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This Comment is on the paper “Effect of rotation on the elastic moduli of solid 4He” by T. Tsuiki, D.
Takahashi, S. Murakawa,Y. Okuda, K. Kono, and K. Shirahama [Phys. Rev. B 97, 054516 (2018)]. The authors
speculate on a putative effect of the effective mass of 3He impuritons on the angular momentum of solid
4He under rotation. This is a crucial point in their work when trying to explain the variation of the share
modulus, μ, with temperature. They refer also to my general theory of kinetics and dynamics of quasiparticles in
nonstationary moving bodies subjected to time varying deformations [cf, e.g., Phys. Rep. 354, 411 (2001)] and
in particular to the effect of a strong anisotropy in the temperature dependence of the vacancy diffusion under
rotation. The effect is due to Coriolis force. The authors apply by analogy the same idea to 3He impuritons.
However their consideration is inconsistent. They replace the bare mass of impurity in the Coriolis force by the
impuriton effective mass. The role of the Coriolis force on the impuriton diffusion becomes highly exaggerated
and leads to a not existing effect.
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Tsuiki et al. [1] have investigated the variation of share
modulus, μ, of solid (h.c.p.) 4He with 3He impurities under
rotation at different temperatures and have found a minimum
of μ in the temperature region 200–500 mK. They assigned
this to the role of the Coriolis force on the diffusion of
3He quasiparticles (impuritons). In case of vacancions, the
rotation may change the diffusion so that the temperature
dependence in the radial direction is Drr ∼ T 9 while in
the direction of the rotation it is Dzz ∼ T −7. This effect
follows from the general nonlinear theory of dynamics and
kinetics of quasiparticles with arbitrary dispersion relations
in crystals subjected to time-varying deformations [2,3]. The
theory unifies the nonlinear elasticity theory, transport theory
of Boltzman type and Hamilton dynamics, and is exact in
the frame of the quasipartile approach. Hamiltonian contains
both the bare mass and the dispersion relation in a general
form (not only in the effective mass approximation). So, it
takes into account inertial effects too. As is well known, the
quantity responsible for inertial effects is the bare mass (not
the effective mass). A typical example is the estimation of the
electron bare mass (the ratio e/m) in the Stewart-Tolman effect
[4] (eponym given by L.D. Landau). In case of vacancies the
anisotropy in the temperature dependence of D is due to the
Coriolis force.

Tsuiki et al. applied the same idea to the 3He impuritons.
But they used the effective mass of the quasiparticle instead
of the bare one. They state in Sec. V B: “The Coriolis force is
given by 2m∗�×v. We emphasize that the mass in the formula
of Coriolis force is an effective mass of 3He impuriton, and
the velocity is the impuriton group velocity vg , which is
determined by the energy band width �. Since the effective
mass is large (104m3 < m∗ < 107m3), the magnitude of the
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Coriolis force 2m∗�v exceeds several orders of magnitude of
the gravitational and centrifugal forces.”

This statement is in strong contradiction with the principle
of equality of inertial and gravitational masses. Otherwise,
the contribution of the effective mass of impuritons with a
concentration 1 ppm and m∗ = 1.3×106m3 will approach
the mass of the sample and its weight will increase twice.
In addition, the weight will strongly depend on temperature
due to the dependence of the impuritons effective mass on
temperature. In order to have Coriolis force which exceeds
several order of magnitude the centrifugal one the authors
keep the mass in the centrifugal force unchanged (equal to
the bare mass). However, it is impossible for the Coriolis and
centrifugal forces to depend on different masses. The mass in
the Newton equation with and without rotating is one and the
same. The effective mass approximation (if workable) takes
into account the role of the medium. The latter can influence
the behavior (e.g., trajectory) of the particle but not the form
of the force itself. When a gun shoots a shell its trajectory
is affected by atmospheric conditions—rain, wind, pressure
etc.—but this doesn’t influence the dependence of the Coriolis
force on the mass of the shell. Coriolis force depends neither
on the weather nor on the crystal structure. The same is valid
for centrifugal and gravitational forces.

There is important misunderstanding with the effect of
anisotropy in the temperature dependence of the vacancy
diffusion due to rotation. The authors apply this effect without
taking into account the difference between impuritons and
vacancions, as well as in the physical conditions. They write
in Sec. II C: “This dramatic anisotropy of defecton diffusion is
essentially the same conclusion as our consideration focusing
on circular motion of impuritons by Coriolis force which is
discussed in Secs. V and VI.”

I would be glad if my theory can help in solving such a fun-
damental problem. But it must be done without braking fun-
damental physical principles and in the region of its validity.
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The authors incorrectly suppose (Sec. II C) that my theory and
Fokker-Plank equation refer to zero-point vacancies. It is valid
for thermal vacancies delocalized at low temperatures. The
anisotropy in the diffusion temperature dependence appears
as a result of a Coriolis term in the Fokker-Plank equation.
The idea to exploit this effect in case of 3He impuritons is
very attractive. However, the conditions for impuritons are
different. The vacancion energy bandwidth �v may be of the
order of several degrees, and hence T < �v . Only low energy
levels are populated and the effective mass approximation
works. The impuriton bandwidth in the experiment considered
is � � 10−5K and T � �. This means that the impuriton
population in the band is uniform and the concept of effective
mass doesn’t work. The numbers of impuritons with positive
and negative effective masses are equal.

It is important that the Fokker-Plank equation [3] derived
for vacancies is valid when the temperature is small compared
to the vacancion bandwidth, T < �v , while the situation
considered in the paper is the opposite. In fact, the phys-
ical conditions of the experiment do not allow observation
of any temperature dependence of the impuriton diffusion.
The impuriton concentration is x = 0.3 ppm and the an-
gular velocity is about � = 4 rad/sec. Two polycrystalline
samples are employed corresponding to pressures (molar
volumes) 3.6 MPa (Vm = 20.27 cm3/mole) and 5.4 MPa
(Vm = 19.44 cm3/mole).

Near the melting point at the lowest pressure Vm ≈
21 cm3/mole and the impuriton bandwidth is � ≈ 10−4 K
[5]. It decreases with increasing pressure, so � � 10−5 K for
the samples used. As in any complex lattice with two atoms
per lattice cell, there are two impuriton branches (acousti-
cal and optical) [5] in h.c.p. helium. The exchange integral
J is of the order of J ≈ 10−6 K ≈ 10−29 J or less. The
impuriton effective mass and velocity are m∗ = h̄2/2Ja2 �
106 m3 and v ≈ a�/h̄ ≈ 10−3 m/s [5], respectively, with
an interatomic distance a ≈ 0.36 nm. In an ideal periodic

crystal, the diffusion coefficient depends on temperature due
to defecton-phonon scattering. If T � � (as in the case
considered), then

DT ≈ as

(
�

θp

)2(
θp

T

)9

, θp = h̄s

2a

with s for the Debye sound velocity. If T → 0 then D → ∞
due to infinite impuriton mean free path in the absence of
phonons. Then the scattering on other impuritons or lattice
deformations comes into effect. In the gas-kinetic approxima-
tion, the diffusion is inversely proportional to concentration x

and the scattering cross section σ (in units a2):

D0 ≈ Ja2/xσ, σ ∼ 102.

The total diffusion coefficient is obtained using the
Matthiessen rule:

D−1 = D−1
0 + D−1

T .

At 0.1 < T < 1 K the contribution of DT is negligible. This
means that there is no temperature dependence and of course
no anisotropic one.

Let me note that the above consideration is valid for
monocrystals with a not too large number of imperfections.
The conditions of the quasiparticle approach must be fulfilled.
But whatever happens, the Coriolis force will keep its form.

The effect of rotation on the elastic moduli of solid 4He
has not found a reasonable theoretical explanation. The con-
siderations based on the Coriolis force and its putative depen-
dence on the impuriton effective mass are in contradiction
with the principle of equality of gravitational and inertial
masses and are not acceptable. The impuriton diffusion at the
experimental conditions does not depend on temperature, so
no anisotropy in its temperature dependence can occur. The
paper contains interesting experimental results, however they
are still waiting for consistent theoretical interpretation.

[1] T. Tsuiki, D. Takahashi, S. Murakawa, Y. Okuda, K.
Kono, and K. Shirahama, Phys. Rev. B 97, 054516
(2018).

[2] D. I. Pushkarov, Phys. Rep. 354, 411 (2001).

[3] D. I. Pushkarov, Quasiparticle Theory of Defects in Solids
(World Scientific, Singapore, 1991).

[4] R. C. Tolman and T. D. Stewart, Phys. Rev. 8, 97 (1916).
[5] D. I. Pushkarov, Central Eur. J. Phys. 2, 420 (2004).

066501-2

https://doi.org/10.1103/PhysRevB.97.054516
https://doi.org/10.1103/PhysRevB.97.054516
https://doi.org/10.1103/PhysRevB.97.054516
https://doi.org/10.1103/PhysRevB.97.054516
https://doi.org/10.1016/S0370-1573(01)00023-0
https://doi.org/10.1016/S0370-1573(01)00023-0
https://doi.org/10.1016/S0370-1573(01)00023-0
https://doi.org/10.1016/S0370-1573(01)00023-0
https://doi.org/10.1103/PhysRev.8.97
https://doi.org/10.1103/PhysRev.8.97
https://doi.org/10.1103/PhysRev.8.97
https://doi.org/10.1103/PhysRev.8.97
https://doi.org/10.2478/BF02476424
https://doi.org/10.2478/BF02476424
https://doi.org/10.2478/BF02476424
https://doi.org/10.2478/BF02476424



