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Classification of crystalline topological insulators and superconductors with point group symmetries
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Crystalline topological phases have recently attracted a lot of experimental and theoretical attention. Key
advances include the complete elementary band representation analyses of crystalline matter by symmetry
indicators and the discovery of higher-order hinge and corner states. However, current classification schemes
of such phases are either implicit or limited in scope. We present a scheme for the explicit classification of
crystalline topological insulators and superconductors. These phases are protected by crystallographic point
group symmetries and are characterized by bulk topological invariants. The classification paradigm generalizes
the Clifford algebra extension process of each Altland-Zirnbauer symmetry class and utilizes algebras which
incorporate the point group symmetry. Explicit results for all point group symmetries of three-dimensional
crystals are presented as well as for all symmorphic layer groups of two-dimensional crystals. We discuss future
extensions for treatment of magnetic crystals and defected or higher-dimensional systems as well as weak and
fragile invariants.
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I. INTRODUCTION

Over the past decades, the discovery of topological phases
such as topological insulators, superconductors, and semimet-
als has transformed our understanding of condensed matter
physics [1–4]. Study of such phenomena is being extensively
used as a new tool for classifying phases of matter which can
not be distinguished by broken symmetries. Many topological
insulators arise in systems of weakly interacting fermions
which feature a bulk gap, and topological superconductors are
similarly described by the fermionic quasiparticle excitations
of a BCS superconductor.

Key aspects of these topological phases are the symmetries
possessed by the material in question. If a gapped material
possesses only a charge conservation symmetry, it may only
realize an integer quantum Hall effect [5,6] characterized by
a Z topological index. However, in the presence of other
nonspatial symmetries, such as time-reversal or particle-hole
symmetry, many other topological phases are possible [7–9].
Examples of such phases include the Z2 two-dimensional and
three-dimensional topological insulators [1,2,7,10–14], and
one-dimensional and two-dimensional topological p-wave su-
perconductors [15,16].

Many materials in nature are, however, also characterized
by spatial crystalline symmetries which emanate from their
crystallographic structure. Over the past several years, these
space group and point group symmetries of crystalline matter
have been theoretically predicted to host a large and diverse
variety of topological phases [17–34]. Many of these proposed
topological phases have been measured in various experi-
ments [35–38] in materials such as PbTe, Pb1−xSnxTe, and
Pb1−xSnxSe. Other crystalline topological phases host exotic
surface behavior such as hinge and corner states [39–54].
Such higher-order topological insulators and superconductors
have been also recently experimentally observed in bismuth
by Schindler et al. [45]. A recent survey by Vergniory et al.

[55] had found that a staggering 24% of materials in nature
have some nontrivial band structure topology.

In this paper, we engage the vital challenge of achieving
a complete classification of all possible topological phases
in presence of all possible material symmetries. A major
milestone in our understanding of topological phases came
with the discovery of the periodic table of topological insu-
lators and superconductors [1,3,56–63]; see Table I. The table
provides a complete classification of all topological phases of
noninteracting fermions in presence of nonspatial symmetries.
The presence and absence of these symmetries are categorized
into the 10 Altland-Zirnbauer (AZ) symmetry classes [64–66]
and form the “tenfold way.” Each AZ symmetry class corre-
sponds to a topological “classifying space” of possible free-
fermion Hamiltonians respecting the symmetry, and these are
the topological invariants of these classifying spaces which
are the Z and Z2 topological indices.

There are many different viewpoints for this profound
classification [9,56–58,60]. The approach of Refs. [56,60,67],
which was pioneered by Kitaev [56], takes an algebraic per-
spective. In this paradigm, the set of nonspatial symmetry
transformations forms a Clifford algebra with a specific ac-
tion over the Hilbert space. The enumeration of all possible
topologically distinct Hamiltonians is equivalent to asking
the following: How many actions can a Hamiltonian have on
the Hilbert space which are compatible with the algebra of
nonspatial symmetries? The answer to this question is exactly
the “classifying space” for the AZ symmetry class; see Fig. 1.
The twofold and eightfold periodic structures within the table
then naturally follow from the Bott periodicity of Clifford
modules [68].

In this paper, we generalize this classification scheme
as to include the effects of all point group symmetries of
crystalline matter. One highly successful approach towards
solving the classification problem is the use of symmetry
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TABLE I. Bulk topological invariants π0(Rq−d ) and π0(Cq−d ) for real and complex Altland-Zirnbauer symmetry classes q in d spatial
dimensions.

q Algebra extension Classifying space AZ class d = 0 d = 1 d = 2 d = 3

0 C ↪→ C ⊕ C C0 = ∏
k+m=n U (n)/[U (k) × U (m)] A Z 0 Z 0

1 C ⊕ C ↪→ M2(C) C1 = U (n) AIII 0 Z 0 Z

0 R ↪→ R ⊕ R R0 = ∏
k+m=n O(n)/[O(k) × O(m)] AI Z 0 0 0

1 R ⊕ R ↪→ M2(R) R1 = O(n) BDI Z2 Z 0 0

2 R ↪→ C R2 = O(2n)/U (n) D Z2 Z2 Z 0

3 C ↪→ H R3 = U (2n)/Sp(n) DIII 0 Z2 Z2 Z

4 H ↪→ H ⊕ H R4 = ∏
k+m=n Sp(n)/[Sp(k) × Sp(m)] AII Z 0 Z2 Z2

5 H ⊕ H ↪→ M2(H) R5 = Sp(n) CII 0 Z 0 Z2

6 H ↪→ M2(C) R6 = Sp(n)/U (n) C 0 0 Z 0

7 C ↪→ M2(R) R7 = U (n)/O(n) CI 0 0 0 Z

indicators of elementary band representations [50,55,69–78].
In this approach, the “symmetry indicators,” which are a
generalization of the Fu-Kane [18,79] formula Z2 invariant,
are used to analyze the band structure into elementary band
representation of the corresponding crystallographic group. It
is shown that bands which form one subpart of a disconnected
elementary band representation must always be topological
[75]. This is a very prolific classification scheme which is
used to categorize numerous topological crystalline phases.
However, this technique requires one to perform Berry-phase
analyses of individual electronic Bloch wave functions along
various Wilson loops in order to detect different topological
phases which correspond to the same band representation,
e.g., the integer quantum Hall effect.

An alternate theoretically complete and rigorous approach
is the formulation of the crystalline classification problem
using twisted equivariant K theory [51,52,54,80–87]. Within
twisted equivariant K theory, the crystallographic group ac-
tion on the Hamiltonian is encoded by a twist on the Brillouin
zone (BZ) which serves as the base space of the K group
[85]. This approach was successful in obtaining a complete
classification of all topological invariants of order-two mag-
netic space group crystals [81,82] as well as of all wallpaper
group crystals [85,88]. However, due to the mathematically
challenging nature of the paradigm, ongoing works [87] are
still being carried in an attempt to calculate all topological
invariants of all crystallographic symmetry groups.

Herein, we follow the approach of Freed and Moor [80],
Morimoto and Furusaki [81], and Shiozaki, Sato, and Gomi
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FIG. 1. The Clifford algebra classification scheme for nonspatial
symmetries [56,60,67].

[82,85]. We focus on bulk topological invariants which are
akin to the strong topological invariants of topological in-
sulators and superconductors with nonspatial symmetries
[56–58,62,63,67]. We generalize the Clifford algebra classi-
fication scheme (see Fig. 1) by incorporating the point group
symmetry actions into the algebra of symmetries generated
by the nonspatial symmetries, and a Hamiltonian compatible
with this symmetry creates a natural Z2-graded algebraic
structure. Since any operator, such as the Hamiltonian, can
be thought of as a transformation acting on the Hilbert space,
the study of all compatible Hamiltonians is thus equivalent to
the study of all possible actions of the extended Z2-graded
algebra on the Hilbert space; see Fig. 2.

For each of the possible 32 crystallographic point group
symmetries, we find the appropriate Z2-graded algebra and
its corresponding “classifying space” of possible actions. The
topological indices characterizing possible topological insu-
lators and superconductors in any of the 10 AZ symmetry
classes are the topological invariants of this classifying space,
and these invariants are herein presented.

The majority of phases found by our classification
paradigm correspond to aberrant crystalline topological in-
sulators and superconductors. Nevertheless, a tremendous
amount of work on various crystalline topological phases has
recently been carried out by numerous research groups around
the globe; we thus also compare our results to many phases
that had already been analysed (see Sec. V).

The rest of the paper is divided as follows: In Sec. II
we summarize our results which are presented in the tables
throughout the paper. In Sec. III we present the physical
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FIG. 2. Our Z2-graded algebra classification scheme for crys-
talline symmetries.
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TABLE II. Bulk topological invariants and classifying spaces for all AZ symmetry classes with the following symmetries of crystalline
matter: the triclinic crystal system point group symmetries C1,Ci, the monoclinic crystal system point group symmetries C2,Cs,C2h, and the
orthorhombic crystal system point group symmetries D2,C2v, D2h.

Schön. C1 Ci, S2 C2, D1 Cs,C1h,C1v C2h, D1d D2 C2v, D1h D2h

HM 1 1̄ 2 m 2/m 222 mm2 mmm

Cq+1 Cq C2
q+1 Cq C2

q C4
q+1 C2

q C4
q

A 0 Z 0 Z Z2 0 Z2 Z4

AIII Z 0 Z2 0 0 Z4 0 0

Rq−3 Rq−4 R2
q−3 Rq−4 R2

q−4 R4
q−3 R2

q−4 R4
q−4

AI 0 Z 0 Z Z2 0 Z2 Z4

BDI 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0
DIII Z 0 Z2 0 0 Z4 0 0
AII Z2 Z Z2

2 Z Z2 Z4
2 Z2 Z4

CII Z2 Z2 Z2
2 Z2 Z2

2 Z4
2 Z2

2 Z4
2

C 0 Z2 0 Z2 Z2
2 0 Z2

2 Z4
2

CI Z 0 Z2 0 0 Z4 0 0

paradigm of our classification and then provide the mathemat-
ical background needed for the analysis. In Sec. IV we give
some pedagogical examples for calculating the topological
classification of all symmetries. In Sec. V we discuss our
results in comparison with previous classification schemes
and suggest possible future extensions.

II. SUMMARY OF RESULTS

The results are brought for all point group symmetries
in all crystal systems, triclinic, monoclinic, orthorhombic,
tetragonal, trigonal, hexagonal, and cubic. All groups are
brought both in Schönflies (Schön.) notation and in Hermann-

Mauguin (HM) notation; they are accompanied by a solid
displaying the crystalline symmetry group, taken with per-
mission from Ashcroft and Mermin [89]. Bulk topological
invariants for all AZ symmetry classes are presented in
Tables II–VI. All classifying spaces for all three-dimensional
(3D) point group symmetries in all crystal systems are com-
pactly presented in Table VII. In Appendix E we use our
techniques to calculate all classifying spaces for all two-
dimensional (2D) symmorphic layer group symmetries [88];
these results are also compactly presented in Table VII. Pos-
sible extensions of our work in treatment magnetic crystals
as well as defected and higher-dimensional systems are dis-
cussed in Sec. V.

TABLE III. Bulk topological invariants and classifying spaces for all AZ symmetry classes with all tetragonal crystal system point group
symmetries of crystalline matter: C4, S4,C4h, D4,C4v, D2d , D4h.

Schön. C1 C4 S4 C4h D4 C4v D2d D4h

HM 1 4 4̄ 4/m 422 4mm 4̄2m 4/mmm

Cq+1 C4
q+1 C2

q C4
q C5

q+1 C2
q × Cq+1 C2

q × Cq+1 C5
q

A 0 0 Z2 Z4 0 Z2 Z2 Z5

AIII Z Z4 0 0 Z5 Z Z 0

Rq−3 R2
q−3 × Cq+1 Rq−4 × Rq−2 R2

q−4 × Cq R5
q−3 R2

q−4 × Rq−5 R2
q−4 × Rq−3 R5

q−4

AI 0 0 Z Z3 0 Z2 Z2 Z5

BDI 0 Z 0 0 0 Z 0 0
D 0 0 Z Z 0 0 0 0
DIII Z Z3 Z2 0 Z5 0 Z 0
AII Z2 Z2

2 Z × Z2 Z3 Z5
2 Z2 Z2 × Z2 Z5

CII Z2 Z2
2 × Z Z2 Z2

2 Z5
2 Z2

2 × Z Z3
2 Z5

2

C 0 0 Z2 × Z Z2
2 × Z 0 Z3

2 Z2
2 Z5

2

CI Z Z3 0 0 Z5 Z2 Z 0
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TABLE IV. Bulk topological invariants and classifying spaces for all AZ symmetry classes with all trigonal crystal system point group
symmetries of crystalline matter: C3,C3i, D3,C3v, D3d .

Schön. C1 C3 C3i, S6 D3 C3v D3d

HM 1 3 3̄ 32 3m 3̄m

Cq+1 C3
q+1 C3

q C3
q+1 Cq × Cq+1 C3

q

A 0 0 Z3 0 Z Z3

AIII Z Z3 0 Z3 Z 0

Rq−3 Rq−3 × Cq+1 Rq−4 × Cq R3
q−3 Rq−4 × Rq−5 R3

q−4

AI 0 0 Z2 0 Z Z3

BDI 0 Z 0 0 Z 0
D 0 0 Z 0 0 0
DIII Z Z2 0 Z3 0 0
AII Z2 Z2 Z2 Z3

2 Z Z3

CII Z2 Z2 × Z Z2 Z3
2 Z2 × Z Z3

2

C 0 0 Z2 × Z 0 Z2
2 Z3

2

CI Z Z2 0 Z3 Z2 0

III. METHODOLOGY OF CLASSIFICATION

A. Physical paradigm

The many-body Hilbert space is a complex linear vector
space. A symmetry action on the states within the Hilbert
space is either a unitary or antiunitary action. These imply
that the Hilbert space forms a real module over the algebra
of symmetries, denoted B0. When no crystalline symmetry is
present, B0 is generated by some selection of the following
nonspatial symmetries [57,58,90]: charge conservation Q,
time reversal T , particle-hole symmetry C, and spin rotations
S1, S2, S3. Such a selection corresponds to an AZ symmetry
class [64–66]; see Table I. Any translation-invariant nonin-
teracting quantum dynamics is described by a Hamiltonian
H(k), which is quadratic in creation-annihilation(/Majorana)

operators of the many-body Fock(/Nambu) space representa-
tion. When using this representation, the Hamiltonian may be
linearized around the �-point, which is the high-symmetry
time-reversal-invariant point, such that [56–58,62,63,67]

H(k) = iM + γ · k, {γi, γ j} = 2δi j . (1)

Here, the Dirac gamma matrices γ = γ1, γ2, . . . , γd (in d
spatial dimensions) may be naturally incorporated into the
algebra of symmetries B0. When studying either insulators
or superconductors which correspond to gapped Hamiltonians
H(k), the mass matrix M, which gaps the spectrum, may
be spectrally flattened (i.e., M2 = −1), and, together with
the algebra of symmetries B0 form an extended algebra B.
Classifying all gapped Dirac Hamiltonians is thus equivalent
to classifying all Hilbert space actions [67] of the extended

TABLE V. Bulk topological invariants and classifying spaces for all AZ symmetry classes with all hexagonal crystal system point group
symmetries of crystalline matter: C6,C3h,C6h, D6,C6v, D3h, D6h.

Schön. C1 C6 C3h C6h D6 C6v D3h D6h

HM 1 6 3/m 6/m 622 6mm 6̄m2 6/mmm

Cq+1 C6
q+1 C3

q C6
q C6

q+1 C2
q × C2

q+1 C3
q C6

q

A 0 0 Z3 Z6 0 Z2 Z3 Z6

AIII Z Z6 0 0 Z6 Z2 0 0

Rq−3 R2
q−3 × C2

q+1 Rq−4 × Cq R2
q−4 × C2

q R6
q−3 R2

q−4 × R2
q−5 R3

q−4 R6
q−4

AI 0 0 Z2 Z4 0 Z2 Z3 Z6

BDI 0 Z2 0 0 0 Z2 0 0
D 0 0 Z Z2 0 0 0 0
DIII Z Z4 0 0 Z6 0 0 0
AII Z2 Z2

2 Z2 Z4 Z6
2 Z2 Z3 Z6

CII Z2 Z2
2 × Z2 Z2 Z2

2 Z6
2 Z2

2 × Z2 Z3
2 Z6

2

C 0 0 Z2 × Z Z2
2 × Z2 0 Z4

2 Z3
2 Z6

2

CI Z Z4 0 0 Z6 Z2
2 0 0
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TABLE VI. Bulk topological invariants and classifying spaces for all AZ symmetry classes with all cubic crystal system point group
symmetries of crystalline matter: T, Th, O, Td , Oh.

Schön. C1 T Th O Td Oh

HM 1 23 m3̄ 432 4̄3m m3̄m

Cq+1 C4
q+1 C4

q C5
q+1 C2

q × Cq+1 C5
q

A 0 0 Z4 0 Z2 Z5

AIII Z Z4 0 Z5 Z 0

Rq−3 R2
q−3 × Cq+1 R2

q−4 × Cq R5
q−3 R2

q−4 × Rq−5 R5
q−4

AI 0 0 Z3 0 Z2 Z5

BDI 0 Z 0 0 Z 0
D 0 0 Z 0 0 0
DIII Z Z3 0 Z5 0 0
AII Z2 Z2

2 Z3 Z5
2 Z2 Z5

CII Z2 Z2
2 × Z Z2

2 Z5
2 Z2

2 × Z Z5
2

C 0 0 Z2
2 × Z 0 Z3

2 Z5
2

CI Z Z3 0 Z5 Z2 0

algebra B which are compatible with the action of B0; see
Figs. 1 and 2. One finds a Morita equivalent Clifford al-
gebra structure [56,68,91,92] for both algebras B0 = Clp,q

and B = Clp+1,q. Moreover, one may also identify the ex-
tended algebra as a Z2-graded algebra (superalgebra) B =
B0 ⊕ B1 whose even part is the algebra of symmetries B0; see
Sec. III B 1. The space of Dirac Hamiltonians corresponding
to the extension Clq+6,d ↪→ Clq+7,d is stably homotopic to a
Cartan symmetric space Rq−d which is the classifying space
[1,56–59,62,63] of the AZ symmetry class q in d dimensions.

Every stable topological phase is therefore characterized by
an invariant in the group π0(Rq−d ); see Sec. III B 2. This
structure is summarized in the periodic table [1,56–59,62,63]
of topological insulators and superconductors, which fol-
lows from the Atiyah-Bott-Shapiro construction [56,68]; see
Table I. This classification of Dirac Hamiltonians captures
the bulk topological invariants corresponding to strong topo-
logical phases [56–58,62,63,67], and it is these bulk strong
topological invariants we herein generalize to incorporate
spatial crystalline symmetry. Possible future analyses of weak

TABLE VII. Classifying spaces of all point group symmetries of 3D crystals and all symmorphic layer-group symmetries of 2D crystals.

Schönflies C1 C(2n) C3 C1h C(2n)h C3h C1v C(2n)v C3v

HM 1 (2n) 3 m (2n)/m 3/m m (2n)mm 3m

3D Complex Cq+1 C2n
q+1 C3

q+1 Cq C2n
q C3

q Cq C2
q ×Cn−1

q+1 Cq×Cq+1

Real Rq−3 R2
q−3×Cn−1

q+1 Rq−3×Cq+1 Rq−4 R2
q−4×Cn−1

q Rq−4×Cq Rq−4 R2
q−4×Rn−1

q−5 Rq−4×Rq−5

2D Complex Cq C2n
q C3

q C2
q C4n

q C6
q Cq+1 C2

q+1×Cn−1
q Cq+1×Cq

Real Rq−2 R2
q−2×Cn−1

q Rq−2×Cq Cq C2n
q C3

q Rq−3 R2
q−3×Rn−1

q−4 Rq−3×Rq−4

Schönflies D1 D(2n) D3 D1h D(2n)h D3h D1d D2d D3d

HM 2 (2n)22 32 mm2 (2n)/mmm 6̄m2 2/m 4̄2m 3̄m

3D Complex C2
q+1 Cn+3

q+1 C3
q+1 C2

q Cn+3
q C3

q C2
q C2

q ×Cq+1 C3
q

Real R2
q−3 Rn+3

q−3 R3
q−3 R2

q−4 Rn+3
q−4 R3

q−4 R2
q−4 R2

q−4×Rq−3 R3
q−4

2D Complex Cq+1 C2
q+1×Cn−1

q Cq+1×Cq Cq C2n
q C3

q Cq C2
q+1×Cq C3

q

Real Rq−3 R2
q−3×Rn−1

q−4 Rq−3×Rq−4 Rq−2 R2n
q−2 R3

q−2 Rq−4 R2
q−3×Rq−4 Rq−4×Cq

Schönflies S2 S4 S6 T Th Td O Oh

HM 1̄ 4̄ 3̄ 23 m3̄ 4̄3m 432 m3̄m

3D Complex Cq C2
q C3

q C4
q+1 C4

q C2
q ×Cq+1 C5

q+1 C5
q

Real Rq−4 Rq−4×Rq−2 Rq−4×Cq R2
q−3×Cq+1 R2

q−4×Cq R2
q−4×Rq−5 R5

q−3 R5
q−4

2D Complex C2
q C4

q C6
q

Real Cq R2
q−2×Cq C3

q
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[12,13,28] and fragile [93–95] crystalline topological phases
are discussed in Sec. V.

In this paper, we study the structure of the Z2-graded
structure algebra extension B0 ↪→ B in presence of additional
symmetries of the point group, g ∈ G, which act on the
momenta by

UgH(k)U −1
g = H(Ogk), (2)

where Og ∈ O(d ) is an orthogonal transformation. This yields
an action on the Clifford algebras such that G acts only on the
spatial generators

UgγU −1
g = OT

g γ . (3)

However, due to the spin of the electrons, the unitary actions
Ug form a projective representation �(G), satisfying

UgUg′ = ±Ug·g′ (4)

(see Sec. III B 3). These algebras of spatial and extended
nonspatial symmetry actions on the Hilbert space are given
by B = 〈Clp+1,q,�(G)〉, which denotes the algebra generated
by the elements of the extended nonspatial symmetry actions
Clp+1,q, as well as by the projective spatial symmetries �(G).

We focus on the 32 possible point group symmetries of
3D crystals [88]. These are determined by an abstract group
structure G and an action on 3D space G ⊂ O(3). We identify
the algebra extension structure of each point group symmetry
within each AZ symmetry class and construct the appropriate
classifying space and its bulk topological invariants which are
manifested by model Hamiltonians.

In the absence of crystalline symmetry, such bulk topolog-
ical invariants always manifest in edge modes due to the bulk-
boundary correspondence [7,10–14,62,78,79,96–98]. How-
ever, in previously treated crystalline symmetries, it was noted
that such crystalline bulk invariants may also either host no
edge modes [82,99], or in fact host higher-order [39–53] hinge
or corner-protected topological modes. Possible treatment of
the higher-order topological insulators and superconductors
which correspond to the bulk invariants presented in this paper
are discussed in Sec. V.

B. Detailed derivation

In this section we provide the mathematical background
required for the complete understanding of our technique. The
educated reader may skip to the examples in Sec. IV.

1. Z2-graded algebras and their tensor products

An algebra A (over R) is called Z2 graded [91] if
A = A0 ⊕ A1 where a · a′ ∈ Ai+ j (mod 2) for every a ∈ Ai and
a′ ∈ Aj . In this case, A0 is called “the even part” of A,
and A1 “the odd part.” The elements of A0 ∪ A1 are called
“homogeneous,” the elements of A0 “even,” and the elements
of A1 “odd.” The even part forms a subalgebra A0 ↪→ A,
while the odd part is not an algebra as it is not closed under
multiplication.

For example, the Clifford algebra [56,92] A = Clp,q, which
is the algebra generated over the real numbers by generators
x1, . . . , xp and γ1, . . . , γq which are anticommuting in pairs
and satisfy x2

j = −1 for every j ∈ {1, . . . , p} and γ 2
j = 1 for

every j ∈ {1, . . . , q} is Z2 graded: with A0 being the usual

even part of the Clifford algebra, and A1 being the odd part.
The same algebra can admit more than one grading: for ex-
ample, the algebra of 2 × 2 real matrices M2(R) is generated
over R by γ1, γ2 subject to the relations γ 2

1 = γ 2
2 = 1 and

γ1γ2 = −γ2γ1. We can define the Z2 grading by making
both γ1 and γ2 odd, in which case γ1γ2 will be even, and
the even part would be R〈γ1γ2〉 ∼= C; this corresponds to
the identification M2(R) ∼= Cl0,2. However, we could also
define the grading by making γ1 odd and γ2 even, in which
case the even part would be R〈γ2〉 ∼= R ⊕ R; this corresponds
to the identification M2(R) ∼= Cl1,1.

Given two Z2-graded algebras A and A′ generated by
homogeneous elements, the graded tensor product A⊗̂A′ is de-
fined to be the R-algebra generated by the generators of A and
A′ put together such that they satisfy their former relations,
plus the following: every even generator of A commutes with
all the generators of A′, and vice versa, and for odd generators
a ∈ A1 and a′ ∈ A′1 we have aa′ = −a′a.

Specifically, the Z2-graded tensor product [91] of two
Clifford algebras is simply given by

Clp1,q1⊗̂Clp2,q2 = Clp1+p2,q1+q2 . (5)

Given an algebra A, the algebra of n × n matrices with
entries in A is denoted by Mn(A). Recall that by the renowned
Artin-Wedderburn theorem, every semisimple algebra decom-
poses uniquely as a direct sum of matrix algebras over division
algebras. Two semisimple algebras are said to be “Morita
equivalent” if they decompose as direct sums of matrix
algebras (of possibly different dimensions) over the same
division algebras. For example, R ⊕ C is Morita equivalent
to M2(R) ⊕ M3(C). When the algebras are also Z2 graded,
we say the algebras are equivalent if they are equivalent and
also their even parts are Morita equivalent.

2. (Z2-graded) Algebra extensions

By the Bott periodicity [68], all real Clifford algebras
[92] are Morita equivalent to eight prescribed algebras; see
Table I. Their parametrization is a matter of choice, and
we follow Kennedy and Zirnbauer [90] to consider the al-
gebra B = 〈Clq+6+1,d ,�(G)〉 for a given q ∈ {0, 1, . . . , 7}.
The presentation of Clq+6+1,d we consider is the follow-
ing: write γ1, γ2, . . . , γd for the Dirac gamma matrices,
x1, . . . , xq+6 for the nonspatial symmetries, and x0 for the
spectrally flattened mass matrix. These generators satisfy
γ 2

i = 1, x2
i = −1. We write y1, . . . , yq+7+d for the generators

x1, . . . , xq+6; x0; γ1, . . . , γd , and we refer to the generators this
way in statements which hold for all the generators.

Let us look at a Hilbert space E , which is a B-module
and hence also a B0-module. The choices of Hamiltonians
are equivalent to defining a B-module structure on E which is
compatible with B0, i.e., all homomorphisms in the category
of B0-algebras between B and the endomorphisms of E as
a B0-module [100]. This is the definition of the “Hom”
functor HomB0−alg(B, EndB0 E ) and we thus associate it with
the algebra extension

(B0 ↪→ B) �→ lim
dim E→∞

HomB0−alg(B, EndB0 E ), (6)

where we take the stable limit [56,90]. The known results for
the Clifford algebra extension problems are thus formulated
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as
Clp+1,q �→ Rp−q+2, (7)

where Rq = Rq+8. Here, we omit the explicit extension
(Clp,q ↪→ Clp+1,q ) since the Clifford algebras always satisfy
Cl0

p+1,q = Clp,q. This classification scheme is reviewed in
Appendix B; see Fig. 1.

The eightfold Bott periodicity structure [68] in Table I
follows from the relations [92]

Clp+1,q+1
∼= M2(Clp,q), Clp+8,q

∼= M16(Clp,q ). (8)

And, indeed, the algebraic structure of Eq. (6) is invariant
under the Morita equivalence of B with Mn(B).

The complex Clifford algebras [92] Clq are given by the
complexification C ⊗R Clp,q = Clp+q, and satisfy

Clq+1 �→ Cq, (9)

where Cq = Cq+2. Useful identities include

H ⊗R H ∼= M4(R), C ⊗R H ∼= M2(C), C ⊗R C ∼= C⊕2.

(10)

A particular consequence is that C ⊗R Clq
∼= Cl⊕2

q , which
enables one to directly read off the classifying spaces of the
complex AZ classes (A and AIII) from the classifying spaces
of the real AZ classes.

3. Point group symmetries

The point groups are generated by inversions I , rotations
cn by 2π

n , reflections σ = Ic2, and rotoreflections s2n = c2nσh,
where σh, σv are horizontal and vertical reflections.

Importantly, one must take into account the fermionic
nature of the electrons and hence the projective spinor rep-
resentation �(G); see Eq. (4). This spinor representation is
constructed from subgroups of the Pin group, which is a
double cover of the orthogonal group [just as the Spin group,
Spin(3) ∼= SU(2), is a double cover of the special orthogonal
group]:

{±1} ↪→ SU(2) � SO(3)
‖ ↪→ ↪→

{±1} ↪→ Pin−(3) � O(3)� �

{±1} = {±1}.

(11)

Within the Pin (and Spin) group, one obtains the fermionic
property that a 4π rotation equals 1. The subgroups are known
as double point groups Ĝ ⊂ Pin−(3), such that Ĝ/Z2 = G.
However, when taking into account the projective nature of
the Hilbert space and constructing the spinor representation,
this amounts to setting a 2π rotation to be (ĉn)n = −1, and a
double inversion to be Î2 = 1. This is referred to as the spinor
representation �(G). To clarify things [101], we note that
(i) in G a 2π rotation is 1,
(ii) in Ĝ a 2π rotation squares to 1, and
(iii) in �(G) a 2π rotation is −1.

For brevity, we shall use ĉ, ŝ, σ̂ for the generators of
both Ĝ and �(G). Moreover, one finds that a reflection
satisfies σ̂ 2 = I2ĉ2

2 = −1, and that since the product of
orthogonal reflections σ̂hσ̂v is a π rotation, they satisfy
(σ̂hσ̂v )2 = −1. The rotoreflections, however, depend on the
parity, as (ŝ2n)2n = ĉ2n

2n(σ̂ 2
h )n = −(−1)n (see Fig. 3).

Inversion Rotation Reflection Rotoreflection

G I2 =1 (cn)n =1 σ2 =1 (s2n)2n =1

Π(G) Î2 =1 (ĉn)n =−1 σ̂2 =−1 (ŝ2n)2n =−(−1)n

FIG. 3. Solids with either inversion, rotation, reflection, or ro-
toreflection symmetry. The generators of the symmetry are also
specified.

The point group symmetries each correspond to one of the
abstract groups Zn, Dihn, A4, S4, or their product with Z2, as
presented in Table VIII. Useful identities include

Z6 = Z3 × Z2, Dih2 = Z2 × Z2, Dih6 = Dih3 × Z2.

(12)

4. Z2-graded groups and their representations

A group G is called Z2 graded [102] if there exists a
group homomorphism G → Z2, in this case, the kernel of
the homomorphism is denoted G0 and dubbed “the even
part,” while G1 = G \ G0 is dubbed “the odd part.” Similar
to Sec. III B 1, one has G = G0 ∪ G1, where gg′ ∈ Gi+ j (mod 2)

for every g ∈ Gi and g′ ∈ Gj . The even part forms a normal
subgroup G0 � G, while the odd part is not a group as it is not
closed under multiplication.

The simplest case is when G
0−→ Z2, such that all elements

are even and G0 = G. Otherwise, G � Z2, and by the “first
isomorphism theorem,” G0 � G is a normal subgroup and

G/G0 = Z2. (13)

A Z2-graded representation [102] of a Z2-graded group
G is a representation ρ into Z2-graded matrix algebras that
preserve parity, i.e., the even/odd elements of G = G0 ∪ G1

are represented by even/odd elements of Aρ = A0
ρ ⊕ A1

ρ .

TABLE VIII. The abstract groups corresponding to each of the
point group symmetries.

Abstract groups Point group symmetries

Name Symbol Name Schön.

Cyclic Zn Rotational Cn

Z2n Rotoreflection S2n

Dihedral Dihn Pyramidal Cnv

Dihn Dihedral Dn

Dih2n Antiprismatic Dnd

Alternating A4 Chiral tetrahedral T

Symmetric S4 Full tetrahedral Td

S4 Chiral octahedral O

Zn × Z2 Dipyramidal Cnh

Dihn × Z2 Prismatic Dnh

A4 × Z2 Pyritohedral Th

S4 × Z2 Full octahedral Oh
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When studying group representations, a key notion is that
of the “group ring” [103]. It is the algebra generated by a
group G over R (or over any other ring) and denoted R[G].
It is defined to be the R-algebra

⊕
g∈G Rg, whose basis as

a real vector space consists of the elements of G, and its
multiplication table is given by (r1g1)(r2g2) = (r1r2)(g1g2).
Moreover, by construction,

G0 � G ⇒ R[G0] ↪→ R[G], (14)

and a Z2 grading of G induces a Z2 grading of R[G] such that
R[G0] forms the even part of R[G], i.e., R[G]0 = R[G0] and
R[G]1 = ⊕

g∈G1 Rg.
A highly useful property, which follows the Maschke and

Artin-Wedderburn theorems, is that the group ring R[G] is
isomorphic to a direct sum of the matrix algebras correspond-
ing to each irreducible representation of G.

We thus list the group rings of all point group symmetries:
Write n = 2c(n) + r(n), where

c(n) =
⌊

n − 1

2

⌋
, r(n) =

{
1, n odd
2, n even.

(15)

The group rings, associated with the abstract groups corre-
sponding to the point group symmetries in Table VIII, are each
equivalent to one of the following cases:

R[Zn] = R⊕r(n) ⊕ C⊕c(n),

R[Dihn] = (R⊕2)⊕r(n) ⊕ M2(R)⊕c(n),

R[A4] = R ⊕ C ⊕ M3(R),

R[S4] = R⊕2 ⊕ M2(R) ⊕ M3(R)⊕2,

R[G × Z2] = R[G]⊕2. (16)

5. From graded tensor products to topological invariants

By successively analyzing all possible point group sym-
metries, we show that within the extended algebra of symme-
tries B = 〈Clp+1,q,�(G)〉, one can always make a change of
variables and redefine the action of G as a Z2-graded abstract
group G = G0 ∪ G1 (see Appendix D). We find elements of
B which satisfy ŨgŨg′ = Ũg·g′ such that the even part G0

acts trivially on Clp+1,q; the odd elements g ∈ G1 act by
Ũg aŨ −1

g = −a on the odd elements of the Clifford algebra
a ∈ Cl1

p+1,q.
These algebraic relations, by definition, bring the extended

algebra of symmetries to a Z2-graded tensor product structure
B = Clp+1,q⊗̂R[G] (see Sec. III B 1) where the grading of
R[G] is induced by G. This presentation is much simpler
than the original projective action �(G) (see Sec. III A) since
the structure of B is now determined by identifying the Z2

grading of G.
If G acts trivially on Clp+1,q, then we have the simplest

cases of B = R[G] ⊗ Clp+1,q. Otherwise, we must have a
nontrivial grading

G/G0 = Z2 (17)

(see Sec. III B 4). In order to determine the Z2-graded struc-
ture of the group ring corresponding to a specific point group

symmetry, we use either G = G0 × Z2 or one of the following
possible gradings:

Z2n/Zn = Z2, Dih2n/Dihn = Z2,

Dihn/Zn = Z2, S4/A4 = Z2. (18)

The grading is determined by identifying the correct even
normal subgroup G0 � G, acting trivially on Clp+1,q.

This enables us to decompose the group ring R[G] accord-
ing to irreducible Z2-graded representations of G,

R[G] =
⊕

ρ
Aρ, R[G0] =

⊕
ρ

A0
ρ, (19)

where A0
ρ is the even part of Aρ (see Sec. III B 4). Note that

for each Z2-graded representation ρ, either Aρ is an ungraded
representation of G or A0

ρ is an ungraded representation of
G0. Hence, these representations may be used to label [104] ρ

(this is demonstrated in Sec. IV C).
Since any Z2-graded real algebra is Morita equivalent to a

direct sum of Clifford algebras, we may always write

R[G] =
⊕

ρR
[Mn(Clp′′,q′′ )]ρR ⊕

⊕
ρC

[Mn(Clq′′ )]ρC , (20)

where {ρR} ∪ {ρC} = {ρ} denote the irreducible Z2-graded
representations for which Aρ is either real or complex as a
Z2-graded algebra. This decomposition enables us to identify
the algebraic structure of the extended algebra of symmetries,
and we thus find a Clifford algebra structure corresponding to
each irreducible Z2-graded representation

B = Clp+1,q⊗̂R[G]

=
⊕

ρR
[Mn(Clp′+1,q′ )]ρR ⊕

⊕
ρC

[Mn(Clq′+1)]ρC . (21)

Here, using the algebraic properties of Clifford algebras pre-
sented in Secs. III B 1 and III B 2, we find p′ = p + p′′ and
q′ = q + q′′ for the real representations, and q′ = p + q + q′′
for the complex representations. This is demonstrated in
Sec. IV.

In accordance with Sec. III B 2, the Clifford algebras cor-
responding to each Z2-graded representation ρ map to either
a real or a complex classifying space

B �→
∏

ρR
[Rp′−q′+2]ρR ×

∏
ρC

[Cq′ ]ρC . (22)

The topological indices classifying materials with point group
symmetry G, presented in Tables II–VI, are the topological
invariants of these classifying spaces.

Let us denote a Hamiltonian [9,58] of AZ class q in d
spatial dimensions by HR

q,d for the eight real AZ classes, and

by HC
q,d for the two complex AZ classes. The Hamiltonian

HR,G
q,d of a crystalline material with point group symmetry G

in real AZ class q may be block-decomposed into irreducible
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TABLE IX. Topological invariants [3,9,58,82] characterizing the
Hamiltonians [HR/C

s+d,d ]ρ , corresponding to irreducible Z2-graded rep-
resentations; see Eq. (23).

s d even d odd

Complex 0 Z Chern number Winding number

Real 0,4 Z Chern number Winding number
1,2 Z2 Fu-Kane invariant Chern-Simons integral

Z2-graded representations {ρ} of G:

HR,G
q,d =

⊕
ρR

[
HR

p′−q′+2+d,d

]
ρR ⊕

⊕
ρC

[
HC

q′+d,d

]
ρC .

(23)

Each block is equivalent to an AZ Hamiltonian which is
determined by the Clifford algebras corresponding to the
irreducible Z2-graded representation ρ. Note that a simpler
analogous construction applies for the Hamiltonians HC,G

q,d of
complex AZ classes.

The standard topological invariants [3,9,58,82] character-
ize the block Hamiltonians of each irreducible Z2-graded
representation. These invariants are presented in Table IX. Our
classification scheme, which was presented in this section, is
fully demonstrated within the following concrete examples.

IV. EXAMPLES

We now give three pedagogical examples demonstrating
our technique. We then use these examples to demonstrate
the construction of a model Hamiltonian manifesting our
classification results. The analyses for all other point group
symmetries are brought in Appendix D.

A. Threefold rotational symmetry C3

Let us begin by considering a crystalline insulator (or
superconductor) with a threefold rotational symmetry point
group C3 which is one of the simplest point group symmetries
(see Fig. 4). As an abstract group, the symmetry group is given
by the cyclic group G = Z3, and we mark the generator of its
projective fermionic representation by ĉ such that

ĉ3 = −1. (24)

The action of this generator on the 3D space is given by a
simple threefold rotation

ĉ

(
γ1
γ2

)
ĉ−1 =

(
cos 2π

3 sin 2π
3

− sin 2π
3 cos 2π

3

)(
γ1
γ2

)
. (25)

FIG. 4. A solid with the threefold rotational symmetry point
group C3 of trigonal-pyramidal crystals.

We wish to find the structure of the algebra
B = 〈Clq+7,3,�(Z3)〉 (and corresponding classifying space)
generated by ĉ as well as by the Dirac gamma matrices
γ1, γ2, γ3, and the other nonspatial Clifford algebra generators
{γ } ⊂ {y}. In order to do so, we notice that

e−γ1γ2
2π
6

(
γ1
γ2

)
eγ1γ2

2π
6 = e−γ1γ2

2π
3

(
γ1
γ2

)

=
(

cos 2π
3 sin 2π

3

− sin 2π
3 cos 2π

3

)(
γ1
γ2

)
, (26)

where we used the anticommutation relations of the Dirac
gamma matrices; see Eq. (1). This prompts the definition of
a new abstract generator c such that

c = eγ1γ2
2π
6 ĉ. (27)

This new abstract generator satisfies

cyic
−1 = yi, c3 = 1. (28)

We see that c is completely decoupled from the generators of
the Clifford algebra yi, and thus get B = R[Z3] ⊗ Clq+7,3 and
hence

(R ⊕ C) ⊗ Clq+7,3 �→ Rq−3 × Cq+1. (29)

Here, we have used the mapping in Sec. III B 2 to determine
the classifying space.

The classifying spaces of the complex AZ classes
immediately follow by utilizing C ⊗ Clp,q = Clp+q and
C ⊗ Clq = Cl⊕2

q :

(R ⊕ C) ⊗ Clq+10 �→ C3
q+1. (30)

The topological indices classifying materials with C3 threefold
rotational symmetry, presented in Table IV, are the topological
invariants of these classifying spaces [Eqs. (29) and (30)].

Model Hamiltonians and topological invariants

In order to construct a model Hamiltonian for these crys-
talline phases, one can use the model Hamiltonians of the
tenfold-way classification with nonspatial symmetries [9,58].
We denote the model Hamiltonian of AZ class q in d spatial
dimensions by HR

q,d for the eight real AZ classes, and by HC
q,d

for the two complex AZ classes; see Sec. III B 5.
As a consequence of Eq. (28), one can diagonalize the

Hamiltonians for C3 threefold rotational symmetry simulta-
neously with c. We thus write a model Hamiltonian HR,C3

q,3 in
a block-diagonal form, labeled by the eigenvalues of c:

HR,C3
q,3 =

([
HR

q,3

]
c=1 0

0
[
HC

q,3

]
c=e± 2π i

3

)
. (31)

The complex AZ class yield a similar decomposition

HC,C3
q,3 =

⎛
⎜⎜⎝

[
HC

q,3

]
c=1 0 0

0
[
HC

q,3

]
c=e+ 2π i

3
0

0 0
[
HC

q,3

]
c=e− 2π i

3

⎞
⎟⎟⎠.

(32)
The topological invariants of each block are the topological
invariants of the corresponding Hamiltonians [3,9,58,82]; see
Table IX.
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FIG. 5. A solid with the fourfold rotoreflection symmetry point
group S4 of tetragonal-disphenoidal crystals.

B. Fourfold rotoreflection symmetry S4

Let us next consider a crystalline insulator (or supercon-
ductor) with a fourfold rotoreflection symmetry point group
S4 (see Fig. 5). As an abstract group, the symmetry group
is given by the cyclic group G = Z4, and we mark the
generator of its projective fermionic representation by ŝ4 such
that

ŝ4 = −1. (33)

The action of this generator on the 3D space is given by a
fourfold rotoreflection

ŝ
(
γ1
γ2

)
ŝ−1 =

(
0 1

−1 0

)(
γ1
γ2

)
, ŝγ3ŝ−1 = −γ3. (34)

We wish to find the structure of the algebra
B = 〈Clq+7,3,�(Z4)〉 (and corresponding classifying space)
generated by ŝ4 as well as by the Dirac gamma matrices
γ1, γ2, γ3, and the other nonspatial Clifford algebra generators
{γ } ⊂ {y}. In an analogous manner to Eq. (26), we define new
abstract generators s4 such that

s = eγ1γ2
π
4 ŝγ3. (35)

This new abstract generator satisfies

syis
−1 = −yi, s4 = 1. (36)

Here, we used the equality (s2)2 = (−e−γ1γ2
2π
4 ŝ2)2 = 1.

Trying to analyze the algebraic structure, we find a central
element t = s2 satisfying t2 = 1. Our algebra decomposes
accordingly as a direct sum of two algebras, such that in one
of them s2 = t = 1 and in the other s2 = t = −1. In each
of these algebras, the appropriate extra generator (s2 = ±1)
is simply added to the generators yi of the original Clifford
algebra Clq+7,3, and we therefore get

Clq+7,3+1 ⊕ Clq+7+1,3 �→ Rq−4 × Rq−2, (37)

were we have once again used the mapping in Sec. III B 2 to
determine the classifying space.

The classifying spaces of the complex AZ classes immedi-
ately follow by utilizing C ⊗ Clp,q = Clp+q:

Clq+11 ⊕ Clq+11 �→ C2
q . (38)

Moreover, the same results may be achieved by noticing that
the relations in Eq. (36) are exactly the relations of a Z2-
graded tensor product B = Clq+7,3⊗̂R[Z4] where the “even”
part of R[Z4], which commutes with the generators of Clq+7,3,
is generated by elements with the generator s, occurring an
even number of times, i.e., s2 and 1. These even elements
generate the subalgebra R[Z2] of the cyclic group Z2 � Z4.
By knowing the grading of the groups Z4/Z2 = Z2, we can

find the grading of the group rings R[Z2] ↪→ R[Z4] as a
direct sum of Clifford algebras

R[Z2] = R ⊕ R

↪→ ↪→

R[Z4] = R⊕2 ⊕ C = Cl0,1 ⊕ Cl1,0.

(39)

We can thus find its graded tensor product with any Clifford
algebra

Clp,q⊗̂R[Z4] = Clp,q⊗̂(Cl0,1 ⊕ Cl1,0)

= Clp,q+1 ⊕ Clp+1,q. (40)

And, specifically for B = Clq+7,3⊗̂R[Z4], we find

Clq+7,3+1 ⊕ Clq+7+1,3 �→ Rq−4 × Rq−2. (41)

Such analyses would come in handy in other more compli-
cated cases such as our final example.

The topological indices classifying materials with S4 four-
fold rotoreflection symmetry, presented in Table III, are the
topological invariants of these classifying spaces [Eqs. (41)
and (38)].

Model Hamiltonians and topological invariants

In order to construct a model Hamiltonian for these crys-
talline phases, one can use the model Hamiltonians of the
tenfold-way classification with nonspatial symmetries [9,58],
HR/C

q,d , for real/complex AZ class q in d spatial dimensions;
see Sec. III B 5.

As a consequence of Eq. (36), one can diagonalize the
Hamiltonians for S4 fourfold rotoreflection symmetry simul-
taneously with s2. We thus write a model Hamiltonian HR,S4

q,3

in a block-diagonal form, labeled by the eigenvalues of s2:

HR,S4
q,3 =

([
HR

q−1,3

]
s2=+1 0

0
[
HR

q+1,3

]
s2=−1

)
. (42)

The complex AZ class yields a similar decomposition

HC,S4
q,3 =

([
HC

q+1,3

]
s2=+1 0

0
[
HC

q+1,3

]
s2=−1

)
. (43)

The topological invariants of each block are the topological
invariants of the corresponding Hamiltonians [3,9,58,82]; see
Table IX.

C. Full tetrahedral symmetry Td

Let us finally consider a crystalline insulator (or supercon-
ductor) with a full tetrahedral cubic symmetry point group Td

which is one of the most intricate point group symmetries (see
Fig. 6). As an abstract group, the symmetry group is given by
the symmetric group G = S4, and we mark the generators of
its projective fermionic representation by ĉ3, ŝ4 such that

ĉ3
3 = −1, ŝ4

4 = −1, (ŝ4ĉ3)2 = −1. (44)

The action of these generators on the 3D space is given by a
threefold rotation for ĉ3 and by a fourfold rotoreflection for ŝ4

such that

ĉ3γiĉ
−1
3 = γi+1, ŝ4

(γ1
γ2
γ3

)
ŝ−1

4 =
(−γ2+γ1−γ3

)
. (45)
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FIG. 6. A solid with the full tetrahedral cubic symmetry point
group Td of hextetrahedral crystals.

We wish to find the structure of the algebra
B = 〈Clq+7,3,�(S4)〉 (and corresponding classifying space)
generated by ĉ3, ŝ4 as well as by the Dirac gamma matrices
γ1, γ2, γ3, and the other nonspatial Clifford algebra generators
{γ } ⊂ {y}. In an analogous manner to Eq. (26), we define new
abstract generators c3, s4 such that

c3 = 1 + γ1γ2 + γ2γ3 + γ3γ1

2
ĉ3, s4 = e−γ1γ2

π
4 ŝ4γ3. (46)

These new abstract generators satisfy

c3yic
−1
3 = yi, s4yis

−1
4 = −yi,

c3
3 = 1, s4

4 = 1, (s4c3)2 = 1. (47)

As above, these relations are exactly the relations of a Z2-
graded tensor product B = Clq+7,3⊗̂R[S4] where the “even”
part of R[S4], which commutes with the generators of Clq+7,3,
is generated by elements with s4 occurring an even number of
times. These even elements generate the subalgebra R[A4] of
the alternating group A4 � S4. By knowing the grading of the
groups S4/A4 = Z2, we can find the grading of the group rings
R[A4] ↪→ R[S4] as a direct sum of Clifford algebras

R[A4] = R ⊕ C ⊕ M3(R)

↪→ ↪→

R[S4] = R⊕2 ⊕ M2(R) ⊕ M3(R)⊕2

=

Cl0,1 ⊕ Cl0,2 ⊕ (M3(R) ⊗ Cl0,1).

(48)

We can thus find its graded tensor product with any Clifford
algebra

Clp,q⊗̂R[S4] = Clp,q⊗̂(Cl0,1 ⊕ Cl0,2 ⊕ (M3(R) ⊗ Cl0,1))

= ((R ⊕ M3(R)) ⊗ Clp,q+1) ⊕ Clp,q+2. (49)

And, specifically for B = Clq+7,3⊗̂R[S4] we find

((R ⊕ M3(R)) ⊗ Clq+7,3+1) ⊕ Clq+7,3+2 �→ R2
q−4 × Rq−5,

(50)

where we have once again used the mapping in Sec. III B 2 to
determine the classifying space.

The classifying spaces of the complex AZ classes immedi-
ately follow by utilizing C ⊗ Clp,q = Clp+q:

((R ⊕ M3(R)) ⊗ Clq+11) ⊕ Clq+12 �→ C2
q × Cq+1. (51)

The topological indices classifying materials with Td full
tetrahedral symmetry, presented in Table VI, are the topologi-
cal invariants of these classifying spaces [Eqs. (50) and (51)].

The similar analyses of Appendix D are used to determine
the classifying spaces in Table VII and the topological invari-
ants in Tables II–VI.

Model Hamiltonians and topological invariants

In order to construct a model Hamiltonian for these crys-
talline phases, one can use the model Hamiltonians of the
tenfold-way classification with nonspatial symmetries [9,58]
HR/C

q,d for real/complex AZ class q in d spatial dimensions;
see Sec. III B 5.

As a consequence of Eq. (47), one can write a model
Hamiltonian HR,Td

q,3 in a block-diagonal form, labeled by the
irreducible representations of the subgroup A4 generated by
c3 and s2

4:

HR,Td
q,3 =

⎛
⎜⎝

[
HR

q−1,3

]
A 0 0

0
[
HR

q−2,3

]
E 0

0 0
[
HR

q−1,3

]
T

⎞
⎟⎠. (52)

Here, we use the Mulliken symbols [104] A, E , and T to
identify the irreducible representations corresponding to the
subalgebra R[A4] = R ⊕ C ⊕ M3(R). The complex AZ class
yields a similar decomposition

HC,Td
q,3 =

⎛
⎜⎝

[
HC

q+1,3

]
A 0 0

0
[
HC

q,3

]
E 0

0 0
[
HC

q+1,3

]
T

⎞
⎟⎠. (53)

The topological invariants of each block are the topological
invariants of the corresponding Hamiltonians [3,9,58,82]; see
Table IX.

In fact, the above examples in Secs. IV A and IV B
may also be recast into irreducible representation form by
similarly identifying the subalgebras R[Z3] = R ⊕ C and
R[Z2] = R ⊕ R with the Mulliken symbols {A, E} and
{A, B}, respectively. Moreover, one may use analogous ir-
reducible representation analyses of the other point groups
(see Sec. III B 3 and Ref. [104]) in order to construct model
Hamiltonians for all crystalline insulators and superconduc-
tors presented in Tables II–VI; see Sec. III B 5.

V. DISCUSSION

In this paper, we have presented a complete classifica-
tion of bulk topological invariants of crystalline topological
insulators and superconductors in all AZ symmetry classes
protected by all 32 point group symmetries of 3D crystals as
well as by all 31 symmorphic layer group symmetries of 2D
crystals. The majority of phases found by our classification
paradigm are indeed novel crystalline topological insulators
and superconductors. However, this classification is not ex-
haustive as crystals in nature may also have a nonsymmorphic
magnetic space/layer group symmetry [88]. In this discussion,
we compare our results to those of previous works which
have provided other classification schemes, emphasize the
similarities and differences, and present some prospective
ideas as to gaining a future exhaustive classification scheme
of all topological phases of crystalline matter. Moreover, the
experimental edge content signatures of many topological
invariants are yet unclear, we thus also discuss the possible
classification of edge content related to the invariants of
crystalline topological phases.
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TABLE X. Bulk topological invariants for magnetic point groups
C′

2n in two and three spatial dimensions.

Schönflies C′
2 C′

4 C′
6

HM 2′ 4′ 6′

T 2 = −1 R4−d R4−d × R−d R4−d × Cd

d = 3 Z2 Z2 Z2

d = 2 Z2 Z2 Z2 × Z

T 2 = +1 R−d R−d × R4−d R−d × Cd

d = 3 0 Z2 0
d = 2 0 Z2 Z

A. Magnetic crystals

Although not directly calculated in this paper, it is rela-
tively straightforward to generalize our results and classify
topological phases protected by any of the 122 magnetic point
group symmetries [88] (also known as double point groups)
of magnetic crystals [17,44,72,82,105–113]. These crystals
are invariant under elements of a group M = 〈N, (G \ N )1′〉
for some normal subgroup G/N = Z2 of the crystallographic
point group G. Here, we use 1′2 = 1 to be the symmetry
action flipping the spin direction. Our methods can be directly
extended to treat such cases; as an example we present the
results for the simplest case of C′

2n symmetry in Table X;
see Appendix F. Order-two magnetic point groups [88] such
as C′

2 were previously treated by Morimoto and Furusaki
[81] and by Shiozaki and Sato [82], and our results are in
complete agreement. The special case of C′

4 was recently
treated by Schindler et al. [44] where a Z2 classification of the
higher-order hinge states was found and is also in complete
agreement with our results. We henceforth discuss such states
in detail. Note that a complete classification of the symmetry
indicators of band structure topology of crystals with all 1651
magnetic space groups [88] in AZ classes A and AI was
recently carried out in Ref. [72].

B. Edge states and higher-order topological
insulators and superconductors

Until recently, bulk-boundary correspondence was
considered a defining hallmark of topological phases
[7,10–14,62,79,96–98]. Nevertheless, the recent discovery
of higher-order topological insulators and superconductors
drastically changed our understanding; some crystalline
topological phases host no boundary modes [82,99] while
others host either boundary states [23,78] or more exotic hinge
or corner states [39–53]. A full treatment of the surface states
of 3D crystalline topological insulators in AZ class AII was
recently carried out by Khalaf et al. [78] for all space group
symmetries [88]. Their analysis indicates that all surface
states are in fact projections of the �-point Hamiltonian [see
Eq. (1)], and indeed, when comparing with our results for
all point group symmetries, we find the surface state indices
to be subgroups of our bulk invariants. The classification of
higher-order topological insulators and superconductors
with order-two symmetries [88] was recently accomplished
by Geier et al. [51], Trifunovic and Brouwer [52], and
Khalaf [50]; we believe it should be possible to combine

their methods with ours to achieve a full classification
of higher-order topological invariants for all crystalline
symmetries. Note that parallel work in the complex AZ
class A by Okuma et al. [54] achieved the classification of
higher-order topological phases for all magnetic point group
symmetries, and their bulk topological invariants in AZ class
A are in complete agreement with our results for all point
group symmetries.

C. Full Brillouin zone structure, symmetry
indicators, and “weak” topological invariants

Even without crystalline symmetry, the strong bulk in-
variant of the tenfold-way classification [1,56–59,62,63] (see
Table I) is not the only possible topological invariant char-
acterizing the material. Nontrivial topology may also oc-
cur along lower-dimensional surfaces(/curves) within the BZ
torus T d ; these are known as “weak” topological insulators
and superconductors [12,13]. In fact, in AZ class AII, for
example, the cellular (CW-complex) decomposition of the
torus T 3 = e0 ∪ 3e1 ∪ 3e2 ∪ e3 gives rise [56,114] to the three
“weak” Z2 topological indices (see Table I)

Z × 03 × Z3
2︸ ︷︷ ︸

weak

× Z2︸︷︷︸
strong

. (54)

The introduction of the crystalline structure complicates this
simple relation between the strong bulk invariant and the weak
ones [28].

Using the elementary band representations approach, it is
relatively easy to get the complete symmetry indicators for the
full BZ torus [55,69–77]. However, one still has to explicitly
evaluate the Berry phases through various surfaces and curves
(and Berry phases thereof) to find the different topological
phases sharing an elementary band representation.

Using the K-theoretic approach [80,85,87], one studies
the equivariant symmetry group action on the BZ torus (G-
CW complex). This approach was successfully utilized by
Shiozaki, Sato, and Gomi [85] and yielded a complete clas-
sification for the wallpaper groups in the complex AZ classes
(A and AIII). Indeed, when comparing with our results for
the symmorphic layer groups [88] Cn,Cnv , we find our bulk
invariants to be subgroups of their full BZ torus K groups.

D. Defects and higher-dimensional systems

Our paradigm is not restricted to point groups and can in
fact be applied to classify crystalline topological phases in any
spatial dimension, in particular, it can be applied to any of the
271 point groups (and 1202 magnetic point groups) of four-
dimensional (4D) space. However, the immediate physical
applicability of 4D crystals is less obvious than of 3D crystals,
and so we leave this for prospecting future work.

A much more immediately relevant topic is that of crystals
with defects. It has long been noticed [61] that for the noncrys-
talline topological phases, all point, line, and surface defects
may be easily incorporated into the classification schemes.
This fact was explicitly shown to hold for crystalline materials
with order-two [88] symmetries [82] and had even also been
formulated for the general crystalline case [21,85].
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Following Refs. [60,61,85], let us observe a (δ − 1)-
dimensional defect. It is surrounded by a sphere SD of codi-
mension D = d − δ; let us parametrize it by the spatial co-
ordinates r ∈ RD+1 with ||r|| = 1. The crystalline symmetry
G leaves the defect invariant and hence acts separately on
the momenta parallel to the defect k‖ ∈ T d−D−1 and on the
momenta k⊥ conjugate to r,

UgH(k, r)U −1
g = H(Og‖k‖, Og⊥k⊥, Og⊥r), (55)

where Og‖ ∈ O(d − D − 1) and Og⊥ ∈ O(D + 1) are orthog-
onal transformations; cf. Eq. (2). The algebraic structure may
be restored by setting M(r) = γ ′ · r with {γ ′

i , γ
′
j} = −2δi j and

{γ ′
i , γ j} = 0 such that M2 = −1; cf. Eq. (1). Such analyses

may be carried out in future works to classify the topological
phases of defected crystals.

E. “Fragile” topological phases

It was recently noticed that some disconnected elementary
band representations corresponding to nontrivial topological
phases are trivializable by addition of trivial occupied bands
[93–95], these were dubbed “fragile” topological phases. It
is often the case that in order to capture the topology of
a macroscopically large number of bands, one introduces a
stable-equivalence relation which disregards two phases as
equivalent if they differ by addition of some trivial occupied
or unoccupied bands. Such “fragile” phases are missed by this
stable-equivalence relation. The existence of similar phases
was noticed even without crystalline symmetries, e.g., in
Hopf topological insulators [115,116] and Hopf topological
superconductors [117]. In order to generalize the results of
our paper for such “fragile” phases, one needs to avoid taking
the stable limit in Eq. (6) and count the connected components
of the resulting topological space. However, more analysis is
required as in the unstable case [90]; not all bulk topologies
are captured by a Dirac Hamiltonian (1).
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APPENDIX A: HIERARCHY OF SYMMETRY GROUPS

In this Appendix, we present the hierarchical structure of
point group classes. The hierarchical structure is presented
as a graph in Fig. 7. The intersection of every two adjacent
symmetry group classes is given below them; e.g., the 2D
point groups are all symmetry groups which are both wall-
paper groups and symmorphic layer groups. Note, however,
that there are some “accidental” isomorphisms and so, for
example, the distinct symmorphic layer groups C1h and C1v

are isomorphic as point groups and sometimes denoted Cs.
Also, note that every class has a larger “magnetic” variant

FIG. 7. Hierarchy of symmetry group classes.

(e.g., magnetic layer groups) and we omit them from the graph
for simplicity.

In the paper we sometimes refer to “order-two” symme-
tries. An order-two symmetry, in any symmetry group class,
is a symmetry which is generated by a single element g such
that g2 = 1. However, its projective representation may be
nontrivial ĝ2 = ±1, and it may also be realized by antiuni-
tary operators such as time reversal (e.g., ĝ = ĉ2T ) in the
magnetic classes. Examples of order-two symmetries include
C2,C1h,C1v, S2, D1.

The constituents of actions of a symmetry group in any of
the classes are as follows:

(i) 2D point groups: rotations and inversions (and their
combined actions, i.e., reflections and rotoreflections) of a 2D
space.

(ii) Wallpaper groups: rotations, inversions, and transla-
tions (and their combined actions, e.g., glides) of a 2D space.

(iii) Symmorphic layer groups: rotations and inversions of
a 2D surface in a 3D space.

(iv) Layer groups: rotations, inversions, and translations of
a 2D surface in a 3D space.

(v) Point groups: rotations and inversions of a 3D space.
(vi) Space groups: rotations, inversions, and translations

of a 3D space.
(vii) Magnetic point groups: point groups with time

reversal.
(viii) Magnetic space groups: space groups with time

reversal.
A symmetry group is dubbed nonsymmorphic if an ele-

ment within it acts by a translation combined with any of the
other constituents.

APPENDIX B: FROM GRADED ALGEBRA EXTENSIONS
TO CLASSIFYING SPACES

In this Appendix, following Abramovici and Kalugin [67],
we give the algebraic derivation of the classifying spaces
from algebra extensions. We wish to study the extension of
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TABLE XI. Complex Clifford algebras Clq.

q 0 1 2

Clq C C⊕2 M2(C)

Z2-graded R algebras,

B0 ↪→ B = B0 ⊕ B1, (B1)

graded by an element x0 ∈ B1. Let us look at a B-module
E , it is also a B0 module. In how many ways can one
define a B-module structure on E? i.e., define a map ϕ ∈
HomB0−alg(B, EndB0 E ). Such an action would act as ϕ(x0) on
E as a B0-module, however, since E has a B-module structure
then the most general action must be one may simply map E
to the category of B-modules, act by x0, and map back, it is
useful to write

ϕ(x0) = V −1α(x0)V, (B2)

α ∈ HomB0−alg(B, EndB0 E )

V −1ϕV � ϕ
, (B3)

V ∈ AutB0 E . (B4)

What are the choices of ϕ? Let us focus on the case where
B = Clp+1,q and B0 = Clp,q.

If B is simple (Morita equivalent to R,C,H), then E =
Rk ⊗R �2 where � = R2p+q

and �2 is a simple B-module;
pick an action α0 ∈ HomB0−alg(B, EndB0�). Moreover, as
a B0-module either E = (Rk ⊗R �) ⊕ (Rk ⊗R �) or E =
R2k ⊗R �. Therefore, the only choice of α is

α ∈ HomB0−alg(B, EndB0 E )

V −1ϕV � ϕ
= [α0 ◦ (AutB0 B)]⊕k

V −1ϕV � ϕ
= [α0]⊕k,

(B5)

where the last equality follows from Skolem-Noether. On
the other hand, this action is invariant under choices of
V ∈ AutB0 E that commute with α0(x0) which are just
AutBE � AutB0 E so

ϕ ∈ AutB0 E

AutBE
. (B6)

This space is homotopic to an appropriate symmetric space of
R1,R2,R3,R5,R6,R7, C1; see Table I.

FIG. 8. The Cn rotational symmetry point groups:
C1, C2, C3, C4, C6.

If B = A ⊕ A, on the other hand (Morita equivalent to R ⊕
R,C ⊕ C,H ⊕ H), then clearly E � E1 ⊕ E2 where E1,2 =
Rk1,2 ⊗R � and � = R2p+q

is a simple A-module; pick actions
αk1,k2 ∈ HomB0−alg(B, E1 ⊕ E2). One should thus consider all
possible splittings E = E1 ⊕ E2:

α ∈ HomB0−alg(B, EndB0 E )

V −1ϕV � ϕ
=

⋃
E1⊕E2=E

[
αk1,k2

]
. (B7)

The options for the action of x0 are thus

ϕ ∈
⋃

E1⊕E2=E

AutB0 E

AutB(E1 ⊕ E2)
=

⋃
E1⊕E2=E

AutB0 E

AutB0 E1×AutB0 E2
.

(B8)

This space is homotopic to an appropriate symmetric space of
R0,R4, C0; see Table I.

APPENDIX C: CLIFFORD ALGEBRAS

In this Appendix, we give some of some complex and real
Clifford algebras; they are presented in Tables XI and XII.

APPENDIX D: POINT GROUP SYMMETRY
CLASSIFICATION

In this Appendix, we derive the bulk invariants of all 32
point group symmetries of 3D crystals. This is done using the
techniques demonstrated in Sec. IV.

1. Rotational symmetry Cn

Symmetry solids are portrayed in Fig. 8. The symmetry
group is G = Zn with generator ĉ such that

ĉn = −1. (D1)

TABLE XII. Real Clifford algebras Clp,q. The even part of every algebra Clp,q is isomorphic to the algebra Clp−1,q which is one row above it.

p \ q 0 1 2 3 4 5 6 7 8

“−1” R C H H⊕2 M2(H) M4(C) M8(R) M8(R)⊕2

0 R R⊕2 M2(R) M2(C) M2(H) M2(H)⊕2 M4(H) M8(C) M16(R)
1 C M2(R) M2(R)⊕2 M4(R) M4(C) M4(H) M4(H)⊕2 M8(H) M16(C)
2 H M2(C) M4(R) M4(R)⊕2 M8(R) M8(C) M8(H) M8(H)⊕2 M16(H)
3 H⊕2 M2(H) M4(C) M8(R) M8(R)⊕2 M16(R) M16(C) M16(H) M16(H)⊕2

4 M2(H) M2(H)⊕2 M4(H) M8(C) M16(R) M16(R)⊕2 M32(R) M32(C) M32(H)
5 M4(C) M4(H) M4(H)⊕2 M8(H) M16(C) M32(R) M32(R)⊕2 M64(R) M64(C)
6 M8(R) M8(C) M8(H) M8(H)⊕2 M16(H) M32(C) M64(R) M64(R)⊕2 M128(R)
7 M8(R)⊕2 M16(R) M16(C) M16(H) M16(H)⊕2 M32(H) M64(C) M128(R) M128(R)⊕2

8 M16(R) M16(R)⊕2 M32(R) M32(C) M32(H) M32(H)⊕2 M64(H) M128(C) M256(R)
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FIG. 9. The S2n rotoreflection symmetry point groups: S2, S4, S6.

It acts on the 3D space as

ĉ

(
γ1
γ2

)
ĉ−1 =

(
cos 2π

n sin 2π
n

− sin 2π
n cos 2π

n

)(
γ1
γ2

)
. (D2)

Notice that

e−γ1γ2
2π
2n

(
γ1
γ2

)
eγ1γ2

2π
2n = e−γ1γ2

2π
n

(
γ1
γ2

)

=
(

cos 2π
n sin 2π

n

− sin 2π
n cos 2π

n

)(
γ1
γ2

)
. (D3)

We set

c = eγ1γ2
2π
2n ĉ, (D4)

which satisfies

cyic
−1 = yi, cn = 1. (D5)

We thus get B = R[Zn] ⊗ Clq+7,3 and hence

(R⊕r(n) ⊕ C⊕c(n) ) ⊗ Clq+7,3 �→ Rr(n)
q−3 × Cc(n)

q+1. (D6)

Here, we have used the mapping in Sec. III B 2 to determine
the classifying spaces; we employ this mapping throughout
this section in treatment of all point group symmetries.

2. Rotoreflection symmetry S2n

Symmetry solids are portrayed in Fig. 9. The symmetry
group is G = Z2n with generator ŝ such that

ŝ2n = −(−1)n. (D7)

It acts on the 3D space as

ŝ

(
γ1
γ2

)
ŝ−1 =

(
cos 2π

2n sin 2π
2n

− sin 2π
2n cos 2π

2n

)(
γ1
γ2

)
, ŝγ3ŝ−1 = −γ3.

(D8)

We set

s = eγ1γ2
2π
4n ŝγ3, (D9)

which satisfies

syis
−1 = −yi, s2n = 1. (D10)

Here, we used the equality s2n = (−e−γ1γ2
2π
2n ŝ2)n = 1.

For n = 1 we add s as a generator such that R〈s〉 = Cl0,1

and Clp,q⊗̂Cl0,1 = Clp,q+1, and get

Clq+7,3+1 �→ Rq−4. (D11)

For n = 2 we have a central element t = s2 satisfying t2 = 1.
Our algebra decomposes accordingly as a direct sum of two
algebras such that in one of them s2 = t = 1 and in the other
s2 = t = −1. Therefore, we get

Clq+7,3+1 ⊕ Clq+7+1,3 �→ Rq−4 × Rq−2. (D12)

FIG. 10. The Cnh point groups: C1h,C2h,C3h,C4h,C6h.

This can also be done by considering Z2 � Z4 such that the
graded structure is

R[Z2] = R ⊕ R

↪→ ↪→
R[Z4] = R⊕2 ⊕ C = Cl0,1 ⊕ Cl1,0,

(D13)

and hence
Clp,q⊗̂R[Z4] = Clp,q⊗̂(Cl0,1 ⊕ Cl1,0)

= Clp,q+1 ⊕ Clp+1,q. (D14)

Such analyses would come in handy in other more compli-
cated cases. For n = 3 we use Z6 = Z2 × Z3 and split our
algebra to Clp,q⊗̂R〈s〉 = (Clp,q⊗̂R〈s3〉) ⊗ R〈s2〉 and get

(R ⊕ C) ⊗ Clq+7,3+1 �→ Rq−4 × Cq. (D15)

3. Dipyramidal ymmetry Cnh

Symmetry solids are portrayed in Fig. 10. The symmetry
group is G = Zn × Z2 with generators ĉ, σ̂h such that

ĉn = −1, σ̂ 2
h = −1. (D16)

It acts on the 3D space as

ĉ

(
γ1
γ2

)
ĉ−1 =

(
cos 2π

n sin 2π
n

− sin 2π
n cos 2π

n

)(
γ1
γ2

)
, σ̂hγ3σ̂

−1
h = −γ3.

(D17)
We set

c = eγ1γ2
2π
2n ĉ, σh = σ̂hγ3, (D18)

which satisfy

cyic
−1 = yi, σhyiσ

−1
h = −yi, cn = 1, σ 2

h = 1. (D19)

We add σh as a generator and get R[Zn] ⊗ (Clp,q⊗̂R[Z2]) and
hence

(R⊕r(n) ⊕ C⊕c(n) ) ⊗ Clq+7,3+1 �→ Rr(n)
q−4 × Cc(n)

q . (D20)

4. Pyramidal symmetry Cnv

Symmetry solids are portrayed in Fig. 11. The symmetry
group is G = Dihn with generators ĉ, σ̂v such that

ĉn = −1, σ̂ 2
v = −1, (ĉσ̂v )2 = −1. (D21)

It acts on the 3D space as

ĉ

(
γ1
γ2

)
ĉ−1 =

(
cos 2π

n sin 2π
n

− sin 2π
n cos 2π

n

)(
γ1
γ2

)
,

FIG. 11. The Cnv pyramidal symmetry point groups:
C1v, C2v, C3v, C4v, C6v .
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FIG. 12. The Dn dihedral symmetry point groups:
D1, D2, D3, D4, D6.

σ̂vγ1σ̂
−1
v = −γ1. (D22)

We set

c = eγ1γ2
2π
2n ĉ, σv = σ̂vγ1, (D23)

which satisfy

cyic
−1 = yi, σvyiσ

−1
v = −yi,

cn = 1, σ 2
v = 1, (cσv )2 = 1. (D24)

Here, we used the equality

cσv = eγ1γ2
2π
2n ĉσ̂vγ1 = ĉσ̂vγ1eγ1γ2

2π
2n

= σ̂veγ1γ2
2π
n γ1ĉ−1eγ1γ2

2π
2n

= σ̂vγ1ĉ−1e−γ1γ2
2π
2n = σvc−1.

(D25)

We find that the ring of Zn � Dihn commutes with Clp,q. Let
us look at the algebra structure

R[Zn] = R⊕r(n) ⊕ C⊕c(n)

↪→ ↪→
R[Dihn] = (R⊕2)⊕r(n) ⊕ M2(R)⊕c(n)

=
Cl⊕r(n)

0,1 ⊕ Cl⊕c(n)
0,2 ,

(D26)

and hence

Clp,q⊗̂R[Dihn] = Clp,q⊗̂
(
Cl⊕r(n)

0,1 ⊕ Cl⊕c(n)
0,2

)
= Cl⊕r(n)

p,q+1 ⊕ Cl⊕c(n)
p,q+2. (D27)

We thus get

Cl⊕r(n)
q+7,3+1 ⊕ Cl⊕c(n)

q+7,3+2 �→ Rr(n)
q−4 × Rc(n)

q−5. (D28)

5. Dihedral symmetry Dn

Symmetry solids are portrayed in Fig. 12. The symmetry
group is G = Dihn with generators ĉn, ĉ2 such that

ĉn
n = −1, ĉ2

2 = −1, (ĉnĉ2)2 = −1. (D29)

It acts on the 3D space as

ĉn

(
γ1
γ2

)
ĉ−1

n =
(

cos 2π
n sin 2π

n

− sin 2π
n cos 2π

n

)(
γ1
γ2

)
,

ĉ2γ2,3ĉ−1
2 = −γ2,3. (D30)

We set

cn = eγ1γ2
2π
2n ĉn, c2 = ĉ2γ2γ3, (D31)

which satisfy

cnyic
−1
n = yi, c2yic

−1
2 = yi,

cn
n = 1, c2

2 = 1, (cnc2)2 = 1. (D32)

FIG. 13. The Dnd antiprismatic symmetry point groups:
D1d , D2d , D3d .

We thus get B = R[Dihn] ⊗ Clq+7,3 and hence

((R⊕2)⊕r(n) ⊕ M2(R)⊕c(n) ) ⊗ Clq+7,3 �→ R2r(n)+c(n)
q−3 . (D33)

6. Antiprismatic symmetry Dnd

Symmetry solids are portrayed in Fig. 13. The symmetry
group is G = Dih2n with generators ŝ, σ̂v such that

ŝ2n = −(−1)n, σ̂ 2
v = −1, (ŝσ̂v )2 = −1. (D34)

It acts on the 3D space as

ŝ

(
γ1
γ2

)
ŝ−1 =

(
cos 2π

2n sin 2π
2n

− sin 2π
2n cos 2π

2n

)(
γ1
γ2

)
,

ŝγ3ŝ−1 = −γ3, σ̂vγ1σ̂
−1
v = −γ1. (D35)

We set

s = eγ1γ2
2π
2n ŝγ3, σv = σ̂vγ1, (D36)

which satisfy

syis
−1 = −yi, σvyiσ

−1
v = −yi,

s2n = 1, σ 2
v = 1, (sσv )2 = 1. (D37)

Here, we used the equality

sσv = eγ1γ2
2π
4n ŝγ3σ̂vγ1 = ŝγ3σ̂vγ1eγ1γ2

2π
4n

= σ̂veγ1γ2
2π
2n γ1γ3ŝ−1eγ1γ2

2π
4n

= σ̂vγ1γ3ŝ−1e−γ1γ2
2π
4n = σvs−1. (D38)

For n = 1 we have D1d = C2h by setting c = sσv, σh = σv .
For n = 2 we have a central element t = s2 with t2 = 1,
and our algebra decomposes accordingly as a direct sum of
simple algebras such that in the first component (isomorphic
to D1d ) we have t = −1, and in the second component (in
which s2 = −1, sσv = −σvs) we have t = −1. Therefore, we
get

(R⊕2 ⊗ Clq+7,3+1) ⊕ Clq+7+1,3+1 �→ R2
q−4 × Rq−3. (D39)

This can also be done by considering Dih2 � Dih4 such that
the graded structure is

R[Dih2] = R⊕2 ⊕ R⊕2

↪→ ↪→

R[Dih4] = (R⊕2)⊕2 ⊕ M2(R) = Cl⊕2
0,1 ⊕ Cl1,1,

(D40)

and hence
Clp,q⊗̂R[Z4] = Clp,q⊗̂

(
Cl⊕2

0,1 ⊕ Cl1,1
)

= Cl⊕2
p,q+1 ⊕ Clp+1,q+1. (D41)

For n = 3 we use Dih6 = Z2 × Dih3 and split our algebra to

Clp,q⊗̂R〈s, σv〉 = (Clp,q⊗̂R〈s3〉) ⊗ R〈s2, sσv〉 and get

(R⊕2 ⊕ M2(R)) ⊗ Clq+7,3+1 �→ R3
q−4. (D42)
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FIG. 14. The Dnh prismatic symmetry point groups:
D1h, D2h, D3h, D4h, D6h.

7. Prismatic symmetry Dnh

Symmetry solids are portrayed in Fig. 14. The symmetry
group is G = Dihn × Z2 with generators ĉn, ĉ2, σ̂h such that

ĉn
n = −1, ĉ2

2 = −1, σ̂ 2
h = −1,

(ĉnĉ2)2 = −1, (ĉ2σh)2 = −1. (D43)

It acts on the 3D space as

ĉn

(
γ1
γ2

)
ĉ−1

n =
(

cos 2π
n sin 2π

n

− sin 2π
n cos 2π

n

)(
γ1
γ2

)
,

ĉ2γ2,3ĉ−1
2 = −γ2,3, σ̂hγ3σ̂

−1
h = −γ3. (D44)

We set

cn = eγ1γ2
2π
2n ĉn, c2 = ĉ2γ2γ3, σh = σ̂hγ3, (D45)

which satisfy

cnyic
−1
n = yi, c2yic

−1
2 = yi, σhyiσ

−1
h = −yi,

cn
n = 1, c2

2 = 1, σ 2
h = 1, (cnc2)2 = 1, (c2σh)2 = 1.

(D46)

We add σh as a generator and get R[Dihn] ⊗ (Clp,q⊗̂R[Z2])
and hence

((R⊕2)⊕r(n) ⊕ M2(R)⊕c(n) ) ⊗ Clq+7,3+1 �→ R2r(n)+c(n)
q−4 .

(D47)

8. Chiral tetrahedral symmetry T

A symmetry solids is portrayed in Fig. 15. The symmetry
group is G = A4 with generators ĉ3, ĉ2 such that

ĉ3
3 = −1, ĉ2

2 = −1, (ĉ2ĉ3)3 = −1. (D48)

It acts on the 3D space as

ĉ3γiĉ
−1
3 = γi+1, ĉ2γ1,2ĉ−1

2 = −γ1,2. (D49)

We set

c3 = 1+γ1γ2+γ2γ3+γ3γ1

2 ĉ3, c2 = −ĉ2γ1γ2, (D50)

which satisfy

c3yic
−1
3 = yi, c2yic

−1
2 = yi,

c3
3 = 1, c2

2 = 1, (c2c3)3 = 1. (D51)

FIG. 15. The cubic point groups: T, Th, Td , O, Oh.

Here, we used the equality

(c2c3)3 = (γ1γ2ĉ2ĉ3)3

= (γ1γ2)(−γ2γ3)(+γ3γ1)(ĉ2ĉ3)3 = 1.
(D52)

We thus get B = R[A4] ⊗ Clq+7,3 and hence

(R ⊕ C ⊕ M3(R)) ⊗ Clq+7,3 �→ R2
q−3 × Cq+1. (D53)

9. Pyritohedral symmetry Th

A symmetry solids is portrayed in Fig. 15. The symmetry
group is G = A4 × Z2 with generators ĉ3, ĉ2, Î such that

ĉ3
3 = −1, ĉ2

2 = −1, (ĉ2ĉ3)3 = −1, Î2 = 1. (D54)

It acts on the 3D space as

ĉ3γiĉ
−1
3 = γi+1, ĉ2γ1,2ĉ−1

2 = −γ1,2, Îγi Î
−1 = −γi.

(D55)

We set

c3 = 1+γ1γ2+γ2γ3+γ3γ1

2 ĉ3, c2 = −ĉ2γ1γ2, I = Îγ1γ2γ3,

(D56)

which satisfy

c3yic
−1
3 = yi, c2yic

−1
2 = yi, IyiI

−1 = −yi,

c3
3 = 1, c2

2 = 1, (c2c3)3 = 1, I2 = 1. (D57)

We add I as a generator and get R[A4] ⊗ (Clp,q⊗̂R[Z2]) and
hence

(R ⊕ C ⊕ M3(R)) ⊗ Clq+7,3+1 �→ R2
q−4 × Cq. (D58)

10. Full tetrahedral symmetry Td

A symmetry solids is portrayed in Fig. 15. The symmetry
group is G = S4 with generators ĉ3, ŝ4 such that

ĉ3
3 = −1, ŝ4

4 = −1, (ŝ4ĉ3)2 = −1. (D59)

It acts on the 3D space as

ĉ3γiĉ
−1
3 = γi+1, ŝ4

(γ1
γ2
γ3

)
ŝ−1

4 =
(−γ2+γ1−γ3

)
. (D60)

We set

c3 = 1+γ1γ2+γ2γ3+γ3γ1

2 ĉ3, s4 = e−γ1γ2
π
4 ŝ4γ3, (D61)

which satisfy

c3yic
−1
3 = yi, s4yis

−1
4 = −yi,

c3
3 = 1, s4

4 = 1, (s4c3)2 = 1. (D62)

Here, we used the equality

(s4c3)2 = − 1−γ1γ2−γ2γ3−γ3γ1

2 e−γ1γ2
π
4 ŝ4γ3ĉ3e−γ1γ2

π
4 ŝ4γ3ĉ3

= − 1−γ1γ2−γ2γ3−γ3γ1

2 e−γ2γ3
π
4 e−γ1γ2

π
4 γ2γ3ŝ4ĉ3ŝ4ĉ3 = 1.

(D63)
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We find that the ring of A4 � S4 commutes with Clp,q. Let us
look at the algebra structure

R[A4] = R ⊕ C ⊕ M3(R)

↪→ ↪→

R[S4] = R⊕2 ⊕ M2(R) ⊕ M3(R)⊕2

=

Cl0,1 ⊕ Cl0,2 ⊕ (M3(R) ⊗ Cl0,1),

(D64)

and hence

Clp,q⊗̂R[S4] = Clp,q⊗̂(Cl0,1 ⊕ Cl0,2 ⊕ (M3(R) ⊗ Cl0,1))

= ((R ⊕ M3(R)) ⊗ Clp,q+1) ⊕ Clp,q+2.

(D65)

We thus get

((R ⊕ M3(R)) ⊗ Clq+7,3+1) ⊕ Clq+7,3+2 �→ R2
q−4 × Rq−5.

(D66)

11. Chiral octahedral symmetry O

A symmetry solids is portrayed in Fig. 15. The symmetry
group is G = S4 with generators ĉ3, ĉ4 such that

ĉ3
3 = −1, ĉ4

4 = −1, (ĉ4ĉ3)2 = −1. (D67)

It acts on the 3D space as

ĉ3γiĉ
−1
3 = γi+1, ĉ4

(
γ1
γ2

)
ĉ−1

4 =
(+γ2−γ1

)
. (D68)

We set

c3 = 1+γ1γ2+γ2γ3+γ3γ1

2 ĉ3, c4 = eγ1γ2
π
4 ĉ4, (D69)

which satisfy

c3yic
−1
3 = yi, c4yic

−1
4 = yi,

c3
3 = 1, c4

4 = 1, (c4c3)2 = 1. (D70)

Here, we used the equality

(c4c3)2 = − 1−γ1γ2−γ2γ3−γ3γ1

2 eγ1γ2
π
4 ĉ4ĉ3eγ1γ2

π
4 ĉ4ĉ3

= − 1 − γ1γ2 − γ2γ3 − γ3γ1

2 eγ2γ3
π
4 eγ1γ2

π
4 ĉ4ĉ3ĉ4ĉ3 = 1.

(D71)

We thus get B = R[S4] ⊗ Clq+7,3 and hence

(R⊕2 ⊕ M2(R) ⊕ M3(R)⊕2) ⊗ Clq+7,3 �→ R5
q−3. (D72)

12. Full octahedral symmetry Oh

A symmetry solids is portrayed in Fig. 15. The symmetry
group is G = S4 × Z2 with generators ĉ3, ĉ4, Î such that

ĉ3
3 = −1, ĉ4

4 = −1, (ĉ4ĉ3)2 = −1, Î2 = 1. (D73)

It acts on the 3D space as

ĉ3γiĉ
−1
3 = γi+1, ĉ4

(
γ1
γ2

)
ĉ−1

4 =
(+γ2−γ1

)
, Îγi Î

−1 = −γi.

(D74)
We set

c3 = 1+γ1γ2+γ2γ3+γ3γ1

2 ĉ3, c4 = eγ1γ2
π
4 ĉ4, I = Îγ1γ2γ3,

(D75)

which satisfy

c3yic
−1
3 = yi, c4yic

−1
4 = yi, IyiI

−1 = −yi,

c3
3 = 1, c4

4 = 1, (c4c3)2 = 1, I2 = 1. (D76)

We add I as a generator and get R[S4] ⊗ (Clp,q⊗̂R[Z2]) and
hence

(R⊕2 ⊕ M2(R) ⊕ M3(R)⊕2) ⊗ Clq+7,3+1 �→ R5
q−4. (D77)

APPENDIX E: SYMMORPHIC LAYER-GROUP
SYMMETRY CLASSIFICATION

In this Appendix, we briefly present the topological bulk
invariants of the symmorphic layer groups using analogous
derivation to the 3D point groups presented in Sec. IV and
Appendix D.

Bulk topological invariants for all Altland-Zirnbauer sym-
metry classes are presented in Table XIII–XVI. All classifying
spaces for all symmorphic layer-group symmetries in all
crystal systems are compactly presented in Table VII.

TABLE XIII. Bulk topological invariants and classifying spaces for the triclinic symmorphic layer-group symmetries C1,Ci, the monoclinic
inclined symmorphic layer-group symmetries D1,C1v, D1d , the monoclinic orthogonal symmorphic layer-group symmetries C2,C1h,C2h, and
the orthorhombic symmorphic layer-group symmetries D2,C2v, D1h, D2h.

Schön. C1 Ci, S2 D1 C1v D1d C2 C1h C2h D2 C2v D1h D2h

Cq C2
q Cq+1 Cq+1 Cq C2

q C2
q C4

q C2
q+1 C2

q+1 Cq C2
q

A Z Z2 0 0 Z Z2 Z2 Z4 0 0 Z Z2

AIII 0 0 Z Z 0 0 0 0 Z2 Z2 0 0

Rq−2 Cq Rq−3 Rq−3 Rq−4 R2
q−2 Cq C2

q R2
q−3 R2

q−3 Rq−2 R2
q−2

AI 0 Z 0 0 Z 0 Z Z2 0 0 0 0
BDI 0 0 0 0 0 0 0 0 0 0 0 0
D Z Z 0 0 0 Z2 Z Z2 0 0 Z Z2

DIII Z2 0 Z Z 0 Z2
2 0 0 Z2 Z2 Z2 Z2

2

AII Z2 Z Z2 Z2 Z Z2
2 Z Z2 Z2

2 Z2
2 Z2 Z2

2

CII 0 0 Z2 Z2 Z2 0 0 0 Z2
2 Z2

2 0 0
C Z Z 0 0 Z2 Z2 Z Z2 0 0 Z Z2

CI 0 0 Z Z 0 0 0 0 Z2 Z2 0 0
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TABLE XIV. Bulk topological invariants and classifying spaces for the tetragonal crystal system symmorphic layer-group symmetries:
C4, S4,C4h, D4,C4v, D2d , D4h.

Schön. C1 C4 S4 C4h D4 C4v D2d D4h

Cq C4
q C4

q C8
q C2

q+1 × Cq C2
q+1 × Cq C2

q+1 × Cq C4
q

A Z Z4 Z4 Z8 Z Z Z Z4

AIII 0 0 0 0 Z2 Z2 Z2 0

Rq−2 R2
q−2 × Cq R2

q−2 × Cq C4
q R2

q−3 × Rq−4 R2
q−3 × Rq−4 R2

q−3 × Rq−4 R4
q−2

AI 0 Z Z Z4 Z Z Z 0
BDI 0 0 0 0 0 0 0 0
D Z Z3 Z3 Z4 0 0 0 Z4

DIII Z2 Z2
2 Z2

2 0 Z2 Z2 Z2 Z4
2

AII Z2 Z2
2 × Z Z2

2 × Z Z4 Z2
2 × Z Z2

2 × Z Z2
2 × Z Z4

2

CII 0 0 0 0 Z3
2 Z3

2 Z3
2 0

C Z Z3 Z3 Z4 Z2 Z2 Z2 Z4

CI 0 0 0 0 Z2 Z2 Z2 0

The layer groups are given by omitting the z-direction γ3

generator. Notice that the equivalences of the 3D monoclinic
and orthorhombic point groups no longer hold, i.e., C2 �=
D1,C1h �= C1v,C2h �= D1d ,C2v �= D1h.

1. Rotational symmetry Cn

This has no effect on the z direction and is hence just
shifted by 1 due to the lack of the γ3 generator. We thus find

Rr(n)
q−2 × Cc(n)

q . (E1)

2. Rotoreflection symmetry S2n

One has to modify the s generator to exclude γ3 by
s′ = eγ1γ2

2π
4n ŝ. This, however, satisfies s′yis′−1 = yi and s′2n =

(−1)n.
For n = 1 this is just a complex structure C = R〈σ ′

h〉 and
we get B = Clp+1,q ⊗ C and hence

Cq. (E2)

For n = 2 we get B = Clp+1,q ⊗ R[Z4] and hence

R2
q−2 × Cq. (E3)

For n = 3 we have R〈s′〉 = R〈−s′2〉 ⊗ R〈s′3〉 = C⊕3 and we
get B = Clp+1,q ⊗ C⊕3 and hence

C3
q . (E4)

3. Dipyramidal symmetry Cnh

One has to modify the σh generator to exclude γ3 by
σ ′

h = σ̂h. This, however, satisfies σ ′2
h = −1 and σ ′

hyiσ
′−1
h = yi.

It thus adds a complex structure C = R〈σ ′
h〉 to Cn and we get

B = Clp+1,q ⊗ R[Zn] ⊗ C and hence

Cr(n)+2c(n)
q . (E5)

4. Pyramidal symmetry Cnv

This has no effect on the z direction and is hence just
shifted by 1 due to the lack of the γ3 generator. We thus find

Rr(n)
q−3 × Rc(n)

q−4. (E6)

TABLE XV. Bulk topological invariants and classifying spaces for the trigonal crystal system symmorphic layer-group symmetries:
C3,C3i, D3,C3v, D3d .

Schön. C1 C6 C3i, S6 D3 C3v D3d

Cq C3
q C6

q Cq+1 × Cq Cq+1 × Cq C3
q

A Z Z3 Z6 Z Z Z3

AIII 0 0 0 Z Z 0

Rq−2 Rq−2 × Cq C3
q Rq−3 × Rq−4 Rq−3 × Rq−4 Rq−4 × Cq

AI 0 Z Z3 Z Z Z2

BDI 0 0 0 0 0 0
D Z Z2 Z3 0 0 Z
DIII Z2 Z2 0 Z Z 0
AII Z2 Z2 × Z Z3 Z2 × Z Z2 × Z Z2

CII 0 0 0 Z2
2 Z2

2 Z2

C Z Z2 Z3 Z2 Z2 Z2 × Z
CI 0 0 0 Z Z 0
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TABLE XVI. Bulk topological invariants and classifying spaces for the hexagonal crystal system symmorphic layer-group symmetries:
C6,C3h,C6h, D6,C6v, D3h, D6h.

Schön. C1 C6 C3h C6h D6 C6v D3h D6h

Cq C6
q C6

q C12
q C2

q+1 × C2
q C2

q+1 × C2
q C3

q C6
q

A Z Z6 Z6 Z12 Z2 Z2 Z3 Z6

AIII 0 0 0 0 Z2 Z2 0 0

Rq−2 R2
q−2 × C2

q C3
q C6

q R2
q−3 × R2

q−4 R2
q−3 × R2

q−4 R3
q−2 R6

q−2

AI 0 Z2 Z3 Z6 Z2 Z2 0 0
BDI 0 0 0 0 0 0 0 0
D Z Z4 Z3 Z6 0 0 Z3 Z6

DIII Z2 Z2
2 0 0 Z2 Z2 Z3

2 Z6
2

AII Z2 Z2
2 × Z2 Z3 Z6 Z2

2 × Z2 Z2
2 × Z2 Z3

2 Z6
2

CII 0 0 0 0 Z4
2 Z4

2 0 0

C Z Z4 Z3 Z6 Z2
2 Z2

2 Z3 Z6

CI 0 0 0 0 Z2 Z2 0 0

5. Dihedral symmetry Dn

One has to modify the c2 generator to exclude γ3 by
c′

2 = ĉ2γ2. This, however, satisfies c′2
2 = 1, c′

2yic
′−1
2 = yi, and

(cnc′
2)2 = 1 which makes it equivalent to Cnv by c′

2 ↔ σv and
hence we find

Rr(n)
q−3 × Rc(n)

q−4. (E7)

6. Antiprismatic symmetry Dnd

One has to modify the s generator to exclude γ3 by
s′ = eγ1γ2

2π
4n ŝ. This, however, satisfies s′yis′−1 = yi and s′2n =

(−1)n as well as (s′σv )2 = 1.
For n = 1 we get B = Clp+1,q⊗̂Cl0,2 and hence

Rq−4. (E8)

For n = 2 it is equivalent to C4v by s′ ↔ c and hence we find

R2
q−3 × Rq−4. (E9)

For n = 3 we have R〈s′, σv〉 = R〈−s′2〉 ⊗ R〈s′3, σv〉 and we
get B = (Clp+1,q⊗̂Cl0,2) ⊗ (R ⊕ C) and hence

Rq−4 × Cq. (E10)

7. Prismatic symmetry Dnh

One has to modify both the c2 and the σh generators
to exclude γ3 by c′

2 = ĉ2γ2 and σ ′
h = σ̂h. These,

however, satisfy c′2
2 = 1, σ ′2

h = −1 and c′
2yic

′−1
2 = yi,

σ ′
hyiσ

′−1
h = yi as well as (cnc′

2)2 = 1, (c′
2σ

′
h)2 = 1. We have

R〈cn, c′
2, σ

′
h〉 = R〈σ ′

h〉⊗̂R〈cn, c′
2〉, where R〈σ ′

h〉 = C = Cl1,0

and R〈cn, c′
2〉 = R[Dihn] = Cl⊕r(n)

0,1 ⊕ Cl⊕c(n)
0,2 is graded by

Z2 = Dihn/Zn. We hence get Clp,q ⊗ (Cl⊕r(n)
1,1 ⊕ Cl⊕c(n)

1,2 ) =
Clp,q ⊗ M2(R)⊕r(n)+2c(n) and find

Rr(n)+2c(n)
q−2 . (E11)

APPENDIX F: MAGNETIC POINT GROUPS: AN EXAMPLE

In this Appendix, we demonstrate the generalizability
of our method for the treatment of crystalline topological
insulators and superconductors with magnetic point group

symmetries. Let us look at C′
2n with generators ĉ′ = ĉT such

that T 2 = εT and

ĉ′2n = −εn
T . (F1)

It acts on the 3D space as

ĉ′
(

γ1
γ2

)
ĉ′−1 = −

(
cos 2π

2n sin 2π
2n

− sin 2π
2n cos 2π

2n

)(
γ1
γ2

)
. (F2)

We set

c′ = eγ1γ2
2π
2n ĉ′, (F3)

which satisfies

c′yic
′−1 = −yi, c′2n = εn

T . (F4)

The presence of charge conservation implies the existence of
an “imaginary” generator J2 = −1 such that c′Jc′−1 = −J .
We thus get B = Cl1,d⊗̂R〈c′, J〉.

For n = 1 we have R〈c′, J〉 = R〈c′, c′J〉 and find

Cl1,d⊗̂Cl0,2 �→ R−d , T 2 = +1,

Cl1,d⊗̂Cl2,0 �→ R4−d , T 2 = −1. (F5)

For n = 2 we split our algebra by the central element c′2 and
find

Cl1,d⊗̂(Cl0,2 ⊕ Cl2,0) �→ R−d × R4−d . (F6)

For n = 3 we have B = R〈c′2〉⊗(Cl1,d⊗̂R〈c′3, c′3J〉) and thus
find

(R ⊕ C)⊗(Cl1,d⊗̂Cl0,2) �→ R−d × Cd , T 2 = +1,

(R ⊕ C)⊗(Cl1,d⊗̂Cl2,0) �→ R4−d × Cd , T 2 = −1. (F7)

As expected [90], in all cases, one may switch between
εT = ±1 by tensoring with H.
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