.ac.cn

For tetragonal Kondo insulators we show that it is par-
ticularly useful when the bandwidth of conduction electrons
sets the largest energy scale. On the other hand, when other
than the �J

1/2 doublet participates in the hybridization, it may
only appear in a low hopping neighbor expansion; i.e., it is
broken by higher-order neighbor contributions (which depend
on both the involved doublet and crystal symmetry). This
property, therefore, can only exist in those crystalline lattice
structures that allow for a pure �J

1/2 doublet in the ground
state. We also identify the relevant point group symmetries
for Kondo insulators involving doublets from the J = 5/2 and
7/2 multiplets and discuss implications for rare-earth-based
compounds.

II. MODEL

We start out from the simplest variant of a 3D Kondo
insulator, where a spin-degenerate wide conduction band hy-
bridizes with a narrow band formed by degenerate doublets
�J = |J,±〉 of nearly localized f electrons,
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∑

k

⎛
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Here ε
c, f
k are the energy dispersions of conduction and f

electrons, respectively, and Vk,σ s account for their hybridiza-
tion. (Both ε

f
k and Vk,σ s are considered as effective parame-

ters that include effects from electron correlations. Treating
correlations beyond the mean-field limit is very challenging,
particularly in three dimensions. Most of these approaches
consider one- or two-dimensional systems [15–21].) Through-
out this work we always assume a sufficiently large crystal
field, which separates a Kramers degenerate ground state from
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FIG. 1. The low-order neighbor expansion is illustrated in panel
(a), where the arrows point to the next-neighbor directions in the
cubic lattice, which is filled with the orbital configurations 4 fxyz and
4 fz(x2−y2 ). For the first next neighbors (1nn) one notices that their
directions do not coincide with the atomic orbitals, while for 2nn
and 3nn they coincide with 4 fz(x2−y2 ) and 4 fxyz, respectively. Panel (b)
shows the f -orbital degeneracy splitting caused by strong spin-orbit
(SO) coupling followed by the crystalline field.

the 5/2 or 7/2 multiplet. While generally �J is some linear
combination of the angular momentum eigenstates �J

mJ
≡

|J,±mJ〉, of specific interest to us are cases in which �J =
�J

1/2. Figure 1(b) illustrates the crystal field splitting after the
addition of spin-orbit coupling for the cubic and tetragonal
structures, where �

(c),(t )
1,2,3 follow the notation in Ref. [3]; indeed

the interesting ground state here is �
(t )
1 = �

5/2
1/2 . Before we go

into details, it is convenient to express Eq. (1) in the matrix
form Ĥ = ∑

k �
†
kH(k)�k, where �

†
k = (c†

k↑, c†
k↓, f †

k,+, f †
k,−)

and

H(k) =
5∑

i=0

hi(k)γi, (2)

with h0,4(k) = (εc
k ± ε

f
k )/2 and the remaining coefficient

functions hi(k) defined by the hybridization elements Vk,σ s.
Here γ0 = 14 is the identity matrix and γi = σi ⊗ τ1 (for i =
1, 2, 3), γ4 = 12 ⊗ τ3, and γ5 = 12 ⊗ τ2 are Dirac matrices
satisfying the Clifford algebra {γa, γb} = 2δab, with Pauli
matrices σi and τi operating in spin and orbital space, respec-
tively. The general form of Eq. (2) is fixed by invariance under
inversion, I = σ0 ⊗ τ3, and time reversal, T = iσ2 ⊗ τ0 K
(with K the complex conjugation) [22]. In some cases, the
symmetry of participating f orbitals imposes an additional
constraint to Eq. (2) as we are going to discuss next.

III. KRAMERS DOUBLETS �J
1/2

To illustrate the point consider the hybridization block
c†

kVmJ (k) fk for one of the Kramers doublets �5/2
mJ

. Following
previous work [23] the 2 × 2 hybridization matrix reads

V
n− 1

2
(k) =

(
cn Yn−1

3 (k) c̄n Y−n
3 (k)

−c̄n Yn
3 (k) −cn Y−n+1

3 (k)

)
, (3)

where cn and c̄n are purely real/imaginary numbers for n
even/odd (as fixed by time-reversal symmetry) and

Ym
3 (k) =

∑
R �=0

v(|R|)Y m
3 (R̂)eik·R. (4)

The sum in (4) runs over all neighbor sites R; Y m
3 (R̂) are the

spherical harmonic functions of f orbitals (with R̂ a unit vec-
tor), and coefficients v(|R|) depend on the neighbor distance.
A similar expression (3) holds for the Kramers doublets �7/2

mJ

[24] and the following discussion therefore applies to both
multiplets J = 5/2 and J = 7/2.

Recalling that Y−m
3 (k̂) = (−1)m+1[Ym

3 (k̂)]∗, it is verified
that Eq. (3) involves four independent real-valued functions.
This is tantamount to noting that in general the hybridization
block (3) requires in the Hamiltonian (2) a linear combination
of the four matrices γ1,2,3,5. A different situation, however,
occurs for the Kramers doublet �J

1/2 where the hybridization

block involves the spherical harmonic Y 0
3 (R̂) on its diagonal.

Rotational symmetry of the latter implies that cnY0
3 (k) is a

purely real-valued function and Eqs. (3) and (2) are spanned
by only three out of the four independent γ matrices, i.e.,
γ1,2,3 [25]. As we discuss in Sec. IV, the remaining matrix
γ5 is crucial to the improved characterization of the effective
Hamiltonian (2).

Low neighbor expansion

We further notice that Eqs. (2) and (3) with only three of
the four γ matrices may also appear in a low-order neighbor
expansion for other than mJ = 1/2, but in this case it is not a
robust constraint. For illustration consider Eqs. (3) and (4) in
a cubic environment for the Kramers doublets �

5/2
3/2 ,

V3
2

(k) ∝
(

h3(k) − ih5(k) h1(k) − ih2(k)

h1(k) + ih2(k) −h3(k) − ih5(k)

)
. (5)

While coefficient functions h3, h5 are nonvanishing already
for nearest neighbors, h1, h2 become finite only starting from
second- and third-order neighbors, respectively. This vanish-
ing of h1, h2 is here traced back to the specific values of
spherical harmonics Y ±2

3 at the angles of the near-neighbor
directions in the cubic lattice, as illustrated in Fig. 1(a) (i.e.,
zero for nearest and purely real for next-nearest neighbors),
and also holds for tetragonal or orthorhombic but, e.g., not
hexagonal lattices. The absence of h5 in the case of the �J

1/2
doublet discussed above, on the other hand, follows from
the rotational symmetry of involved orbital functions and,
therefore, applies for all neighbor contributions.

IV. FINE-TUNED HAMILTONIAN

We first note that in the translationally invariant insulating
phase, i.e., clean system, one can always remove h0(k) from
Eq. (2) without closing the gap. In addition, the topological
phase diagram remains unaltered since eigenfunctions are not
affected by terms proportional to identity. In general this pro-
cedure describes an adiabatic transformation; however, with
the lack of γ5 in the Hamiltonian, by removing h0(k) we are
also adding an extra symmetry to the system, the chiral sym-
metry. Thus Kondo insulators involving hybridization with
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a �J
1/2 doublet are connected (besides nonadiabatically) to

the fine-tuned Hamiltonian which possesses chiral symmetry,
e.g.,

γ5Hkγ5 = −Hk. (6)

The consequences of this connection between Z2 Kondo
insulators and the Z Hamiltonian (6), in class DIII [26], are
analyzed through the example of tetragonal Kondo insulators
discussed in the following.

Hamiltonians in class DIII are characterized by the wind-
ing number N = ∫

d3k
48π2 ε

i jk tr[γ5H−1(∂iH)H−1(∂ jH)H−1

(∂kH)] [27]; here summation over repeated indices is
implicit, the integral extends over the first Brillouin zone, εi jk

is the total antisymmetric Levi-Civita tensor, and ∂i ≡ ∂ki .
The winding number is related to the Brouwer index of the
map k 
→ (h/|h|)(k) with hT = (h1, h2, h3, h4), i.e. [28],

N =
∑

k∈h−1(n0 )

sgn det [∂h(k)], (7)

where ∂h is the matrix with elements (∂h)i j = ∂ih j , and the
sum is over points k in the Brillouin zone which map onto
some (arbitrary) point n0 on the 3-sphere, (h/|h|)(k) = n0.
Notice that the winding counted by (7) cannot be changed as
long as the chiral symmetry is preserved. That is, the topo-
logical properties are robust against time-reversal symmetry
breaking perturbations that do not violate (6) [29].

A robust �J
1/2-doublet ground state can only be realize in

tetragonal and hexagonal lattices (as we will see), and the
former are the most relevant for application of our results
to known Kondo insulators. Concentrating then on tetragonal
Kondo insulators with a �

5/2
1/2 doublet in the ground state, one

finds (upon using parameters from the nearest-neighbor model
[28])

N =

⎧⎪⎨
⎪⎩

2 sgn(v⊥δ), |�| < |δ|,
−sgn(v⊥δ), 2 − |δ| < |�| < 2 + |δ|,

0, otherwise,

(8)

where � = (εc − ε f )/2(t c
‖ − t f

‖ ) is the normalized distance
between the center of the bands (i.e., εc − ε f ) and v⊥ the
hybridization intensity perpendicular to the symmetry plane.
We also assumed that the anisotropy δ affects equally the hop-
ping parameters t c, f

‖/⊥ of c and f electrons within/perpendicular

to the symmetry plane, i.e., δ = t c
⊥/t c

‖ and t f
⊥ = δt f

‖ . The
resulting phase diagram is shown in Fig. 2 for completely
localized f electrons, t f

‖ = t f
⊥ = 0. Just below each winding

number signalized in the phase diagram we also show the
topological indices ν0; (ν1ν2ν3) following Fu and Kane nota-
tion in Ref. [30]. The white regions are trivial phases with 0
in all topological invariants.

Spin texture

The topological nontrivial regions in Fig. 2 have the surface
states ruled by the Fu and Kane indices; i.e., the indices ν0 = 1
and ν0 = 0 set the strong (gray) and weak (blue) topological
phases of Kondo insulators respectively, with surface states in
all directions, as discussed in [3,5,9]. The tetragonal structure

FIG. 2. Phase diagram of 3D Kondo insulators with tetrago-
nal symmetry, derived from model Eq. (2) for the �

5/2
1/2 doublet

in the nearest-neighbor approximation. Here δ = t c
⊥/t c

‖ , � = (εc −
ε f )/2(t c

‖ − t f
‖ ), and we assumed v⊥ > 0, t f

‖ = t f
⊥ = 0. Gray regions

correspond to strong topological phases with index ν0 = 1. Blue and
green regions correspond to weak topological phases with indices
ν0; (ν1ν2ν3) equal to 0; (111) and 0; (001), respectively. White areas
are trivial phases with zero to all topological invariants. The winding
numbers |N | = 2/0/1 in blue/green/gray regions, respectively, char-
acterize the spin texture of edge states in this system, as discussed in
the main text. The dashed line indicates the value of δ used in the in-
set. Inset: Phase diagram for different (renormalized) bandwidths for
f electrons α = t f

‖ /t c
‖ and fixed δ = 0.7. The dashed line indicates

the value used in the main figure.

pushes farther away the strong phase from the most rele-
vant parameter regime and gives rise to an additional weak
topological phase 0; (001) (green), with appearing surface
states only on those surfaces aligned with z direction. No-
tice that increasing the hopping anisotropy (δ → 0), e.g., by
application of uniaxial pressure, induces a phase transition
into this new weak topological phase. Transitions between
topological phases can also occur through correlation-induced
renormalization of the f -electron dispersion [31]. The inset
shows the phase diagram as a function of f -electron renor-
malized bandwidth t f

‖ = αt c
‖ at fixed δ = 0.7 (delimitated by

the dashed line in the main figure).
An interesting behavior is found in the most relevant pa-

rameter regime where the bandwidth of conduction electrons
t c
‖ sets the largest energy scale such that |�| � 1. In this

phase the winding number provides further description of
the surface states; namely one finds N �= 0 and 0; (111) (i.e.,
edge states in all surfaces and |N | = 2). Projecting the ef-
fective tetragonal Kondo Hamiltonians onto the surface states
one finds that the winding number N in Eq. (7) allows us to
infer the spin texture of the surface states [28]: specifically
it counts the chiralities of the Dirac cones’ pseudospin (spin
texture); i.e., a weak topological phase with a vanishing
winding number indicates an even number of Dirac cones with
opposite chiralities, while a finite winding number indicates
an even number of Dirac cones with the same chiralities. A
similar property holds true for the strong topological phases
with an odd number of Dirac cones, where the winding
number counts the number of Dirac cones left unpaired (pairs
of opposite chiralities), for example the phase with |N | = 1 in
the phase diagram of Fig. 2. In the context of the low neighbor
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TABLE I. Point group symmetries which separate a pure �J
1/2

Kramers doublet with lowest projection of angular momentum from
the spin-orbit multiplets J = 5/2 and 7/2. This Kramers doublet can
split from the 5/2 sextet in all of the seven point group symmetries of
the tetragonal lattice, or four out of the seven point group symmetries
of the hexagonal lattice. In the case of the 7/2 octet the Kramers
doublet with the lowest projection of angular momentum can only
split in four out of seven point group symmetries of the hexagonal
lattice.

Crystal field Point group Multiplet

Tetragonal C4, S4, C4h, D4, C4v , D2d , D4h 5/2
Hexagonal C6, C3h, C6h, D3h 5/2, 7/2

approximation, in Appendix E we given an example with the
4-band model of a cubic structure as described in Ref. [12].

Previous discussions of the edge states in the general chiral
Hamiltonian Eq. (6) are found in Refs. [35–38]. In particular,
it has been shown the interfaces that break time-reversal
symmetry have their gapless edge states replaced by (gapped)
nonsingular walls and solitons with spin texture protected
by the chiral symmetry [36]. Finally, the appearance of spin
texture in cubic structures based on the mirror symmetry is
discussed in Refs. [12,13,28].

V. APPLICATIONS

Candidate compounds for topological Kondo insulators are
formed from magnetic ions with ground states involving odd-
parity orbitals. Concentrating onto the rare-earth 3+ ions with
partially filled 4 f shell, Ce-, Sm-, and Yb-based materials
are of potential interest. The ground-state Kramers doublet in
the case of the former two compounds arises from the 5/2
sextet and in the case of the latter from the 7/2 octet. The
necessary requirement for the appearance of a Kondo insulator
as discussed here is then a crystal field which stabilizes the
�J

1/2 doublet in the ground state. Looking at representations
of all possible point groups and their basis functions [39],
we notice that from the f -electron multiplets a pure �J

1/2
doublet only separates in tetragonal or hexagonal crystal
symmetries. Specifically, the �

5/2
1/2 doublet is allowed as one

possible ground state in all tetragonal lattices and some of
the hexagonal lattices, while the �

7/2
1/2 doublet can only be a

ground state in some of the hexagonal lattices. Table I summa-
rizes the possible point group symmetries of lattices allowing
for a Kondo insulator derived from the 5/2 and 7/2 multi-
plets, respectively. And we conclude that Ce- and Sm-based
Kondo insulators can only have �J

1/2-doublet ground state in
tetragonal or hexagonal structures. One specific Ce compound
with tetragonal point group symmetry D2d to which our above
analysis applies is CeRu4Sn6 [40]. Recent x-ray spectroscopy
experiments in combination with band structure calculations
indicate that the �

5/2
1/2 doublet is the lowest energy state and

inversion of bands occurs [41–43]. Moreover, the 4 f occu-
pancy near to integer value n f ∼ 1 and the low dispersive f
band put this material into the topologically interesting region
0; (111) with |N | = 2 of the phase diagram, Fig. 2. All known
Sm-based Kondo insulators, on the other hand, have cubic

symmetry and our analysis does not apply. Finally, Kondo in-
sulators based on Yb can only exhibit the �J

1/2-doublet ground
state in the four hexagonal symmetries indicated in Table I.
Among the established Yb-based Kondo insulators there are
none with hexagonal symmetry; i.e., in these compounds fur-
ther description of the spin texture can at most be realized in
the low-order neighbor approximation. Recently, an interest-
ing Yb compound with hexagonal symmetry, YbNi3X9 (X =
Al, Ga), has been synthesized, but it appears to be metallic
[44]. Besides the rare-earth elements, Kondo insulators may
also be found in metal transition elements; for instance the
new iridium-based compound Sr2IrO4 [45] has a narrow 5d
band from Ir which hybridizes with the 4p band from oxygen.
It also shows a �J

1/2-doublet ground state and has a tetragonal
lattice structure.

VI. CONCLUSIONS

We have studied 3D Kondo insulators where a wide con-
duction band hybridizes with a degenerate Kramers doublet of
localized f electrons. We have shown that in cases where the
doublet is that of the lowest angular momentum projection,
mJ = ±1/2, the symmetry of orbitals involved allows for an
improved description of the surface-state spin texture. Here
the clean system is connected with a fine-tuned Hamiltonian in
class DIII, which in turn is characterized by an integer wind-
ing number. In this case, the winding number distinguishes
the chirality of Dirac cones at the surfaces, providing further
information about the edge states.

As an example, in cases where the bandwidth of con-
duction electrons sets the largest energy scale, the tetragonal
topological Kondo insulator is in a nontrivial phase 0; (111)
with winding number |N | = 2, which means that we have
two Dirac cones with the same chirality at each surface.
Moreover, the phase diagram of this Kondo insulator shows
a new weak topological phase when increasing the hopping
anisotropy from the cubic to tetragonal structure. When other
than the mJ = ±1/2 doublet is involved in the hybridization
or when the crystalline field is other than one of those listed in
Table I, such system may only appear in a low-order neighbor
approximation.

Relevant crystal structures for this work are those which
allow for a pure �J

1/2 doublet in the ground state. In topologi-
cal Kondo insulators involving Kramers doublets from the 7/2
spin-orbit octet this ground state can only exist in some of the
crystalline hexagonal lattices (see Table I). Kondo insulators
forming from hybridization with a Kramers doublets from the
5/2 sextet, on the other hand, can have it in all tetragonal and
some of the hexagonal lattices. In practice, the crystal field
splitting may not be strong enough to separate the ground state
and (anisotropic) pressure may help to stabilize a topological
phase. Finally, we have discussed several implications for the
rare-earth compounds.
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TABLE II. Coefficient functions hn
1,2,3,5(k) parametrizing the

hybridization matrix Vn− 1
2
(k) for the mJ = 1/2, 3/2, and 5/2 dou-

blets of the J = 5/2 sextet in the nearest-neighbor approximation
of a tetragonal lattice. Here v‖ ≡ v(r1

x,y ) and v⊥ ≡ v(r1
z ) are the

hybridization intensities within and perpendicular to the symmetry
(x, y) plane, respectively.

Vn− 1
2

hn
1 hn

2 hn
3 hn

5

n = 1 v‖ sin (kx ) v‖ sin (ky ) −2v⊥ sin (kz ) 0
n = 2 0 0 v‖ sin (ky ) v‖ sin (kx )
n = 3 −v‖ sin (kx ) v‖ sin (ky ) 0 0
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APPENDIX A: WINDING NUMBER
AND BROUWER INDEX

For convenience of the reader we here review
the calculation of the winding number, N =∫

d3k
48π2 ε

i jk tr[γ5H−1(∂iH)H−1(∂ jH)H−1(∂kH)], via the
Brouwer degree, Eq. (7) in the main text. Starting out
from the Hamiltonian matrix H(k) = ∑4

i=1 hi(k)γi and
the chiral symmetry operator γ5 = γ1γ2γ3γ4, we use the
anticommutation relation, {γa, γb} = 2δab, to simplify terms,
e.g., hahbγaγb = 1

2 hahb(γaγb + γbγa) = hahbδab ≡ |h|2, etc.

One then arrives at N = ∫
d3k

48π2 f i jk
abcd

ha
|h|4 (∂ihb)(∂ jhc)(∂khd ),

with f i jk
abcd = εi jktr(γ5γaγbγcγd ), which can be cast into the

form

N = 1

12π2

∫
1

|h|4 εabcd hadhb ∧ dhc ∧ dhd . (A1)

Equation (A1) is the pull-back of the (normalized) volume
form on the three-sphere, i.e., N = ∫

h∗ωS3 , where ωS3 =
1

vol(S3 )
1

|k|4 ikaea (dk1 ∧ dk2 ∧ dk3 ∧ dk4). The latter can be cal-

culated from the Brouwer degree of the map h/|h| : T 3 → S3,
k 
→ (h/|h|)(k) with T 3 the 3D Brillouin zone torus and
hT = (h1, h2, h3, h4). The Brouwer degree counts the number
of intersections of a ray through the origin and the oriented
surface spanned by the map, as discussed in the main text.

APPENDIX B: HYBRIDIZATION MATRIX FOR THE 5/2
DOUBLETS IN TETRAGONAL CRYSTAL FIELD

Let us recall that matrices Eqs. (3) and (5) in the main text
describe the hybridization

ĤV (k) =
(

c†
k↑ c†

k↓
)
VmJ (k)

(
fk,+mJ

fk,−mJ

)
, (B1)

where mJ = n − 1
2 from Eq. (3) in the main text. Concentrat-

ing then on Kramers doublets separating from the J = 5/2
sextet and a tetragonal symmetry, we find in the nearest-
neighbor approximation the coefficient functions hn

1,2,3,5(k)
summarized in Table II [see Eq. (4) in the main text]. This
situation was also considered in Ref. [47] up to the first-next-
neighbor approximation.

We notice that in the nearest-neighbor approximation hy-
bridization with mJ = 3/2 and 5/2 doublets does not open

TABLE III. Coefficient functions hn
1,2,3,5(k) as in Table II, now

including next-nearest-neighbor contributions.

Vn− 1
2

hn
1 hn

2 hn
3 hn

5

n = 1 Fa sin (kx ) Fb sin (ky ) −Fc sin (kz ) 0
n = 2 0 5F ′

c sin (kz ) Fb sin (ky ) Fa sin (kx )
n = 3 −F ′

a sin (kx ) F ′
b sin (ky ) −F ′

c sin (kz ) 0

a gap in the spectrum and the system remains metallic. As
discussed in the main text, vanishing coefficient functions
for mJ = 5/2 and 7/2 doublets are related to the specific
values of spherical harmonics Y ±2

3 at the angles of the nearest-
neighbor directions, here in the tetragonal lattice. In the case
of the mJ = 1/2 doublet, on the other hand, vanishing of
h5 is a consequence of the rotational symmetry of Y 0

3 , and
independent of the nearest-neighbor approximation.

Accounting for next-nearest-neighbor contributions,
a (small) gap also opens in the case of hybridization
with mJ = 3/2 and 5/2 doublets, as can be seen from
Table III, where we summarize coefficient functions now
including next-nearest-neighbor contributions. Here we
defined Fa = F(y−z), F ′

a = F−(y−z), Fb = F(x−z), and F ′
b =

F−(x−z), with F±(i± j) = v‖ + v2‖[1 ± 2Ci± j − √
2 cos(kz )],

Ci± j = √
2[cos(ki ) ± cos(k j )] (i, j = x, y, z), and Fc =

2v⊥ + v2⊥(2 − Cx+y), F ′
c = v2⊥Cx−y. Here v‖/⊥ and v2‖/2⊥

are the hybridization intensities within/perpendicular to the
symmetry plane for first- and second-nearest-neighbor sites,
respectively [as also used in Eq. (4) of the main text]. Notice
that in this order of hopping approximation, effective models
for mJ = 3/2 and 5/2 doublets also show a chiral symmetry,
i.e., γ1 and γ5, respectively. Including, however, contributions
from third-nearest neighbors all coefficient functions become
nonvanishing in the case of mJ = 3/2 and 5/2 doublets. Only
in the case of the mJ = 1/2 doublet h5 remains zero. Finally, a
discussion similar to the above applies to coefficient functions
parametrizing hybridization with doublets from the J = 7/2
octet.

APPENDIX C: TETRAGONAL KONDO INSULATOR

We here focus on a tetragonal Kondo insulator with the
�

5/2
1/2 doublet in the ground state and calculate the winding

number from the nearest-neighbor model. Dispersion rela-
tions for conduction and (nearly) localized electrons then read
ε

c, f
k = εc, f + 2t c, f

‖ [cos(kx ) + cos(ky)] + 2t c, f
⊥ cos(kz ), where

εc, f are the corresponding bands’ center and t c, f
‖/⊥ hopping

parameters within/perpendicular to the symmetry plane of the
tetragonal structure. Dispersion relations define coefficients
h0,4(k) [see Eq. (2) in the main text] and coefficients hn

1,2,3,5(k)
are taken, e.g., from Table II or III. With these functions
Eq. (7) in the main text reads

N =
∑

k∈h−1(n0 )

sgn(−FaFbFc cos kx cos ky cos kz ), (C1)

where Fa,b,c have been discussed in the previous Ap-
pendix. To evaluate the sum (C1), it is then convenient to
choose n0 = h4(0)e4 whose preimage, h−1(n0), is the eight

075109-5



M. A. GRIFFITH, M. A. CONTINENTINO, AND T. O. PUEL PHYSICAL REVIEW B 99, 075109 (2019)

time-reversal-invariant points in the Brillouin zone. The result
of this calculation is given in Eq. (8) of the main text.

APPENDIX D: SURFACE-STATE SPIN TEXTURE
IN THE TETRAGONAL KONDO INSULATOR

The translationally invariant tetragonal Kondo insulators
allows for a characterization in terms of winding number, as
described in Eq. (7) in the main text and Appendix A. Here
we apply the projection method to derive the surface Hamilto-
nian. Let us consider those time-reversal-invariant momenta
points k0, as described in the previous Appendix. In their
vicinity the Hamiltonian reads H(k) = ∑3

i=1 vikiσiτx + mτz,

with parameters vi and m functions of k0. As an illustration
we consider the surface Hamiltonian at z = ±L/2, where L
is the z-direction system size. Since translational invariance
is broken in the z direction we substitute kz → −i∂z and the
zero-energy eigenfunctions are obtaining by(

τz[m − (P+ − P−)vz∂z] +
2∑

i=1

vikiσiτx

)
ψk(z) = 0, (D1)

where we have introduced the projection operators P± =
1
2 (I ± σzτy). The spatially dependent part of the Schrödinger
equation, with ψk(z) = ψ (z)ψ (k), is solved by eigenfunc-
tions of P±; that is, introducing P±ψ± = ±ψ± the z-
coordinate-dependent part reads

ψ (z) = e
m
vz

z
ψ+ + e− m

vz
z
ψ−. (D2)

Depending on the sign of sgn(m/vz ) = ± the first/second
contribution accounts for the wave functions exponentially
localized at z = ∓L/2. Concentrating on either one of the
surfaces we project the k-dependent part on the corresponding
eigenspace H± ≡ P±H (k)P±. In order to find an explicit
expression it is convenient to introduce U ≡ ei π

4 τx such that
the surface Hamiltonians are written in the rotated basis H±

U =
U †H±U , explicitly

H+
U =

⎛
⎜⎝

0 0 0 vxkx − ivyky

0 0 0 0
0 0 0 0

vxkx + ivyky 0 0 0

⎞
⎟⎠, (D3)

H−
U =

⎛
⎜⎝

0 0 0 0
0 0 vxkx + ivyky 0
0 vxkx − ivyky 0 0
0 0 0 0

⎞
⎟⎠. (D4)

From this result we notice that each of the two Hamiltonians
describes a given surface depending on sgn[m(k0)vz(k0)]. The
surface Hamiltonians on opposite surfaces have opposite chi-
ralities, i.e., ch+ = sgn(vxvy) and ch+ = −sgn(vxvy). Thus,
the chirality of the surface states at a given surface is fixed by
the product ch = sgn(mvxvyvz ). Coming back to our example
in the previous section, the sum is over time-reversal-invariant
momenta where band inversion occurs, i.e., m(k0) < 0. Hav-
ing fixed the Brouwer’s formula n0 = h4(0)e4 we notice that
each summand is related to the chirality of surface states such
that

N =
∑

k0

sgn[−vx(k0)vy(k0)vz(k0)]. (D5)

The absolute value of the winding accounts for the total
chirality of surface states when present on a given surface.
The latter is a well-defined quantity, i.e., independent of the
surface one looks at.

APPENDIX E: CUBIC KONDO INSULATOR AT LOW
NEIGHBOR HOPPING APPROXIMATION

As an example of the low neighbor hopping approxima-
tion, we apply our calculations to the 4-band model of a
cubic structure as described in Ref. [12]. According to our
notation, their Hamiltonian can be rewritten as ε

c, f
k = ε

c, f
0 −

2tc, f η
c, f
1 (cx + cy + cz ) − 4tc, f η

c, f
2 (cxcy + cycz + czcx ), where

ε
c, f
k are dispersion relations for the conducting and lo-

calized bands, ε
c, f
0 are the corresponding bands’ center,

and tc, f η
c, f
1 and tc, f η

c, f
2 are the bandwidths for the first-

and second-nearest neighbors, respectively; finally, ci =
cos (ki ) with i = x, y, z. Using the notation of Table III
with n = 1, the hybridization elements have their co-
efficient functions as Fa = −2V [ηv1 + ηv2(cy + cz )], Fb =
−2V [ηv1 + ηv2(cx + cz )], and Fc = 2V [ηv1 + ηv2(cy + cx )],
where V ηv1 and V ηv2 are the hybridization amplitudes for
nearest- and next-nearest-neighbor hopping, respectively. Fi-
nally, the parameters were set to ε

f
0 − εc

0 = −2eV , tc =
1eV , t f = 0.003eV , ηc

1 = η
f
1 = 1, ηc

2 = η
f
2 = −0.5, V ηv1 =

0.2eV , and V ηv2 = 0.
Now we intend to calculate the winding number according

to Eq. (C1), where we evaluate the sum by choosing n0 =
−h4(0)e4, whose preimage is the eight time-reversal-invariant
points in the Brillouin zone. The result of this calculation is
N = +3, which characterizes the three Dirac cones with the
same pseudospin chirality in Fig. 3(a) in Ref. [12].
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