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Manipulation of Cooper pair entanglement in hybrid topological Josephson junctions
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In this work we investigate the supercurrent in a hybrid topological Josephson junction consisting of two
planes of topological insulator (TI) in a specific configuration, which allows both local (LAR) and crossed (CAR)
Andreev processes at the interfaces with two conventional s-wave superconductors. We describe the effects of
gate voltage and magnetic flux controls applied to the edge states of each TI. In particular, we demonstrate that
the voltage gating allows the manipulation of the entaglement symmetry of nonlocal Cooper pairs associated
to the CAR process. We establish a connection between the Josephson current-phase relationship of the system
and the action of the two external fields, finding that they selectively modify the LAR or the CAR contributions.
Remarkably, we find that the critical current of the junction takes a very simple form which reflects the change in
the symmetry occurred to the entangled state and allows to determine the microscopic parameters of the junction.
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I. INTRODUCTION

Quantum mechanics may revolutionize the way we encode,
transmit and elaborate the information. A crucial element is
the capability to generate and manipulate entangled states
[1–3]. First successful steps has been performed on photons
[4–7]. To deal with quantum technology and the development
of a quantum computer, though, one needs to bring those capa-
bilities in the solid-state platform to afford the embeddability
and scalability issues [8–15]. In Refs. [16–28] 2D topological
insulators (TIs) has been put forward for the production and
detection of spin-entangled singlet Cooper pairs originating in
s-wave superconductors. 2D TIs are materials characterized
by edge state modes with helical nature (spin-momentum
locking), i.e., the two spin species of the edge modes prop-
agate in opposite directions [29,30]. Furthermore, the edge
states are topologically protected ensuring robustness against
perturbations with very long (�1 μm) decoherence lengths
[17,31–33]. These properties make TIs promising platforms
for the manipulation of spin-entangled electrons in solid-state
systems.

In this paper we demonstrate that combining s-wave su-
perconductivity with the helical properties of 2D TIs [34], the
nonlocal manipulation of spin-entangled states by means of
local gating can be done. The proposed setup [see Fig. 1(b)]
is composed of two parallel 2D TIs properly connected to two
superconducting electrodes, and comprises electrical gates for
the manipulation. We calculate analytically the current-phase
relationship (CPR) of the Josephson current making use of
the scattering matrix approach and we identify the various
local and nonlocal scattering mechanisms. In particular, we
show how the different external potentials selectively operate
over the local and nonlocal components. We demonstrate that
the application of gates affects the symmetry of the nonlocal
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entangled states (from singlet to triplet) which arise from
crossed Andreev reflection between the two edges. This en-
tanglement symmetry manipulation does not affect the pu-
rity of the entangled state but directly impact the Josephson
coupling due to the intrinsic singlet nature of s-wave super-
conducting leads. We find that the Josephson critical current,
remarkably, allows a direct quantification of the entanglement
manipulation in the structure. We fully interpret the described
phenomenology in terms of the multiple Andreev processes
which mediate the Josephson coupling in the structure.

The paper is organized as follows. In Sec. II we discuss
the setup of the Josephson nanojunction done with topological
insulators, and we clarify why nonlocal entanglement may
be realized and how the external potentials may be used to
manipulate over the system. In Sec. III we briefly discuss
how the computation in the scattering matrix formalism is
done introducing the concept of electron losses at the TI-
superconductor interfaces (all the details are reported in Ap-
pendices). In Sec. IV we discuss euristically how external
potentials affect the entanglement symmetry of the Cooper
pairs in the junction, showing a simple way to interpret the
complex behavior of the Josephson current. In Sec. V we
present our analytical and numerical results for the CPR and
for the critical current, discussing with care the interpretation
in terms of multiple Andreev reflection processes in some
notable limits. Finally, we discuss the experimental feasibility
of the proposal in the Sec. VI.

II. THE SETUP

In a Josephson system with ideal interfaces and rigid
boundary conditions the phase difference φ = φR − φL be-
tween the two superconductors induces a stationary Josephson
current. Microscopically it originates from Andreev reflection
processes that describe the transfer of Cooper pairs (CPs)
at the interfaces between the superconductors and the weak
link. In a single 2D TI sandwiched between two conventional
s-wave superconductors [namely, the S-TI-S junction depicted
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FIG. 1. (a) Standard S-T I-S junction: SL/R superconductors
(gray) and the TI (yellow). The arrowed blue (red) solid lines
represent the 1D helical edge states with spin ↑ (↓). At interface
with SR, two example of emission/absorption of CPs due to LARs.
The impossibility of a CAR process where, putatively, ↑-h in the
lower-edge is Andreev reflected in a ↓-e is represented at at SL

interface with a cross. (b) Proposed double TI junction—3D scheme.
It consists of an heterostructure (say CdTe-HgTe) grown along the
z axis resulting in two layers of TIs. Edge modes running in the
backside part of the device here are not represented. On the frontal
side, in the x-z plane of the scheme, are depicted two CAR processes
where CP are nonlocally splitted. The application of the V and �

field due to the presence of side gates and the induced magnetic
flux. Such a fields act in terms of the unitary operators Uu

�(θ�) and
U �

V (θV ) (see text) on the upper and lower edges, respectively. Other
configurations of local fields can be considered and in Appendix D it
is indeed shown they are fully equivalent.

in Fig. 1(a)], CPs can only be injected or absorbed locally
on a specific edge. Indeed, while the helical nature of the TI
edge modes allows for local Andreev reflections (LARs) at
the boundaries with the superconductors [20], i.e., an electron
(hole) propagating through a helical mode and impinging onto
a superconductor is reflected as a hole (electron) with opposite
spin in the other helical mode on the same edge [see right side
of Fig. 1(a)], it prohibits crossed Andreev reflections (CARs)
[35,36], i.e., an electron (hole) propagating through a helical
mode impinging onto a superconductor cannot be reflected as
a hole (electron) with opposite spin in the other helical mode
on the other edge [see left side of Fig. 1(a)]. To overcome this
limitation one needs to consider a double TI junction [16].
Specifically we focus on the architecture depicted in Fig. 1(b)

where a Josephson junction is obtained by sandwiching two
planes of 2D TIs in between two s-wave superconductors.
This system allows for CAR processes if the distance W
between the two TI planes is comparable with the coherence
length ξ , e.g., choosing Al as a superconducting material
ξ ≈ 100 nm. Moreover, the properties of the edge modes
can be tuned through external voltage gate and magnetic flux
controls which mimics the presence of “local” (i.e., which acts
differently on the upper and lower edge modes) time reversal
and time reversal breaking fields, respectively [see Fig. 1(b)].

Specifically the first consists in gate electrodes placed in
the vicinity of the edges modes [see Fig. 1(b)] so to electro-
statically affect the dynamical phase of the carriers [37] by
assigning to particles the same phase factor θV = 2eV L/h̄vF

independently of their propagation direction and spin (with
vF the Fermi velocity). The second instead consists in the
application of a moderate, uniform magnetic field B, which by
Doppler shift effect [38,39] acts on the system by assigning a
phase factor θ� = 4π�/�0 to spin-up electrons and −θ� to
spin-down electrons (with �0 the magnetic flux quantum and
� = ByW L the magnetic flux in the junction).

The way we implement both the fields ensures their dif-
ferential action among the upper and lower edges of the TIs
such that they can be effectively described, in the spin space,
in terms of local unitary operators:

U �
V (θV ) = ei θV 1/2, (1)

Uu
�(θ�) = ei θ�σ ·n̂/2, (2)

with n̂ the natural spin-quantization axis of both the TIs
[40,41] and with σ the Pauli matrix vector. In Eqs. (1) and (2)
the labels u and � indicate the action of the fields on the upper
and lower edge, respectively; other configurations, though, are
fully equivalent as discussed in Appendix D.

III. MODEL

Following the scattering approach [42–45], the scattering
matrix of the Andreev processes occurring on the left L
(right R) TI-S interface, in the u-� space, can be written as
[46,47] (|	L(R)| i|XL(R)|

i|XL(R)| |	L(R)|
)

eiφL(R) , (3)

with 	L(R) and XL(R) representing, respectively, the amplitude
for the LAR and CAR events (these terms being related by the
unitarity conditions |	L(R)|2 + |XL(R)|2 = 1). In other words,
the Andreev reflection is given by the superposition of LAR
and CAR processes. Notice that we neglected the presence
of the edge modes running in the backside edges (i.e., along
the y direction) of the device of Fig. 1(b), which in turn
represent an alternative coherent path between the two super-
conducting leads. Anyway, one can nullify their contribution
to the Josephson current by simply suppressing their transport
coherence. This can be obtained assuming that the size of the
TI in the y direction is much larger than the coherence length
�φ or having intentionally broken superconducting coherence
introducing a dephasing source along those edges [48]. In
such case they no longer contribute coherently to the transport
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even if they still represent available channels for ordinary
reflected particles at interfaces. Such ordinary reflections,
involving the backside modes, contribute by decreasing the
supercurrent. This can be described by introducing an effec-
tive loss parameter η ∈ [0, 1] where η = 0 represents lossless
regime. When this loss mechanism is present, to describe
the dephasing along the backside modes, we calculate the
current by averaging with respect the dephasing angles—see
Appendix C for details.

IV. LOCAL FIELDS SELECTIVE ACTION

The V field and � field defined before and, respectively,
associated to the angles θV and θ�, operate independently
and selectively on the local and nonlocal components of
the Josephson current [49]. Before calculating explicitly the
Josephson current in the model, a preliminary evidence of
this fact is obtained via an heuristic argument applied to the
simplified scenario where LARs are absent (i.e., 	L(R) = 0).
Under this circumstance the nonlocal emission of a CP from
a superconducting electrode, say SL, results in the formation
of a spin-entangled CP state, which arises from two superim-
posed CAR processes. In the first one, a spin-↓ hole propagat-
ing in the lower edge gets reflected into an spin-↑ electron
in the upper edge, while in the second one, a spin-↓ hole
propagating in the upper edge gets reflected into an spin-↑
electron in the lower edge [see Fig. 1(b)]. Such spin-entangled
state could be represented as |C〉 = (|e↑

u h↓
� 〉 − |h↓

u e↑
� 〉)/

√
2,

where the minus sign recall the fact that the CP is in a
spin-singlet state as required by the s-wave nature of the su-
perconducting leads. The action of UV (θV ) and U�(θ�) on |C〉
results in the state: ei θ�

2 (e−iθV /2|e↑
u h↓

� 〉 − e+iθV /2|h↓
u e↑

� 〉)/
√

2.
This expression shows that while the � field introduces
only a global phase, that can be reabsorbed with a gauge

transformation, the V field modifies the entanglement symme-
try of the nonlocal CP state |C〉 by introducing a relative phase
factor exp(i θV ), without altering its entanglement content. In
particular, if θV = π the nonlocal spin-singlet CP changes into
a spin-triplet one, thus giving rise to a mismatch with respect
to the intrinsic CPs singlet symmetry of the electrodes, thus
hindering the Josephson coupling. In view of this fact, in the
absence of LAR processes, one hence expects the Josephson
current to depend upon the quantity C = |〈C|UV (θV )|C〉| =
| cos(θV /2)|, which measures the degree of change of the
symmetry of the entangled CP. This emerges clearly from
the study of the critical current, especially in the scenario
where multiple Andreev reflections can be neglected (single-
shot limit)—see Eq. (9) below. The interplay between CAR
and LAR and the possibility of multiple reflections, on the
contrary, tend to reduce the visibility of the effect: Still, as we
shall show in the following, in this case the Josephson current
keeps record of the phenomenon in a way that ultimately
allows us to discriminating between CAR and LAR processes.

V. JOSEPHSON CURRENT

To set the above observations on firm ground in the remain-
ing of the paper we calculate the Josephson current flowing
through the system using the scattering formalism [46,47,50]
in the short junction limit (i.e., when L 	 ξ ), with ideal
interfaces and rigid boundary conditions, i.e., with the order
parameter �(x) = �0eiφLθ (−x−L/2)+iφRθ (x−L/2) and �(x) = 0
for |x| � L

2 , where θ (x) is the Heaviside function.
The current can be calculated as I = − 2e

h̄

∑
p

tanh(εp/2kBT ) dεp

dφ
, where εp are Andreev bound state energies

obtained solving the self-consistent secular problem [50]. In
case of no losses (η = 0) we find the following analytical
expression of the CPR at finite temperature T

J (φ) = 4
e�0

h̄

∑
σ=±

(
sin

[
θ�

4
+ φ

2
+ σ tan−1

(√
1 − 

1 + 

)]
tanh

{
�0

2kBT
cos

[
θ�

4
+ φ

2
+ σ tan−1

(√
1 − 

1 + 

)]})
, (4)

with

 = cos (θV /2)|XL||XR| + cos (θ�/2)|	L||	R|. (5)

First, we note that θ�/4 in Eq. (5) acts as a global phase
which shifts the CPR and manifests itself as an anomalous
current at φ = 0 when TRS is broken [51–53]. For simplicity,
in what follows we will limit ourselves to consider the fully
symmetric case |XL| = |XR| = |X | and |	L| = |	R| = |	| =√

1 − |X |2.
In Figs. 2(a) and 2(b) we plot separately the contributions

to the CPR arising from only CAR (|X |2 = 1 for top panels)
and only LAR processes (|X |2 = 0 for bottom panels), for
various choices of parameters. Solid curves refer to the CPR
of Eq. (4), while dashed curves are numerical results obtained
in the presence of backside edges losses (η = 0.2) [54]. First,
we note that the curves resemble the CPR of a weak-link in
the presence of spin-orbit and magnetic fields, as we may

indeed naively expect [51,55–60]. In Fig. 2(a) we fix θ� = 0
and consider two values of the V field, namely, θV = 0 (black
curves) and θV = π (red curves), while in Fig. 2(b) we fix
θSO = 0 and consider two values of � field, namely, θ� = 0
(black curves) and θ� = π (red curves).

Figures 2(a) and 2(b) allow us to appreciate the selective
action of the � and V fields on the CAR and LAR contribu-
tions to the supercurrent by their effect on the shape of the
CPR. In particular, in the case of CAR processes, the shape
of the CPR depends on the value of θV [Fig. 2(a), top panel],
independently of the value of θ�, which only induces a global
phase-shift [Fig. 2(b), top panel]. Indeed in Fig. 2(a), where
we fix for simplicity θ� = 0, black (θV = 0) and red (θV = π )
curves have different shapes in the top panel (|X |2 = 1 only
CAR) differently to the bottom panel (|X |2 = 0 only LAR)
where the black and red curves are superposed having exactly
the same shape. Conversely, as shown in Fig. 2(b), the CPR
shape is affected by the value of θ� (black lines θ� = 0
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(a)

(b)

FIG. 2. CPR. The Josephson current vs. the phase difference φ

expressed in units of 4�0
e
h̄ at fixed temperature kBT/�0 = 10−3.

The curves in panel (a) have been obtained fixing the value of the
magnetic field (θ� = 0), for different values of the V field (θV = 0
for the solid black line and θV = π for the solid red line). Panel (b)
shows the opposite situation in which the V field is fixed (θV = 0)
and θ� is varied (θ� = 0 for the solid black line and θ� = π for
the solid red line). The respective black/red dashed curves, depicting
the case with η = 0.2, have been obtained numerically. For both the
realizations we have considered the two extremal cases, i.e., only
CAR |XL(R)|2 = 1 (upper panels) and only LAR |XL(R)|2 = 0 (lower
panels).

and red ones θ� = π ) when only LAR processes are present
(bottom panel) but not affected, forgetting an unessential
global phase shifting, in case of only CAR processes. For
other values of θV the CPR shape is changed, in comparison
to the figure θV = 0, but the shape changes with θ� only when
LAR contribution are indeed present.

We can conclude that, although in general the Josephson
current contains both CAR and LAR contributions, any varia-
tion of the shape of the CPR due to the action of the V field is
a direct indication of the presence of CAR processes, (i.e., of
nonlocal injection of spin-singlet CPs).

The presence of losses (η 
= 0) simply leads to a smoothing
of the CPR shape, similarly to the effect of a finite temperature
(see Sec. V C), but not affect the previous discussion.

A. Single-shot limit

At this point is interesting to investigate the behavior of
the Josephson current in the limit of high losses where η ≈ 1,
i.e., looking at the lowest order in (1 − η). In that regime
few CPs tunnel into the junction (the Josephson current is
dramatically reduced). Different orders in the power (1 − η)
corresponds to bounces of Cooper pairs at the interfaces
with the superconductors, i.e., multiple Andreev processes. In
particular one expects that the lowest order of the Josephson
current corresponds to a term proportional to (1 − η)4 which
describes a process where a Cooper pair is emitted on one
side and absorbed on the other side and viceversa [61]. This
corresponds to the propagation of the single Cooper pair along
the junction (single-shot limit). Higher orders (1 − η)α with
α > 4 corresponds to multiple Andreev processes where the
emitted Cooper pair is at least reflected back one time.

We present below the analytical results of the Josephson
current in the single-shot limit following the scheme presented
in the previous section. More specifically, we considered two
scenarios [the same as those represented in Figs. 2(a) and
2(b)]: in the first case we just account for the local application
of the V field along one of the edge states of the TI (hence
setting θ� = 0); while in the second case the � field is applied
by fixing θV = 0. Again, per each scenario, we consider the
extremal situations in which only CAR (|XL| = |XR| = |X | =
1) or only LAR (|X | = 0) processes are involved at both the
interfaces, to have only nonlocal or local CP-splitted states
inside the junction.

Case (a): application of V field (θ� = 0)
CAR :

J̄ (φ) = e

h̄
�0 tanh

(
�0

2T

)
cos

(
θV

2

)
sin (φ)(1 − η)4

+ O[(1 − η)6], (6a)

LAR :

J̄ (φ) = e

h̄
�0 tanh

(
�0

2T

)
sin (φ)(1 − η)4

+ O[(1 − η)6]. (6b)

Case (b): application of � field (θV = 0)
CAR :

J̄ (φ) = e

h̄
�0 tanh

(
�0

2T

)
sin

(
φ + θ�

2

)
(1 − η)4

+ O[(1 − η)6], (7a)

LAR :

J̄ (φ) = e

h̄
�0 tanh

(
�0

2T

)[
sin (φ) + sin

(
φ − θ�

2

)]
(1 − η)4

+ O[(1 − η)6]. (7b)

Here J̄ (φ) represents the CPR averaged with respect the
dephasing angles acquired along the backside edges of the
model—see Appendix C. It is important to note that Eqs. (6)
and (7) are fully in agreement with the behaviors of the
Josephson current as described by the results reported in

064514-4



MANIPULATION OF COOPER PAIR ENTANGLEMENT IN … PHYSICAL REVIEW B 99, 064514 (2019)

Fig. 2. In particular, in Case (a), the V field just affects the
CAR component of the CPR Eq. (6a) while plays no role when
only LAR processes are involved Eq. (6b). In Case (b), the ac-
tion of the � field just operates as a global shifting on the CAR
component of the CPR Eq. (7a), while it affects the shape of
the supercurrent in case only LAR processes occur at both the
interfaces Eq. (7b). It is worth noting that the modification of
the shape of the CPR in the cases related to Eqs. (6a) and (7b),
respectively, have two different origins. More specifically, in
the case of Eq. (7b), as a consequence of the presence on only
LAR processes the two CPs are separately injected in the two
different TI planes. The resulting Josephson current takes the
form of a sum of two independent currents: one concerning
the edge of the TI interested by the application of the � field
(which is shifted by an amount of θ�/2), and the other, that
instead refers to the free edge, which takes the usual form
of sin (φ). On the contrary, for only CAR the modification
of the profile of the CPR of Eq. (6a), which is ruled by the
factor cos (θ�/2), exactly reflects the action the V field, which
operates on the nonlocal states affecting their entanglement
symmetry as discussed in Sec. IV. For the only CAR case this
is even clearer by looking at the critical current of the system
as we will see in the next section.

B. Critical current

Let us now consider the behavior of the critical current,
defined as Jc = maxφ {|J (φ)|}, which is plotted in the main
panel of Fig. 3 as a function of θV for different sets of
parameters. Remarkably, we find that the critical current can
be written in the following compact form:

Jc = α(η, T )|| + β(η, T ), (8)

where , defined in Eq. (5), depends only on the Andreev
reflection amplitudes XL and XR, and on the fields strengths
θ� and θV , while the prefactor α and the offset β depend only
on the temperature T and on the losses η.

The main panel of Fig. 3 shows how the formula of Eq. (8)
(white dotted lines) exactly fits the numerical results of the
critical current (black and red lines) for an arbitrary choice of
the CAR/LAR amplitudes and of the manipulation parame-
ters. We first consider the ideal case of no losses η = 0 and
T = 0 for which α = β = 1. The different lines corresponds
to different cases: only CAR |X |2 = 1 (black lines) and the
intermediate case with CARs and LARs both present |X |2 =
0.6 (red lines). We show with solid lines the cases θ� = 0 and
with dashed lines θ� = π/4.

We see, for only CAR, that the minimum of Jc occurs at
θV = π and θ� does not affect Jc (solid and dashed curves
coincides), in full agreement with the discussion done before
on the CPR. Red lines shows that for the case where both CAR
and LAR contributions are present the Jc is still described by
the general formula for any value of θ�.

Furthermore, we can show the general validity of this
formula for finite values of η and T . In the inset of Fig. 3
we plot the quantity (JC − β )/α for different values of the
temperatures and losses (see label). All the points perfectly
match the corresponding || curve (thin dashed lines) as
predicted by Eq. (8).

FIG. 3. Critical current in units of 4�0
e
h̄ as a function of θV . In

the main box, different set of black (|X |2 = 1) and red (|X |2 = 0.6)
curves have been obtained numerically for fixed T = 0 and η = 0.
For each |X |2, plots are shown in case of θ� = 0 (dashed lines) and
θ� = π

4 (solid lines), respectively. We superimposed (white dotted
line) the analytical behavior as predicted by Eq. (8). The inset in
the upper-right corner depicts the rescaled critical current (namely
(JC − β )/α), obtained numerically for fixed θ� = 0 in three different
conditions of η and T (different point shape) for |X |2 = 1 (black
color) and |X |2 = 0.6 (red color). All the data, independently of
temperature and losses, perfectly match the curve || (dashed lines),
confirming the universality character of the shape of the critical
current upon different external parameters.

Hereafter we claim that the dependence on θV of Jc such
as the one shown by Eq. (8) reflects the entanglement sym-
metry manipulation due to the action of the V field. We first
notice that the critical current, resulting from Andreev bound
states within the junction, can be seen as consisting of the
sum of contributions arising from multiple Andreev reflection
processes. In the only-CAR regime one can identify, for any
values of η, two classes of processes: the ones corresponding
to Cooper pairs which traverse the junction back and forth
an even number of times and the processes which traverse
the junction an odd number of times. For the even class, the
singlet symmetry is not modified by the effect of the V field,
since the backward time-reversed propagation cancels the V
field induced phase taken during the forward propagation. The
spin entanglement symmetry is instead changed only for the
odd class processes. This suggests that, at zero temperature
and without losses (η = 0), the odd class processes contribute
to the critical current with the term, introduced before, C =
|〈C|UV (θV )|C〉| = | cos(θV /2)| in units of J0 = 4�0

e
h̄ . At the

same time the even class is independent of θV and contributes
to the current with the constant value J0 [this give rise to
the offset β in Eq. (8)]. As a result, the critical current can
be written as Jc = J0(1 + C). In particular, at θV = π the
entanglement symmetry of the nonlocal electronic state is
changed into triplet in half of the processes (the odd ones) and
is left singlet in the other half (the even ones). As a result,
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FIG. 4. Numerical plots of the amplitude α (red line) and the
offset β (blue line) of the critical current of Eq. (8) in case of no
losses (η = 0), expressed in units of 4�0

e
h̄ as functions of the thermal

energy kBT (in units of �0). Note in the limits of kBT 	 �0 and
kBT � �0 we recover the analytical results of Eq. (10).

the nonlocal electronic state is an equal weighted mixture
of singlet and triplet states. This interpretation is actually
corroborated by the fact that when only the lowest order
processes contribute, i.e., in the single-shot limit occurring
when η � 1, the critical current in the leading term of (1 − η)
takes the form

Jc = e�0

h̄
| cos (θV /2)|(1 − η)4 + O[(1 − η)6], (9)

which is equal to zero in when θV = π . Such a result shows
that in the single-shot regime the action of the local V field
returns exactly the expected entanglement manipulation sig-
nature C. Furthermore, Eq. (8) clarifies that the critical current
allows one to access experimentally the product |XR||XL|,
which determines the relative weight between the LAR and
CAR processes. Ultimately, this can be seen as a consequence
of the selective action of the fields on the local and nonlocal
components of the current (second and first term in ).

C. Effect of the temperature T and η

In this section we investigate in more detail the effect of the
temperature T and losses η on the critical current. As pointed
out in Sec. V B, the general expression of the critical current
of the system takes the compact form of Eq. (8) where the
amplitude α and the offset β just depend on the temperature
T and on the losses η. In Sec. V A we calculate the Josephson
current at the lowest order in (1 − η) for any temperature; see
Eqs. (6) and (7). Jc can be also calculated analytically in the
regime of no losses (η = 0) in the limit cases of low (kBT 	
�0) and high (kBT � �0) temperature. Indeed, we find

Jc � J0(1 + |(θV , θ�)|) for kBT 	 �0 (10a)

Jc � J0
�0

2kBT
|(θV , θ�)| for kBT � �0, (10b)

which clearly shows the fundamental dependence of the crit-
ical current on the  function of Eq. (5). In particular, in
the limit of low temperature, Eq. (10a), we have α/J0 =
β/J0 = 1, while for high temperatures, Eq. (10a), we have

FIG. 5. Josephson CPR expressed in units of 4�0
e
h̄ . For the sake

of simplicity, symmetric conditions have been considered at left/right
boundaries for the splitting amplitudes: |XL| = |XR| = |X |. All the
curves have been obtained for the following choice of parameters:
|X |2 = 1/2, θ� = 0, θV = π/2. Solid lines correspond to the ideal
case of no losses, i.e., η = 0, with kBT = 0 (dark-blue solid line) and
kBT/�0 = 1/10 (light-blue solid line). Dashed lines depict the case
of finite losses, namely η = 1/10, for the same values of temperature
as before, i.e., kBT = 0 (red dashed line) and kBT = 1/10 (magenta
dashed line). The result of finite losses η is to smooth out the shape of
the Josephson current similarly to the effect of a finite temperature.

α/J0 = �0
2kBT and β = 0. The numerical plot of α (red line)

and β (blue line) as functions of kBT , in the case η = 0, is
shown in Fig. 4.

We note that by increasing the temperature, the critical
current is depressed being both α and β decreasing (β gets
suppressed much faster than α). The behavior of the offset β

as a function of temperature is consistent with the interpreta-
tion, given in Sec. V B, that it corresponds to the contribution
to the critical current of processes where CPs bounce back
and forth along the junction, i.e., multiple Andreev reflections.
Indeed, increasing the temperature we expect that multiple
Andreev processes are strongly suppressed in comparison to
the single transmission of a Cooper pair which will dominate
the Josephson current contribution in the high temperature
regime. This is why, in the high-temperature limit, the critical
current is directly proportional to the  function which effec-
tively describes the manipulation induced by the local fields
over a single CP transfer.

We discussed at the beginning of Sec. V that the presence
of losses η only smoothens the shape of the CPR. In Fig. 5
we compare the CPR in the case of finite η (dashed lines)
with the case of no-losses (solid lines) for two different
temperatures T = 0 and kBT/�0 = 0.1. One can easily see
how the smoothening induced by the losses described by η are
similar to the smoothening induced by the temperature effects.

VI. CONCLUSIONS

In this paper we have proposed a system that makes use
of helical edge states of a 2D topological insulator (TI),
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in a specific configuration, to spatially separate the two
electrons composing a Cooper pair of an s-wave supercon-
ductor. Such spatial separation can described, in the scattering
approach, as a crossed Andreev reflection (CAR) process.
The application of an external gate potential, which do not
break time-reversal symmetry, enables the manipulation of the
entanglement symmetry of the CAR state preserving its purity.
We have also shown that a time-reversal breaking field can
be used to tune the strength of the local Andreev reflection
(LAR) processes without affecting the previously discussed
entanglement manipulation. In particular, we have shown,
analytically and numerically, that a measurable signature of
the manipulation is provided by the Josephson current. We
have derived the analytical formula for the current-phase-
relationship in the structure as a function of the external fields,
for any temperature in the absence of losses η = 0. In this
configuration, the critical current can be directly connected to
the relative weights between LAR and CAR processes, thus
representing a simple way to identify the existence of non-
local processes. Finally, we have demonstrated, by carefully
discussing the multiple Andreev reflections process occurring
in the structure, the origin and the universality (independently
of temperature or losses) of the obtained results. In essence,
the Josephson current phenomenology is naturally associated
to the entanglement symmetry evolution in the junction.
We think that the proposed structure, can be realized with
present technology of the hybrid topological nanojunctions,
thus opening a new route toward entanglement manipulation
in electronic solid-state systems.

We conclude by estimating the strength of the potential
voltage necessary to manipulate the entanglement symmetry
from singlet to triplet. In this case, to have θV ≈ π—with
a junction length of L ≈ 600 nm [33] and a TI Fermi ve-
locity of vF = 105 m/s—the gate voltage can be estimated
as V = 1.7 mV. A similar estimation shows that, using the
Doppler shift, the magnetic field strength necessary to perform
a manipulation of the angle θ� ≈ π—able to suppress the
LAR component—is 8 mT, which is not too prohibitive to not
break the topological protection of the TI.
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APPENDIX A: EFFECTIVE HAMILTONIAN

The helical edge states at boundaries of each TI of the sys-
tem are described by a one-dimensional Dirac Hamiltonian,

Hk = h̄vF

∑
ζ=±

∫
dx[ψ†

ζk↓(ζ i∂x − μ)ψζk↓

−ψ
†
ζk↑(ζ i∂x + μ)ψζk↑], (A1)

where k = u, � labels the upper and lower TI plane, ψ↑ (ψ↓)
is the field operator of ↑ (↓) electrons, μ is the chemical
potential, and vF is the propagation Fermi velocity. The
index ζ is associated to the front-side (ζ = +) or backside
(ζ = −) edges; see Fig. 1(b) of the main text. For the sake
of simplicity we considered the same spin-quantization axis
for both the TI planes edges along the n̂ direction [40,41]. In
the case this condition is not realized one need to generalize
our approach to the case of not collinear spin quantization
axis. In this case some of the simple analytical results are
not anymore valid, but numerically all the calculations can
be repeated. Nonetheless, the main results of the paper, such
as the selective action of the V field over the entanglement
symmetry, are still valid since they are based purely on general
symmetry arguments. Furthermore, not collinear natural spin
quantization axis would potentially result also in a reduction
of the CAR injection in favor of the LAR processes.

APPENDIX B: GATE POTENTIAL

Let us consider the Schrödinger equation for the topologi-
cal effective edge Hamiltonian(−ih̄vF ∂x + eV (x) − εF 0

0 ih̄vF ∂x + eV (x) − εF

)(
u(x)
d (x)

)

= E

(
u(x)
d (x)

)
, (B1)

in which we considered the application of a constant gate
potential

V (x) =
{

0 for |x| > L
2

V for |x| � L
2

.

In in Eq. (B1) we expressed the wave function � = (u(x)
d (x)) in

spinorial notation for the spin-up and spin-down components
(along the n̂ natural spin-quantization axis), while εF and vF

represent the Fermi energy and the Fermi velocity, respec-
tively. The general form of the solution is the following:

�(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

(
1
0

)
eikx + B

(
0
1

)
e−ikx for x < − L

2 (I )

C

(
1
0

)
eik′x + D

(
0
1

)
e−ik′x for |x| � L

2 (II )

F

(
1
0

)
eikx + G

(
0
1

)
e−ikx for x > L

2 (III )

,

where, in the limit of low energies (E 	 εF ), k ≈ kF and
k′ ≈ kF − eV

h̄vF
. To obtain the relation between the coefficients

A,B, . . . ,G, one uses the continuity requirements for the wave
function � and the current,

lim
δ→0

�(x)
∣∣−L/2+δ

−L/2−δ
= 0, lim

δ→0
�(x)

∣∣L/2+δ

L/2−δ
= 0,

lim
δ→0

Ĵ�(x)
∣∣−L/2+δ

−L/2−δ
= 0 lim

δ→0
Ĵ�(x)

∣∣L/2+δ

L/2−δ
= 0, (B2)

where Ĵ ≡ ∂Ĥ
∂ p̂ = vF σz is the current operator for the hamil-

tonian defined in Eq. (A1) with σz the z-Pauli matrix. By
following standard procedures [62] one can calculate the
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transmission t and reflection r amplitudes through the region
II, in the following cases:

A particle incident from the left (region I), i.e., A = 1,
G = 0:

tI→III = F

A
= e−iL eV

h̄vF ; rI→I = B

A
= 0. (B3)

A particle incident from the right (region III), i.e., A = 0,
G = 1:

tIII→I = B

G
= e−iL eV

h̄vF ; rIII→III = A

G
= 0. (B4)

The only contribution of V is to generate a dynamical phase
in the electron propagation. From Eqs. (B3) and (B4) it is
clear that the constant potential barrier acts by assigning
to electrons the same phase factor independently from their
propagation direction and spin, clarifying why the unitary
operator of Eq. (1) takes the form UV (θV ) = ei θV 1/2, with 1

the identity operator in the spin space. In particular, in this
case θV = 2eV L/(h̄vF ). This phase indeed coincides with the
dynamical phase acquired by an electron propagating along
the edge under the electrical potential V for a time of flight
t = L/vF [37].

APPENDIX C: THE SCHEME

Here we discuss in detail the model we use in the main text.
The full scheme of the system is sketched in Fig. 6 (details
in the caption). Following the arrangement of the local fields
discussed in the main text, here we considered the application
of the V field on the internal edge of the lower TI plane
together with the application of the � field on the internal
edge of the upper one [Fig. 6 (later we will discuss how to go
beyond to this semplification). The internal (external) edges
corresponds to the frontside (backside) edges of setup shown
in Fig. 1(b) of the main text. The model consists of four
beam-splitters (BSs) which describe effectively the contact
interfaces between the superconductors and the TI planes.
This is needed—also in case of ideal interfaces—to take into
account those scattering processes of particles which involve
both the (internal and external) edges of a same TI plane by
means of ordinary reflection processes. Intriguingly those pro-
cesses may be also mediated by multiple Andreev reflections.
Indeed, for example, an incoming electron toward the SC can
emerge an another electron with the same spin on the opposite

counterpropagating edge of the same TI plane, after an even
number of perfect Andreev reflections (see the inset in Fig. 6)
independently of their local or nonlocal nature. Anyway, we
will see in a moment that if the edge modes running in
the backside part of the device (hereinafter referred to as
“external edges,” namely, the dashed lines depicted in Fig. 6)
are long enough with respect to �φ or properly dephased with
a voltage probe their only action is only to suppress the critical
current not affecting the general conclusions of the paper.
We modeled this mechanism by introducing a loss parameter
η j ∈ [0, 1] with j = 1, 2, 3, 4, which describes the reflectance
probability of the BS at each interface, such that

η j = |r j |2 = 1 − |t j |2, (C1)

where r j and t j represent, respectively, the reflectance and
transmittance amplitudes of the jth BS. In particular, if η j = 0
there are no losses, namely the BS is perfectly transmissive
and no electrons are reflected from internal to external modes
of Fig. 6. Conversely if η j = 1 the BS is perfectly reflective
and all the electrons reaching the superconductive contact
from the internal edges will be reflected onto the external
modes (and vice versa), no Andreev reflection are possible
in that case and Josephson current is null. For the sake of
simplicity, in our calculation, we considered all the beam
splitters to be characterized by the same reflectance amplitude,
such that η j = η ∀ j = 1, 2, 3, 4 but all the results given can be
easily generalized to a less symmetric case.

Following the prescription presented in Ref. [47], to derive
the Josephson current of the model, we have to calculate the
Andreev bound state energies εp, solving the following self-
consistent secular problem:

Det[ei arccos (εp/�0 )1 − sAsN ] = 0. (C2)

Here sA and sN are, respectively, the Andreev scattering reflec-
tion matrix and the scattering matrix describing the weak-link
in the short-junction limit with ideal interfaces, which in turn
(according the notation in Ref. [47]) take the following form:

sN =
(

s0 ∅
∅ s∗

0

)
; sA =

(∅ rA

r∗
A ∅

)
. (C3)

In Eq. (C3), the scattering matrix component r∗
A, which relates

the electrons impinging the SCs to the respective Andreev-
reflected holes, takes the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b↓
uxL

b↑
uiL

b↑
liL

b↓
lxL

b↑
uxR

b↓
uiR

b↓
liR

b↑
lxR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

|	Lx| 0 0 i|XLx|
0 |	Li| i|XLi| 0

0 i|XLi| |	Li| 0

i|XLx| 0 0 |	Lx|

⎞
⎟⎟⎟⎟⎠eiφL ∅

∅

⎛
⎜⎜⎜⎜⎝

|	Rx| 0 0 i|XRx|
0 |	Ri| i|XRi| 0

0 i|XRi| |	Ri| 0

i|XRx| 0 0 |	Rx|

⎞
⎟⎟⎟⎟⎠eiφR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

r∗
A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c↑
uxL

c↓
uiL

c↓
liL

c↑
lxL

c↓
uxR

c↑
uiR

c↑
liR

c↓
lxR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

out

. (C4)

It differs from the Andreev matrix of the main text because of the explicit presence of the edge modes running in the backside
part of the device which add new scattering channels to the final structure (namely, the external edges depicted in Fig. 6 and
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FIG. 6. The full scheme of the system is depicted here by unfolding the 3D model of Fig. 1(b) in the main text, keeping fixed the frontal
side in the z-x plane (cyan area) in between the two superconductors (SL and SR in gray), and tilting the upper TI plane along the z axis and
the lower TI plane in the opposite direction, such that the top of the first TI plane and the bottom of the second one are coplanar. In this
scheme, the edges in the z-x plane (frontal side) are defined as internal and labeled with ui and �i (blue/red solid lines) instead the edge modes
running in the backside are referred to as external channels (blue/red dashed lines), and labeled with ux and �x for the upper and lower TI

plane, respectively. In the model the coherence of the branches is suppressed assuming to insert dephasing angles α1, α2, β1, β2
i.i.d.∼ U[0,2π ] and

averaging over them. As in the main text, we considered the case in which the V field is applied along the �i edge of the lower TI plane and
the � field is applied along the ui edge of the upper TI plane. The white boxes at each interface between the TI planes and the superconductors
depict the beam splitters (BSs) which model the scattering of the particle among the internal and external channels of each TI, respectively.
Notice that, in case the beam splitters are purely transmitting, there is no coupling between the external and internal edges corresponding to
the limit of η = 0 we used in the main text for the analytical derivation of the CPR. In the inset an incoming electron, impinging toward the
left SC, emerges an another electron with the same spin on the opposite counterpropagating edge of the same TI plane, after an even number
of perfect Andreev reflections.

labeled with ux and �x, respectively). For this reason we have to enlarge the set of the splitting parameters, i.e., {	Sn, XSn} as
presented in Eq. (C4), accounting for the local and nonlocal splitting of Cooper pairs on each side of the junction S = L, R, and
along the specific set of internal and external channels n = i, x. One may have noticed, both from the scheme of Fig. 6 and the
structure itself of the scattering matrix of Eq. (C4), that the splitting of CPs along the internal and external edges of the model
are related to independent mechanisms, which are ruled by the set of constrain equations |	Sn|2 + |XSn|2 = 1 for S = L, R and
n = i, x, imposed on the relative strength of the local and nonlocal splitting amplitudes because of unitarity. At microscopical
level this competitive role of LAR versus CAR processes at each interface depends on the strength of the Coulomb interaction
between the edges. Note also that the phase difference in the Josephson junction is defined as φ = φL − φR.

The scattering matrix sN , which describes the weak-link, does not couple electrons and holes, thus it takes a block-diagonal
form in the electron-hole space as shown in Eq. (C3). Specifically, the block-matrix component s0, which relates incoming and
outgoing electrons only, assumes the following structure:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c↑
uxL

c↓
uiL

c↓
liL

c↑
lxL

c↓
uxR

c↑
uiR

c↑
liR

c↓
lxR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

out

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A2

A1 0

0 0

0 0

0 0

0 0

0 A4

A3 0

D1 0

0 D2

0 0

0 0

0 0

0 0

D3 0

0 D4

C1 0

0 C2

0 0

0 0

0 0

0 0

C3 0

0 C4

0 B2

B1 0

0 0

0 0

0 0

0 0

0 B4

B3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

s0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c↓
uxL

c↑
uiL

c↑
liL

c↓
lxL

c↑
uxR

c↓
uiR

c↓
liR

c↑
lxR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in

. (C5)
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In which,

A1 = r1 + t2
1 r2eiα2 e−iθ�/2

1 − r1r2eiα2 e−iθ�/2
; A2 = r1 + t2

1 r2eiα1 eiθ�/2

1 − r1r2eiα1 eiθ�/2
; A3 = r3 + t2

3 r4eiβ2 e−iθV /2

1 − r3r4eiβ2 e−iθV /2
; A4 = r3 + t2

3 r4eiβ1 eiθV /2

1 − r3r4eiβ1 eiθV /2
;

B1 = r1 + t2
2 r1eiα1 eiθ�/2

1 − r1r2eiα1 eiθ�/2
; B2 = r1 + t2

2 r1eiα2 e−iθ�/2

1 − r1r2eiα2 e−iθ�/2
; B3 = r4 + t2

4 r3eiβ1 eiθV /2

1 − r3r4eiβ1 eiθV /2
; B4 = r4 + t2

4 r3eiβ2 e−iθV /2

1 − r3r4eiβ2 e−iθV /2
;

C1 = t1t2eiα2

1 − r1r2eiα2 e−iθ�/2
; C2 = t1t2eiθ�/2

1 − r1r2eiα1 eiθ�/2
; C3 = t3t4e−iθV /2

1 − r3r4eiβ2 e−iθV /2
; C4 = t3t4eiβ1

1 − r3r4eiβ2 eiθV /2
;

D1 = t1t2eiα1

1 − r1r2eiα1 eiθ�/2
; D2 = t1t2e−iθ�/2

1 − r1r2eiα2 e−iθ�/2
; D3 = t3t4eiθV /2

1 − r3r4eiβ1 eiθV /2
; D4 = t3t4eiβ1

1 − r3r4eiβ2 e−iθV /2
. (C6)

A similar relation links the incoming and outgoing holes through s∗
0. As an example of the derivation of the nonnull entries of

Eq. (C5), let us explicit the calculation of the term A1, which relates an incoming electron from the upper-external branch on the
left side (labeled by uxL), with an outgoing electron with the same spin on the internal-upper edge, again at interface with SL

(labeled by uiL):

c↓
uxL → c↓

uiL : A1 = r1 + t1eiα2 r2e−iθ�/2t1 + t1eiα2 · r2e−iθ�/2r1eiα2 · r2e−iθ�/2t1 + · · ·

= r1 + t2
1 r2eiα2 e−iθ�/2

∞∑
n=0

(r2r1eiα2 e−iθ�/2)n

= r1 + t2
1 r2eiα2 e−iθ�/2

1 − r1r2eiα2 e−iθ�/2
. (C7)

Multiple reflections between the different BSs have been
taken into account, as results from the geometrical series
in Eq. (C7). In the previous equation we also introduce the
phases acquired during the evolution along the external edges
labeled as αi and βi. Those phases are introduced to effec-
tively describe the dephasing processes since, in the end, we

average the physical quantities over them (namely αi, βi
i.i.d.∼

U[0,2π]). So, by the set of the previous equations we can
calculate the Josephson current J (φ, θ�, θV , α1, α2, β1, β2)
where the dependence over T and η is implicitly assumed.
The final value of this quantity, in our results is obtained
by the mentioned averaging procedure, i.e., J̄ (φ, θ�, θV ) =

1
(2π )4

∫ 2π

0 dα1dα2dβ1dβ2 J (φ, θ�, θV , α1, α2, β1, β2). In the
main text we show the numerical results for the Josephson
current at finite η and temperature T . In Sec. V A we analyti-
cally derive, with the same method, the Josephson current as
perturbative expansion in (1 − η).

APPENDIX D: CONFIGURATION OF THE FIELDS

The most general scheme of the application of the local
fields along the edge states of the system is depicted in Fig. 7.

SRSL

TI

TIl

u

l

u Φ

Φl

u

FIG. 7. General application of the fields along the edges states of
the system.

We represent four local fields contributions divided among
the different edge states such that each set of helical modes
(belonging to the upper and lower TI plane, respectively) is
interested by one V -type field (which describing the TRS
terms) and one �-type field (describing TRS breaking terms).
Here we labeled each manipulation angle, associated with the
corresponding term, θV n, θ�n with the index n = u, � to indi-
cate the pertinent upper or lower edge (plane) of application.

Within this picture, by following the same procedure em-
ployed in the main text for the calculation of the Joseph-
son current, we obtained—in case of no losses (η = 0)—the
following result:

J (φ) = 4
e�0

h̄

∑
ν=±

(
sin

[
θ̄� + φ

2
+ ν tan−1

(√
1 − 

1 + 

)]
tanh

×
{

�0

2kBT
cos

[
θ̄� + φ

2
+ ν tan−1

(√
1 − 

1 + 

)]})
,

(D1)

which appears with the same functional form already pre-
sented in the main text. In particular, θ̄� = θ�u+θ��

2 is given by
the sum of the two separated � contributions. The quantity θ̄�

affect the CPR with a global phase shifting and one immedi-
ately see that for θ̄� 
= 0 one could find an anomalous current,
i.e., Josephson current at φ = 0. This is consistent with the
fact that in general anomalous current can be generated by
the breaking of TRS. Anyway if the TRS is broken, at local
level, but in an exactly opposite way, such as θ�u = −θ��, the
anomalous current disappear since θ̄� = 0. At the same time
also the function  is generalized:

 = cos

(
�θV

2

)
|XL||XR| + cos

(
�θ�

2

)
|	L||	R|, (D2)
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where we note that the effective action of θV n and θ�n is
given by their differential mode �θV = θVu − θV� and �θV =
θ�u − θ��. So, only the difference between the local action
in the upper and lower edges of both the V and � terms
effectively contributes on the modification of the shape of the
CPR. Intriguingly, the approaches suggested to generate the

fields operate (by construction) on the differential mode which
are the required terms which modify the  of Eq. (D2). In this
way we still preserve the selective action of the two different
fields which operate in a targeted manner on the local and
nonlocal components of the current as discussed in the main
text.
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