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Dynamic modulation yields one-way beam splitting
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This paper demonstrates the realization of an extraordinary beam splitter, exhibiting one-way beam splitting
amplification. Such a dynamic beam splitter operates based on nonreciprocal and synchronized photonic
transitions in obliquely illuminated space-time-modulated (STM) slabs which impart the coherent temporal
frequency and spatial frequency shifts. As a consequence of such unusual photonic transitions, a one-way beam
splitting is exhibited by the STM slab. Beam splitting is a vital operation for various communication systems,
including circuit quantum electrodynamics, and signal-multiplexing and demultiplexing. Despite that the beam
splitting is conceptually a simple operation, the performance characteristics of beam splitters significantly
influence the repeatability and accuracy of the entire system. As of today, there has been no approach exhibiting a
nonreciprocal beam splitting accompanied with transmission gain and an arbitrary splitting angle. Here, we show
that oblique illumination of a periodic and semicoherent dynamically-modulated slab results in coherent photonic
transitions between the incident light beam and its counterpart space-time harmonic (STH). Such transitions
introduce a unidirectional synchronization and momentum exchange between two STHs with same temporal
frequencies but opposite spatial frequencies. Such a beam splitting technique offers high isolation, transmission
gain, and zero beam tilting, and is expected to drastically decrease the resource and isolation requirements
in communication systems. In addition to the analytical solution, we provide a closed-form solution for the
electromagnetic fields in STM structures, and accordingly, investigate the properties of the wave isolation and
amplification in subluminal, superluminal, and luminal ST modulations.

DOI: 10.1103/PhysRevB.99.075101

I. INTRODUCTION

Beam splitters are quintessential elements of communica-
tion systems [1–7]. In the microwave regime, beam splitters
are required for the generation of single photons in the circuit
quantum electrodynamics [1,8–13], heterodyne mixer arrays
[3], and wave engineering and signal-multiplexing and de-
multiplexing [4–7]. However, the realization of microwave
on-chip beam splitters is still under research and develop-
ment [1,2,14]. In spite of the immense scientific attempts for
the realization of efficient beam splitters, beam splitters are
restricted to reciprocal response and suffer from substantial
transmission loss. As a consequence, the resource require-
ments of the overall system, including demand for high power
microwave sources and isolators, will be increased.

This paper presents the application of space-time-
modulated (STM) structures to extraordinary beam splitting.
As of today, various applications of STM structures have
been reported, where normal incidence of the light beam
to the STM structure yields unusual interaction with elec-
tromagnetic wave [15–21]. These applications include but
are not limited to the parametric traveling-wave amplifiers
[22–25], isolators [18,26–32], metasurfaces [33–36], pure fre-
quency mixer [37], circulators [38–40], and mixer-duplexer-
antenna system [41,42]. Nevertheless, there has been a lack of
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investigation on the properties of STM media under oblique
incidence and its applications.

Here, we introduce a one-way, tunable, and highly efficient
beam splitter and amplifier based on coherent photonic transi-
tions through the oblique illumination of STM structures. The
contributions of this paper are as follows.

(1) In contrast to conventional beam splitters which are
restricted to reciprocal response with more than 3 dB insertion
loss, the proposed STM beam splitter is capable of providing
nonreciprocal response with transmission gain. It can also
be used in antenna applications, where the transmitted and
received waves are engineered appropriately.

(2) We show that the STM beam splitter presents an
efficient performance for both collimated and noncollimated
incidence beam with no output beam tilt. This is very in-
teresting as conventional passive beam splitters suffer from
poor performance for noncollimated beams and provide an
undesired output beam tilt.

(3) It is demonstrated that the angle of transmission and
the amplitude of the transmitted beams depend on the ST
modulation parameters. Hence, the ST modulation parameters
provide the leverage for achieving the desired angle of trans-
mission for the two output beams of the STM beam splitter.
In addition, unequal power division between the output beams
can be achieved by varying the ST modulation parameters.

(4) Here, we present an application of obliquely illumi-
nated STM slabs. Consequently, the scheme and results for
the finite difference time-domain (FDTD) simulation results
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FIG. 1. Schematic of nonreciprocal beam splitting in a STM slab.
The slab varies in time two times faster than the input wave.

for oblique incidence to a STM slab at microwave frequencies
are presented.

(5) A closed-form solution is presented that provides a
deep insight into the wave propagation inside the STM beam
splitters and the difference between the subluminal, luminal,
and superluminal ST modulations.

(6) The analysis of the STM beam splitter is further accom-
plished by investigation of its analytical three-dimensional
dispersion diagrams, achieved by Bloch-Floquet decomposi-
tion of space-time harmonics (STHs).

Accordingly, the rest of the paper is structured as follows.
Section II presents the operation principle of the proposed
STM beam splitter. In Sec. III, we derive the analytical solu-
tion for oblique electromagnetic wave propagation inside the
STM beam splitter based on the Bloch-Floquet representation
of the electromagnetic fields. Then, Sec. IV presents the time
and frequency domains numerical simulation results for the
beam splitting and amplification in the STM beam splitter.
Next, the closed form solution will be provided in Sec. V,
which gives a leverage for understanding the wave propa-
gation and transitions in STM structures. A short discussion
on practical realization of superluminal STM structures at
different frequencies will be presented in Sec. VI. Finally,
Sec. VII concludes the paper.

II. OPERATION PRINCIPLE

Figure 1 sketches the nonreciprocal beam transmission and
splitting in a STM slab. By appropriate design of the band
structure, that is, the ST modulation format and its associated
temporal and spatial modulation frequencies, unidirectional
energy and momentum exchange between the incident wave-
under angle of incidence and transmission θI = θT,0 = 45◦
and temporal frequency ω0 to the first lower STH-under angle
of transmission θT,−1 = −45◦ and temporal frequency ω0 will
occur. Assuming TMy or Ey polarization, the electric field of
the incident light beam in the forward +z direction may be

expressed as

EF
I (x, z, t ) = E0e−i[kxx+kzz−ω0t], (1)

is traveling in the +z direction under the angle of incidence
θI = 45◦, and impinges to the periodic STM slab. The x and
z components of the spatial frequency read kx = k0 sin(θI )
and kz = k0 cos(θI ), respectively, in which k0 = ω0/vb =
ω0

√
εr/c, with ω0 being the temporal frequency of the inci-

dent wave, vb denoting the phase velocity in the background
medium, εr representing the relative electric permittivity of
the background medium, and c denoting the speed of light
in vacuum. The STM slab assumes a sinusoidal ST-varying
permittivity, as

ε(z, t ) = εav + δε sin(qz − �t ), (2)

where εav = εr + δε is the average permittivity of the slab, δε

denotes the modulation strength, � = 2ω0 is the modulation
temporal frequency, and

q = 2k0

γ
(3)

represents the spatial frequency of the modulation, with γ =
vm/vb being the ST velocity ratio, where vm and vb are the
phase velocity of the modulation and the background medium,
respectively. Since the slab permittivity is periodic in space
and time, with spatial frequency q and temporal frequency
2ω0, the electric field inside the slab may be decomposed into
ST Bloch-Floquet waves as

ES(x, z, t ) = ŷ
M∑

m=−M

Ame−i(kxx+kz,mz−ωmt ), (4a)

and

HS(x, z, t ) = 1

ηS
[k̂S × ES(x, z, t )]

=
M∑

m=−M

[
−x̂

kz,m

μ0ωm
+ ẑ

sin(θI )

ηS

]

× Ame−i(kxx+kz,mz−ωmt ), (4b)

where M → ∞ is the number of STHs. In Eq. (4), ηS =√
μ0/(ε0εr ), and Am represents the unknown amplitude of the

mth STH, characterized by the spatial frequency

kz,m = β0 + mq, (4c)

and the temporal frequency

ωm = (1 + 2m)ω0, (4d)

with β0 being the unknown spatial frequency of the fundamen-
tal harmonic. The unknowns of the electric field, that is, Am

and β0, will be found through satisfying Maxwell’s equations.
The transmission angle of the mth transmitted STH, θT,m,

satisfies the Helmholtz relation as

k2
0 sin2(θI ) + k2

m cos2(θT,m) = k2
m, (5)

where km = ωm/vb denotes the wave number of the mth
transmitted STH outside the STM slab. Solving Eq. (5) for
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θT,m yields

θT,m = sin−1

(
kx

km

)
= sin−1

(
sin(θI )

1 + m�/ω0

)

= sin−1

(
sin(θI )

1 + 2m

)
. (6a)

Equation (6a) demonstrates the spectral decomposition of
the transmitted wave. Consequently, the fundamental STH,
m = 0, and the first lower STH, m = −1, with equal temporal
frequency ω0, will be, respectively, transmitted under the
angles of transmission of

θT,0 = θI = 45◦,

θT,−1 = −θI = −45◦, (6b)

so that they are transmitted under 90◦ angle difference, pre-
senting the desired beam splitting. The scattering angle of the
mth STH inside the STM slab reads

θS,m = tan−1

(
kx

kz,m

)
. (7)

In addition, the transmitted electric fields from the slab are
found as

ET(x, z, t ) = ES(x, z, t )e−ikz,mz

= ŷ
M∑

m=−M

Ame−i(kxx+kz,m[d+z]−ωmt ). (8)

The sourceless wave equation reads

∇2ES(x, z, t ) − 1

c2

∂2[ε(z, t )ES(x, z, t )]

∂t2
= 0. (9)

Substituting Eqs. (2) and (4) into Maxwell’s equations yields
a matrix equation as

[K]�A = 0, (10a)

where [K] is a (2M + 1) × (2M + 1) matrix with elements

Km,m = εav − k2
x + k2

z,m

k2
0

,

Km,m−1 = i
δε

2
,

Km,m+1 = −i
δε

2
, (10b)

and where �A represents a (2M + 1) × 1 vector containing Am

coefficients. Equation (10a) has a nontrivial solution if

det{[K]} = 0. (11)

Equation (11) represents the dispersion relation of the STM
beam splitter which provides the unknown spatial frequency
of the fundamental STH for a given frequency, i.e., β0(ω0).
After finding the β0(ω0), the [K] matrix in Eq. (10a) is known
and therefore, the unknown amplitude of the STHs Am will be
calculated using Eq. (10a).
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FIG. 2. Qualitative representation of the periodic
three-dimensional dispersion diagram for the periodic STM
slab in Fig. 1. The medium is under oblique illumination of
θI = 45◦ at the fundamental harmonic m = 0, corresponding to
the temporal frequency ω0, where kx,0 = x̂kx = x̂k0 sin(θI ). The
lower STH, m = −1, provides the same temporal frequency
as the fundamental harmonic, |ωm| = |ω0(1 + 2m)|m=−1 = ω0,
but opposite x component of the spatial frequency, that is,
kx,−1 = −x̂kx = −x̂k0 sin(θI ).

III. ANALYTICAL 3D DISPERSION DIAGRAM

Figure 2 presents a qualitative illustration of the three-
dimensional dispersion diagram in the STM medium in Fig. 1
achieved using Eq. (11). This diagram is formed by 2M + 1
periodic set of double cones (here, only m = 0 and m = −1
harmonics are shown), each of which represents a STH, with
apexes at kx = 0, kz = −mq, and ω = −2mω0, and the slope
of vm with respect to the kz − kx plane. Consider the oblique
incidence of a wave, representing the fundamental harmonic
m = 0 with temporal frequency ω0, propagating along the
[+x,+z] direction. It is characterized by x and z components
of the spatial frequency, kx = x̂kx and kF

z = ẑkz. The wave
impinges to the medium under the angle of incidence θI = 45◦
and excites an infinite number of (we truncate it to 2M + 1)
STH waves, with different spatial and temporal frequencies
of [kx, kz,m] and ωm. However, interestingly, the first lower
STH m = −1 offers similar characteristics as the fundamental
harmonic, that is, the identical temporal frequency of ω0 and
identical z component of the spatial frequency of kF

z,−1 =
kF

z,0, but opposite x component of the spatial frequency of
kx,−1 = −kx,0. Hence, m = −1 harmonic propagates along
the [−x,+z] direction. In general the x component of the mth
STH reads kx,m = −kx,−m−1. Moreover, since ωm = ω−m−1,
the undesired STHs acquire temporal frequency of 2mω0 and
far away from the fundamental harmonic. Thus, most of the
incident energy is residing in m = 0 and m = −1 harmon-
ics, both at ω0, respectively, transmitted under θT,0 = θI and
θT,-1 = −θI transmission angles with 2θI angle difference.
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The exchange of the energy and momentum between the
fundamental and first lower harmonic occurs only for the
forward, +z, wave incidence. This is observed from Fig. 2,
as the forward harmonics (red circles, where ∂ω/∂kz > 0) are
very close, whereas the backward harmonics (gray circles,
where ∂ω/∂kz < 0) are far apart from each other. Therefore,
a nonreciprocal transition of energy is achieved from the
incident wave under θI = 45◦ to the first STH under θT,-1 =
−45◦, through the ST modulation under θmod = 0◦.

Figure 3(a) shows the analytical solution for three-
dimensional dispersion diagram of the STM medium in Fig. 1,
computed using Eq. (11) for γ = 1.2. For a given frequency,
this three-dimensional diagram provides the two-dimensional
kz/q − kx/q isofrequency diagram of the medium. Figure 3(b)
plots the isofrequency diagram at ω/2ω0 = 0.5 (or ω = ω0),
containing an infinite periodic set of circles centered at
(kz/q, kx/q) = (−m, 0) with radius γ (0.5 + m).

It may be seen from Figs. 3(a) and 3(b) that at ω = ω0, the
m = 0 and m = −1 STHs offer identical isofrequency circles.
However, their associated forward harmonics (red circles) are
very close to each other whereas their associated backward
harmonics (gray circles) are significantly separated. For a
nonzero velocity ratio (γ > 0), the forward and backward
STHs acquire different distances, i.e., �β± = k±

z,m+1 − k±
z,m

[18]. Particularly, as γ increases, �β− increases and �β+
decreases. As a result, at the limit of γ = 1 the forward
harmonics acquire distances �β+/q = 0, and the backward
harmonics acquire distances �β−/q = 2. Hence, increasing
γ results in the significant enhancement in the nonreciprocity
of the medium, so that the forward harmonic waves tend
to merge together (�β+ → 0) and exchange their energy
and momentum, whereas the backward harmonics tend to
separate from each other (�β+ → 2) [Fig. 3(a)]. Hence, such
a dynamic modulation has nearly no effect on the backward
incident beam.

IV. NUMERICAL SIMULATION RESULTS

We next verify the above theory by FDTD numerical
simulation of the dynamic process through solving Maxwell’s
equations. Figure 4 plots the implemented finite-difference
time-domain scheme for numerical simulation of the oblique
wave impinging to the STM beam splitter. We first discretize
the medium to K + 1 spatial samples and M + 1 temporal
samples, with the steps of �z and �t , respectively. Next, the
finite-difference discretized form of the first two Maxwell’s
equations for the electric and magnetic fields [considering
Eq. (4)] will be simplified to

Hx

∣∣i+1/2
j+1/2 = (1 − �t )Hx

∣∣i−1/2
j+1/2

+ �t

μ0�z

(
Ey

∣∣i

j+1 − Ey

∣∣i

j

)
(12a)

Hz

∣∣i+1/2
j+1/2 = (1 − �t )Hz

∣∣i−1/2
j+1/2

− �t

μ0�z

(
Ey

∣∣i

j+1 − Ey

∣∣i

j

)
(12b)

Ey

∣∣i+1
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⎛
⎝1 −
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FIG. 3. Analytical dispersion diagram of the periodic STM slab
in Fig. 1 for γ = 1.2 computed using Eq. (11). The forward incidence
under θI = 45◦ corresponding to kx/q = 0.4243 excites the m = −1
STH, resulting in a strong exchange of energy between m = 0 and
m = −1 harmonics, with the identical temporal frequency of �0.
(a) Three-dimensional dispersion diagram constituted of an array of
periodic cones [18]. (b) Isofrequency diagram at ω = ω0 presents an
infinite set of circles centered at (kz/q, kx/q) = (−m, 0) with radius
γ (0.5 + m).

+ �t/�z

ε
∣∣i+1/2

j

.
[(

Hx

∣∣i+1/2
j+1/2 − Hx

∣∣i+1/2
j−1/2

)

−
(

Hz

∣∣i+1/2
j+1/2 − Hz

∣∣i+1/2
j−1/2

)]
, (12c)

where ε′ = ∂ε(z, t )/∂t = −�δε cos(qz − �t ).
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domain scheme for numerical simulation of the oblique incidence
of an Ey wave to STM beam splitter.

Figure 5 shows the numerical simulation results for the
forward oblique wave incidence to the slab, shown in Fig. 1,
with εr = 1, δε = 0.2, γ = 1.2, d = 3λ0 = 3 × 2π/k0, θI =
45◦, and ω0 = 3 GHz. It may be seen from this figure that
an efficient beam splitting with significant transmission gain
is achieved in the forward direction. Figures 6(a) and 6(b)
provide the results for the oblique wave incidence from the
right side and top, respectively, corresponding to θI = 45◦
and θI = −45◦. The presented analytical and numerical results
demonstrate that the dynamic beam splitter provides a perfect

x

z
y

Iθ
Tθ

FIG. 5. Nonreciprocal beam splitting in periodically STM slab.
FDTD numerical simulation for the forward wave incidence to the
slab, from the left, with θI = 45◦.

FIG. 6. Nonreciprocal beam splitting in periodically STM slab.
FDTD numerical simulation for the wave incidence to the slab.
(a) From the right with θI = 45◦. (b) From the top, i.e., θI = −45◦.

nonreciprocal beam splitting, in the lack of beam tilting. In
contrast to conventional passive beam splitters, here the beam
splitting is achieved for a noncollimated beam. It may be
shown that by changing the modulation parameters, i.e., γ , θI

and εav, tunable transmission angles, unequal splitting ratio,
and unequal angles of transmission will be achieved. Figure 7
compares the analytical and numerical results for the spectrum
of the incident and transmitted electric fields in Fig. 5. This
figure shows that 3dB transmission gain is achieved for each
of the transmitted beams in the forward excitation. Figure 7
demonstrates that the undesired higher order harmonics, at
ω = 2mω0, are sufficiently weak so that the beam splitter
safely operates at single frequency ω0.

V. CLOSED FORM SOLUTION
FOR ELECTROMAGNETIC FIELDS

It is shown in Sec. IV that by proper design of the
band structure, a pure unidirectional beam splitting can be
achieved in a obliquely illuminated STM slab. The analytical
solution of the electromagnetic fields based on the double
Bloch-Floquet decomposition of electromagnetic fields, pre-
sented in Sec. III, provides an accurate solution for the fields
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scattered by such a slab, which is very useful. However,
such an analytical solution does not provide a deep insight
into the wave propagation inside the slab. In particular, it
is of great interest to have an intuitive explanation about
the effect of different parameters, e.g., δε , γ , kx, and kz,
on the wave propagation and energy exchange between the
incident field m = 0 and the excited first lower harmonic
m = −1. Moreover, the accurate analytical solution, based on
the mathematical modeling presented in Sec. III, is achieved
through a substantial computational cost. To resolve this issue,
here we provide an approximate closed form solution for
the electromagnetic fields propagating inside and transmitted
from the STM beam splitter, which provides a clear picture of
the transition between the incident and the first lower STHs.

As we showed in the previous section, given the weak
transition of energy and momentum from the fundamental
STH m = 0 to higher order STHS except m = −1, the electric
field inside the STM slab can be represented based on the
superposition of the aforementioned two STHs, i.e., m = 0
and m = −1. The electric field is then defined by

ES(x, z, t ) = a0(z)e−i(kxx+kzz−ω0t )

+ a−1(z)ei(−kxx+(q−kz )z−ω0t ), (13)

where a0(z) and a−1(z) are the unknown field coefficients.
We shall stress that here the field coefficients are z dependent
since they include both the amplitude and the change in the
spatial frequency (wave number) introduced by the ST modu-
lation. Following the procedure provided in the Supplemental
Material in Ref. [43], we insert the electric fields in (13) into
the wave equations in (9) and achieve a coupled differential
equation for the field coefficients, i.e.,

d

dz

[
a0(z)

a−1(z)

]
=

[
M0 C0

C−1 M−1

][
a0(z)

a−1(z)

]
, (14a)

where

M0 = ik2
0

2kz
(εav − εr ),

M−1 = ik2
0

2(kz − q)

[
εav − εr

k2
x + (q − kz )2

k2
0

]
,

C0 = i
δk2

0

4kz
,

C−1 = i
δk2

0

4(kz − q)
. (14b)

The solution to the coupled differential equation in (14a) is
given by [43]

a0(z) = E0

2Δ

(
(M0 − M−1 + Δ)e

M0+M−1+Δ

2 z

− (M0 − M−1 − Δ)e
M0+M−1−Δ

2 z

)
, (15a)

a−1(z) = E0C−1

Δ

(
e

M0+M−1+Δ

2 z − e
M0+M−1−Δ

2 z
)
, (15b)

where Δ =
√

(M0 − M−1)2 + 4C0C−1. For a given ST modu-
lation ratio γ , the field coefficients in Eq. (15) acquire differ-
ent forms. In general, ST modulation is classified into three
categories, i.e., subluminal (0 < γ < 1 or vm < vb), luminal
(γ → 1 or vm → vb), and superluminal (γ > 1 or vm > vb).

A. Subluminal and superluminal ST modulations

Considering εav = εr, the a0(z) and a−1(z) in Eq. (15)
would be a periodic sinusoidal function with respect to z,
if Δ =

√
(M0 − M−1)2 + 4C0C−1 is imaginary, i.e., (M0 −

M−1)2 + 4C0C−1 < 0. By solving this, we achieve an interval
for the luminal ST modulation, that is,

γsub <
1√

εav + δε

� γlum � 1√
εav − δε

< γsup, (16)

where γsub, γlum, and γsup are the ST velocity ratio for sublumi-
nal, luminal, and superluminal ST modulations, respectively.
The interval for luminal ST modulation is called sonic regime
in analogy with sonic boom effect in acoustics, where an
airplane travels with the same speed or faster than the speed
of sound. It should be noted that the luminal ST modulation
interval in Eq. (16) is exactly the same as the one achieved
from the exact analytical solution [17,18,25].

Figure 8(a) plots the closed form and FDTD numerical
simulation results for the absolute electric field coefficient
inside the slab, with the wave incidence from the left side
(forward incidence), considering superluminal ST modulation
of γ = 1.2 and δε = 0.28. It is seen from this figure that
both a0(z) and a−1(z) possess periodic sinusoidal form and
exhibit a substantial transmission gain at z = 3λ0. Such a
transmission gain is tuned through the variation of γ and δε .
This result is consistent with the transmission gain achieved in
the FDTD numerical simulation results in Figs. 5 and 7. The
coherence length lc, where both a0(z) and a−1(z) acquire their
maximum amplitude is found as [43]

lc = π

([
k2

0[εav − εr]/kz − q

(γ − 2)/(γ − 1)

]2

+ δ2k4
0

4kz(kz − q)

)−1

. (17)

Figure 8(b) plots the result for the superluminal STM slab
in Fig. 8(a), except for wave incidence from the right side
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FIG. 8. Closed-form solution results and the FDTD numerical
simulation results for the z-dependent absolute field coefficients in
Eq. (13), i.e., a0(z) and a−1(z), inside the superluminal STM beam
splitter, with γ = 1.2 and δε = 0.28. (a) Forward wave incidence,
where the wave propagates from left to right. (b) Backward wave
incidence, where the wave propagates from right to left.

(backward incidence). It may be seen from this figure that,
in contrast to the forward wave incidence where a substantial
exchange of the energy and momentum between the m =
0 and m = −1 STHs are achieved, here the incident wave
passes through the slab with negligible alteration and minor
transition of energy and momentum to the m = −1 STH. This
is obviously in agreement with the nonreciprocal response
presented in Figs. 5, 6(a), and 6(b).

B. Luminal ST modulation

It may be shown that for the luminal ST modulation, where
γ → 1, the field coefficients in Eq. (15), a0(z) and a−1(z),
acquire pure real (or complex) forms. This yields exponential
growth of the electric field amplitude along the STM slab.
Hence, considering γ = 1, the total electric field inside the
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FIG. 9. Closed-form solution results and the FDTD numerical
simulation results for the z-dependent absolute field coefficients in
Eq. (13), i.e., a0(z) and a−1(z), inside the luminal STM beam splitter,
with γ = 1 and δε = 0.28. (a) Forward wave incidence, where the
wave propagates from left to right. (b) Backward wave incidence,
where the wave propagates from right to left.

STM slab reads

ES(x, z, t )|γ=1 = E0 cosh

(
δk2

0

4kz
z

)
e−i(kxx+kzz−ω0t )

− i
δk2

0

2kz
E0 sinh

(
δk2

0

4kz
z

)
ei(−kxx+(q−kz )z−ω0t ).

(18)

Figure 9(a) plots the closed form and FDTD numerical
simulation results for the absolute value of the electric field
coefficients a0(z) and a−1(z) inside the luminal (γ = 1 and
δε = 0.28) STM slab for forward wave incidence. It may be
seen from this figure that both a0(z) and a−1(z) possess a
nonperiodic exponentially growing profile and exhibit a sub-
stantial transmission gain at z � 3λ0. It should be noted that
the solutions for the field coefficients presented in Eqs. (15)
and (18) are very useful and provide a deep insight into
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the wave propagation inside the STM slab, especially for
the luminal ST modulation (sonic regime), where the Bloch-
Floquet-based analytical solution does not exist since the
solution does not converge [17,18,25].

Figure 9(b) plots the result for the luminal STM slab
in Fig. 9(a), except for wave incidence from the right side
(backward incidence). This figure shows that, in contrast to
the forward wave incidence, here the incident wave passes
through the slab with negligible alteration and minor transi-
tion of energy and momentum to the m = −1 STH.

VI. DISCUSSION ON PRACTICAL REALIZATION OF
SUPERLUMINAL ST MODULATION

To practically realize superluminal ST modulation (here
γ = 1.2), the phase velocity of the modulation should be
greater than the velocity of the incident wave in the back-
ground (unmodulated) medium and not the velocity of light in
vacuum [15]. Considering a glass as the background medium
with permittivity >1.5, achieving γ = 1.2 would be realis-
tic. For instance, one may use coupled structures with two
different lines (possessing different phase velocities) for the
input wave and the modulation [30,42,44]. In such structures
a modulation velocity greater than at least one of the charac-
teristic velocities involved is required. In general, the way of
achieving the fast pumping depends on the frequency range,
as follows.

(i) At low frequencies, one may use filter constants which
are appropriately selected for two weakly coupled transmis-
sion lines [18,30,42,44], one for the pump and one for the
main incident wave.

(ii) At ultrahigh frequencies, a serpentine transmission
line supports the propagation of the main incident wave [45],
which lowers the phase velocity relative to the modulation
velocity.

(iii) At microwave frequencies the pump wave is sup-
ported in a closed waveguide [46], thereby achieving a fast
phase velocity.
In addition, recently, there has been an experimental demon-
stration of time-modulated structure [47], where the medium
is periodically modulated in time only, representing the lim-
iting case of an infinite modulation velocity, i.e., q = 0 and
hence vm = �/q → ∞.

VII. CONCLUSION

We have introduced a unidirectional beam splitter and
amplifier based on asymmetric coherent photonic transitions
in obliquely illuminated space-time-modulated (STM) media.
The operation of this dynamic beam splitter is demonstrated
by both the analytical, closed-form, and numerical simulation
results. While the normally illuminated STM media have been
previously used for the realization of various components,
including insulators, parametric amplifiers, and nonreciprocal
frequency generators, this paper presents a study investigat-
ing the oblique illumination of STM media. Accordingly,
this paper proposed a forward-looking application of such
dynamic media. The proposed unidirectional beam splitter
is endowed with unique functionalities, including adjustable
one-way transmission gain, tunable splitting angle and arbi-
trary unequal splitting power ratio, as well as high isolation,
and hence, is expected to substantially reduce the source and
isolation requirements of communication systems.
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