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On the basis of the microscopic quasiclassical Eilenberger theory, we analyze the recent angle-resolved
specific heat experiment carried out at low temperature for Sr2RuO4 to identify the superconducting gap
symmetry, comprising either horizontal or vertical line nodes relative to the tetragonal crystal symmetry. Several
characteristics, in particular, the landscape of the in-plane oscillation amplitude A4(B, T ) with a definite sign
for almost the entire B-T plane are best explained by the horizontal line node symmetry, especially when
the multiband and Pauli paramagnetic effects are taken into account. The present analysis of A4(B, T ) with
definite sign points to the presence of an anomalous field region at a lower temperature in the experimental
data, whose origin is investigated. Our theory demonstrates the application and uniqueness of the field-rotating
thermodynamic measurements in uncovering the precise gap structure for target materials.
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I. INTRODUCTION

Sr2RuO4 [1] is a prime candidate of a chiral p-wave super-
conductor [2,3]. Although many experimental and theoretical
studies have been devoted to identifying its pairing symmetry,
which involves its spin structure, i.e., spin triplet or spin
singlet and its orbital or energy gap structure in k space. Both
its spin and orbital structures remain elusive and controversial
[3,4]. The early nuclear magnetic resonance (NMR) experi-
ment by Ishida et al. [5] detected no change of the Knight shift
below Tc ∼ 1.5 K for field direction parallel to the ab plane,
thus leading to the naive interpretation that the spin structure is
triplet where the d vector lies parallel to the c axis. However,
later experiments [6,7] for H ‖ c unexpectedly detected no
change at all. Therefore the naive interpretation did not hold
anymore. Such results must be regarded with caution. It is
difficult to be convinced of d-vector rotation under an applied
field as low as 300 gauss. Kim et al. [8] estimated the strength
of the spin-orbit coupling to lock the d vector to the lattice
and concluded that the d-vector rotation interpretation is not
correct. Simultaneously they proposed that the spin struc-
ture is spin-singlet in this system. “Decisive” experiments
[9–11] that claim spin-triplet pairing in this system must be
carefully scrutinized. Among them the observation [10] of a
half-quantum fluxoid is definitive evidence because it is only
realized for spin triplet pairing.

In a recent series of bulk thermodynamic measurements of
the magnetocaloric effect [12], specific heat [13], and mag-
netization [14] for H ‖ ab all detected a first-order transition
at Hc2 at low temperatures T < 0.8 K. By estimating the
entropy and magnetization jumps at the first-order transi-
tion, it was concluded that the quasiparticle density of states
(DOS) decreases below Tc upon entering the superconducting
state. This means that the spin susceptibility decreases in the

superconducting state, thus completely contradicting the
Knight shift experiments [5–7]. The bulk measurements
[12–14] clearly point to a typical spin-singlet superconductor
with strong Pauli paramagnetic effect (PPE).

This picture is also supported by neutron scattering ex-
periments [15,16] and corresponding theoretical analyses
[17–19], which find an anisotropic triangular vortex lattice
with anisotropy �V L ∼ 60 for H ‖ ab. When compared with
the upper critical field anisotropy of �Hc2 = Hab

c2 /Hc
c2 ∼ 20, it

appears that the in-plane Hab
c2 is strongly suppressed by PPE.

The intrinsic orbital anisotropy is at least 60, which nicely
coincides with the Fermi velocity anisotropy �β = 60 for the
β band observed by dHvA experiments [2,20].

As for the orbital symmetry of the pairing function or the
gap structure, discussion and debate [2–4] continue. Since the
existence of linear line nodes has already been ascertained
by a variety of thermodynamic measurements [2,3], such as
specific heat, ultrasound attenuation, and thermal conductivity
etc, the remaining questions are (1) where are the linear line
nodes, whether vertical or horizontal line nodes relative to the
ab plane? (2) Which band is responsible for them among the
three bands (α, β, or γ band) or are they all responsible?
(3) Is the gap structure symmetry-protected or band-
dependent?

Angle-resolved thermodynamic measurements are now
recognized as a quite powerful technique that can detect the
nodal position in k space [21–24]. Deguchi et al. [25,26]
carried out a pioneering angle-resolved specific heat experi-
ment on Sr2RuO4 and find fourfold oscillation with the (100)
minimum parallel to the a axis when rotating the B field in
the ab plane. In their interpretation of their results, the (100)
direction is the nodal direction, thus suggesting a dxy-like
gap structure. However, subsequent theoretical studies [27,28]
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have shown that if this is true, oscillation pattern reversal
or sign changing temperature at Tch � 0.15Tc must occur.
Unfortunately, Deguchi et al.’s measurement barely reached
this temperature region. Therefore the dxy-like gap structure
has not been confirmed.

Recently Hassinger et al. [29] claimed the presence of
vertical line nodes on all bands based on their analysis of
thermalconductivity data taken at low T , whereas, in a recent
neutron scattering experiment [30], there was an absence of
the expected spin resonance at Q = (0.3, 0.3, 0) (in reciprocal
lattice units) in k space associated with the vertical line nodes;
thus the results are incompatible with Hassinger et al.’s claim.

Here, we study the gap structure problem, for either hor-
izontal line nodes (HLN) or vertical line nodes (VLN) by
analyzing the recent angle-resolved specific heat data at lower
temperatures down to 60 mK (= 0.04Tc) [31]. The experimen-
tal results are summarized as follows.

(1) The expected sign change of the oscillation amplitude
A4(B, T ) at Tch � 0.15Tc and Bch � 0.3Bc2 for VLN in the
single band case (see Figs. 11–13 in Ref. [28]) is absent down
to 60 mK (= 0.04Tc) up to Bc2.

(2) A4(B) tends to decrease toward higher fields after
exhibiting a broad maximum as B is increased at lower T (see
Fig. 24).

(3) A4(T ) monotonically decreases upon increasing T and
tends to vanish around T � 0.2 − 0.3Tc, which is quite low
compared with the typical VLN case [28] where A4(T ) per-
sists at least up to T � 0.4 − 0.5Tc after exhibiting the sign
change.

(4) A4(B, T ) shows A4(B, T ) > 0 as functions of both B
and T , namely, the (100) direction is always specific heat
minimum except just below Bc2 at low T . This landscape of
A4(B, T ) differs substantially from that of VLN [28] where a
local maximum, local minimum, and the sign changing line in
the B-T plane [see Fig. 25(b)] are all present.

We investigate the origin of such characteristics via a
microscopic quasiclassical Eilenberger framework [32] valid
for kF ξ � 1 (kF the Fermi wave number and ξ the coherence
length), which is well met for Sr2RuO4, to identify the gap
structure of the Sr2RuO4 system. Simultaneously, we investi-
gate the validity and limitations of the semiclassical concept
of the Doppler shift [33], which is conveniently applied to
the oscillation phenomena [27]. Needless to say, the Doppler
shift itself is a universally correct and fundamental physical
concept with wide applications. We find this semiclassical
picture based on the Doppler shift applied to the quasiparticles
in the vortex state, which we call the Doppler shift picture, to
be quite useful in understanding the thermodynamic oscilla-
tion phenomena in a superconductor. However, some care is
required when applying it to an actual situation.

This paper is organized as follows: first, we introduce the
formulation based on the microscopic quasiclassical Eilen-
berger theory as well as its approximate solution of the
Kramer-Pesch approximation (KPA). The modeling of the
Fermi surfaces for our target material Sr2RuO4 is also in-
troduced in Sec. II. Then we examine the angle-resolved
density of states in order to analyze the angle-resolved specific
heat data [31] for Sr2RuO4 when the gap structure has the
horizontal line nodes (HLN). The calculations are done both
for the full self-consistent solution of the Eileberger equation

and for the KPA solutions. We also take into account the
Pauli paramagnetic effect (PPE) for the full solutions. The
landscape of the DOS oscillation amplitude A4(B, T ) is con-
structed without and with PPE in Sec. III. In the next Sec. IV,
we examine the vertical line nodes (VLN) case comparatively.
Here the multiband effect, which crucially influences the
specific heat oscillations, is discussed in detail. In Sec. V, we
analyze the experimental data on the specific heat oscillation
[31], at which point we emphasize that the HLN scenario is
far superior to the VLN one; we also show that our analysis
reveals the presence of an anomalous high-field region just
below Bc2, which may be the first evidence for the FFLO
expected for this super-clean system. Finally, we summarize
the overall picture for the pairing symmetry in Sr2RuO4 and
share future prospects of the material.

We note here that our earlier work [28] thoroughly dis-
cusses the VLN case by solving the full Eilenberger equation
for the same quasi 2D cylindrical model with and without PPE
and constructs the A4(B, T ) landscapes. The present paper
should be regarded as an extension to the HLN case.

II. FORMULATION AND MODELING

A. Eilenberger equation

Quasiclassical Green’s functions f (ωn, p, r), f †(ωn, p, r),
and g(ωn, p, r) depend on the direction of the Fermi mo-
mentum p, the center-of-mass coordinate r for the Cooper
pair, and Matsubara frequency ωn = (2n+1)πT with n∈Z.
They are calculated in a unit cell of the triangle vortex lattice
by solving the Eilenberger equation [32] for clean type II
superconductors as follows:

{ωn + iμB(r) + vF · (∇ + iA(r))} f = 	(r)g,
(1)

{ωn + iμB(r) − vF · (∇ − iA(r))} f † = 	∗(r)g,

with

vF · ∇g = 	∗(r) f − 	(r) f †, (2)

where the normalization g = (1 − f f †)1/2 is imposed. We
take into account the Pauli paramagnetic effect through the
Maki parameter μ = μBB0/πTc. The Fermi velocity is vF.
We scale length, temperature, and the magnetic field in
units of ξ0, Tc, and B0, respectively, where ξ0 = h̄vF/2πTc

and B0 = φ0/2πξ 2
0 (kB = 1). The vector potential A = 1

2 B̄ ×
r + a(r) is related to the internal field as B(r) = ∇ × A =
(Bx(r), By(r), Bz(r)) with B̄ = (0, 0, B̄), Bz(r) = B̄ + bz(r),
and (Bx, By, bz ) = ∇ × a.

The pairing potential 	(r) is calculated by the gap equa-
tion

	(r) = πg0N0T
∑

0�ωn�ωcut

〈 f + f †∗〉p, (3)

where g0 is the pairing interaction and N0 the density of states
at the Fermi energy in the normal state. g0 is defined by the
cutoff energy ωc as (g0N0)−1 = ln T + 2 T

∑ωc
ωn>0

ω−1
n . We

carry out calculations using the cutoff ωc = 20Tc. The current
equation used to obtain a(r) is given by

∇ × ∇ × a(r) = js(r) + ∇ × Mpara (r), (4)
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where the screening current is

js(r) = −2T

κ2

∑
0�ωn

〈vFIm{g}〉p (5)

and the paramagnetic moment is given by

Mpara (r) = M0

(
B(r)

B̄
− 2T

μB̄

∑
0�ωn

〈Im{g}〉p

)
. (6)

Here, the normal state paramagnetic moment M0 = (μ/κ )2B̄,
and κ = B0/πTc

√
8πN0. The Ginzburg-Landau (GL) param-

eter κ is the ratio of the penetration depth to the coherence
length for B̄ ‖ c.

We set the unit vectors of the vortex lattice as u1 =
c(α/2,−√

3/2), u2 = c(α/2,
√

3/2) with c2 = 2φ0/(
√

3αB̄)
and α = 3�(θ ) [28]. Thus �(θ ) expresses the anisotropy of
the system through the deformation of the hexagonal vortex
unit cell in terms of α. φ0 is the flux quantum, and B̄ is the
average flux density. By solving the above equations itera-
tively, we obtain self-consistent solutions of 	(r), A(r), and
the quasiclassical Green’s functions [34–36]. We calculate the
electronic state by knowing the quasiclassical Green function
g(p, r, ωn), where iωn →E +iη. The density of states (DOS)
is given by

N (E )=N0〈Re[g(p, r, ωn)|iωn→E+iη]〉r,p, (7)

where 〈· · · 〉r,p indicates the spatial average over a vortex unit
cell and momentum average over the Fermi surface.

B. Kramer-Pesch approximation (KPA)

One can obtain an approximate solution of Eq. (1) within
Kramer-Pesch approximation (KPA) [37,38] without resort-
ing to heavy numerical computations when solving the full
self-consistent Eilenberger equation. A one-vortex solution of
Eq. (1) valid for the low-energy regime E ∼ 0 is given by [38]

N (r, E = 0)

N0
=

〈
v⊥(p)e−u(s)

C(y, p)

η

E2(y, p) + η2

〉
p

(8)

with

u(s) = 2
|d (p)|
v⊥(p)

∫ s

0
	∞ f (s′, y)

s′√
s′2 + y2

ds′, (9)

where d (p) is the angle dependence of the gap function,
while 	∞ is the order parameter far from vortex core. vvv⊥(p)
is a projection of vvv(p) into the ab plane and (s, y) is a
coordinate of the plane with respect to the angle of vvv⊥(p).
We parametrize 	(r) = f (s, y)eiφ , then C(y, p), and E (y, p)
are expressed by f (s, y) and given as follows:

f (s, y) =
√

s2 + y2√
s2 + y2 + ξ 2

0⊥
, (10)

C(y, p) = 2
√

y2 + ξ 2
0⊥K1(r0(y, p)), (11)

E (y, p) = |d (p)|	∞
K0(r0(y, p))

K1(r0(y, p))

y√
y2 + ξ 2

0⊥
, (12)

r0(y, p) = 2
|d (p)|
v⊥(p)

	∞
√

y2 + ξ 2
0⊥. (13)

Here, K0(r0(y, p)) and K1(r0(y, p)) are modified Bessel func-
tions.

Within this one-vortex approximation, one cannot consider
a vortex lattice formation. The magnetic field effect appears
as an integral radius of〈N (r, E = 0)〉r, namely,

〈N (r, E = 0)〉r = 1

πr2
a

∫ ra

0
drN (r, E = 0). (14)

Here we assume a circular Wigner-Seitz cell for each vortex
whose radius ra is given by ra/ξ0⊥ = √

Bc2/B, that is, at B =
Bc2 = φ0/πξ 2

0⊥ vortices touch each other with the coherence
length ξ0⊥. In the KPA calculations, we deal with the effect
of the Fermi velocity anisotropy within the change of the
coherence length along the ab plane. We confirm that the
KPA results qualitatively coincide with those from the full
Eilenberger solution.

C. Modeling of the Fermi surfaces

As a model of the Fermi surface, we use a quasi-
two-dimensional Fermi surface with a rippled cylin-
der shape. The Fermi velocity is assumed to be vF =
(va, vb, vc) ∝ (va(φ), vb(φ), ṽz sin pc) at p = (pa, pb, pc) ∝
(pF cos φ, pF sin φ, pc) on the Fermi surface, which we also
used in our previous work [28]. We consider a case ṽz = 1/�,
to produce a large anisotropy ratio of the coherence lengths
of the in-plane ξab and out-of plane ξc. The vortex lattice
anisotropy �V L, which was observed to be ∼60 [15,16], is
determined via the free energy minimum after solving the
Eilenberger equation and depends on the gap structure and on
the presence or absence of PPE (see Refs. [17,19] for detail).

The magnetic field orientation is tilted by θ from the c axis
toward the ab plane. We use the following formula for the
general anisotropic ratio �(θ ) as

�(θ ) = 1√
cos2 θ + �−2 sin2 θ

. (15)

Considering the material of study, Sr2RuO4 [2,3], we
choose κ = 2.7 and the anisotropy ratio �(θ = 90◦) ≡ � =
60. We note that the � value does not significantly influence
the following in-plane oscillation calculations.

Since we set the z axis to the vortex line direction, the
coordinate r = (x, y, z) for the vortex structure is related
to the crystal coordinate (a, b, c) as (x, y, z) = (a, b cos θ +
c sin θ, c cos θ − b sin θ ).

In order to capture the in-plane Fermi surface character-
istics of three bands in Sr2RuO4, we consider two types of
in-plane Fermi surface models; one is given by

vF (φ) = vF0(1 − b cos 4φ), (16)

with the anisotropic parameter b (> 0) [21]. The angle φ is
measured from the kx or a axes. Let this be the b model, a
model to design the γ band whose Fermi surface is rather
round and the Fermi velocity varies sinusoidally along the
circle (see Fig. 1). We consider b > 0 in the following. It is
a robust feature that the Fermi velocity v

γ
F (φ = 0) is gener-

ically smaller than that of v
γ
F (φ = π/4) because the Fermi

surface of the γ band is near the von Hove point at (π, 0) in
the Brillouin zone. For example, according to first-principles
band calculation [39], b = 0.3 ∼ 0.5. Note, however, that

064510-3



MACHIDA, IRIE, SUZUKI, IKEDA, AND TSUTSUMI PHYSICAL REVIEW B 99, 064510 (2019)

ky

u

v
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xkxk

vF (φ) vF(φ)

ζ＝u
_v

FIG. 1. Schematic cross sectional views of the b model (left)
where on the Fermi circle the Fermi velocity vF (φ) modulates sinu-
soidally. The ζ model (right) where the Fermi surface is rectangular
with the around portion u and the straight portion v in the ab plane.

the projected Fermi velocities on the (100) and (110) axes:
〈vγ

(100)(φ)2〉 = 〈vγ

(110)(φ)2〉 averaged over the Fermi velocity
distribution (16).

Since the Fermi surface shapes of the β and α bands are
squarelike [40], we model it by the following ζ model [41]. As
shown on the right panel of Fig. 1, the Fermi surface consists
of a parallel section with length v and a round section u. We
assume that the amplitude of the Femi velocity is constant
everywhere. Thus the parameter ζ = v/u characterizes the
squareness of the Fermi surface. ζ → ∞ (ζ = 0) corresponds
to a perfect square (a circle).

Since it is difficult to uniquely assign the parameters b
and ζ from band calculations, they are presently only free
parameters. However, we note that if the in-plane gap function
is isotropic, the in-plane Bc2(φ) anisotropy �φ in the GL
region is given by

�φ ≡ Bc2(φ = 0)

Bc2
(
φ = π

4

) =
√

〈v(110)(φ)2〉
〈v(100)(φ)2〉 = 1 (17)

for the b model, which is independent of the b value, whereas
�φ depends on the ζ value, for example, �φ = 1.06 for ζ =
1.0, �φ = 1.13 for ζ = 2.0, and �φ = 1.18 for ζ = 3.0. Thus
we must be careful to choose the ζ value when considering
various experimental situations. If the ζ value is too large,
the constraint imposed by the experimental observation of
the absence of in-plane anisotropy is violated. The observed
in-plane anisotropy �φ is very small near Tc and is within at
most 3% at B = 1 T [42]. We also note that �φ > 1, which is
contrary to the observation of �φ < 1, namely, Bc2(φ = 0) <

Bc2(φ = π
4 ) at lower temperatures [42]. We will touch upon it

in the last section.

III. HORIZONTAL LINE NODES

A. KPA results and Doppler shift picture

We first introduce the fourfold oscillation amplitude A4(B),
which is measured by field-rotating specific heat experiments
[31], defined by

A4(B) ≡ N (E = 0, φ = π
4 ) − N (E = 0, φ = 0)

N (E = 0, φ = π
4 ) + N (E = 0, φ = 0)

(18)

 0

 0.4

 0.8

 1.2

 1.6

 0  0.2  0.4  0.6  0.8  1

0.18

0.33

b=0.55

A 4
(B

)(
%

)

 0

 0.1

 0.2

 0.3

 0.1  0.2  0.3
√B/Bc2

B/B 2

FIG. 2. A4(B) for various b values for the case of a 2D cylinder.
As b increases A4(B) increases. The inset shows the low-field parts
of A4(B), indicating the A4(B) ∝ √

B behavior.

with N (E = 0, φ) ≡ N (φ) being the zero energy DOS when
the field is applied at angle φ.

We show the KPA results of A4(B) for HLN for two-
dimensional (2D) cylindrical Fermi surface in Fig. 2. It is seen
that A4(B) increases rather quickly which is approximately
A4(B) ∝ √

B in lower fields as seen from the inset of Fig. 2.
And it keeps increasing toward higher fields. By increasing
the Fermi velocity anisotropy b introduced in Eq. (16) the
amplitude A4 grows. The growing rate is linear in b at least for
smaller and moderate b values. Namely, we see (1) A4(B) > 0,
(2) A4(B) monotonically increases, and (3) A4(B) approaches
a finite value as B → 0.

Some of the findings are understood in terms of the semi-
classical Doppler shift picture as follows. In the presence
of linear line nodes in general, the average total density of
states N (E ) has a V-shaped energy dependence for all B
values from B = 0 up to Bc2 [43]. The energy ED associated
with the Doppler shift is given by ED ∝ vs · vF (p) for the
quasiparticles propagating along the p direction [33,44]. Thus
ED depends on the field direction through vF (φ). Under field
rotation ED(φ) oscillates proportional to vF (φ).

FIG. 3. Schematic pictures of the Doppler shift. (Left) Original
V-shape DOS (green) is shifted to two DOS (red) by ±ED(φ),
producing the increment in ZDOS. (Right) Increment δN (E ) of DOS
due to the Doppler shift as a function of E obtained by subtracting
the two shifted DOS (red) from original DOS (green). A triangle
centered at E = 0 forms whose size depends on the field-orientation
φ through ED(φ).
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FIG. 4. Oscillation patterns of N (φ) in the b model for several B.
b = 0.33.

As schematically illustrated in Fig. 3, the increment δN (E )
of the DOS by the Doppler shift appears only at around
E = 0 as a triangular area centered at E = 0. The area of this
triangle is proportional to vF (φ) which gives rise to the DOS
oscillation. Thus

A4(B) ∝ ED(B)
dN (E = +0)

dE
(19)

with dN (E=+0)
dE = N ′(E = +0) is the slope of N (E ) near E =

+0. Since ED(B) is an increasing function of B through the vs

factor, A4(B) increases with B and is proportional to b. This
idea based on the Doppler shift effect is consistent with some
aspects of the KPA results.

For the 2D cylinder FS, N (E ) changes a V shape at lower
energy to a U-like shape as |E | increases [see B = 0 curve in
Fig. 9(a)], thus A4(B) keeps increasing as the field strength is
increased.

Although such A4(B) behavior in the KPA supports the
Doppler shift picture, it should be noticed that this simple
N ′(E = +0) behavior must be more carefully reexamined as
will be seen shortly. The shortcoming of the KPA based on the
single vortex approximation is apparent because the effects
of vortex core overlapping become crucial at mid and higher
fields.

As seen from Figs. 4 and 5, which show the results of the
oscillation patterns of N (φ) for the b and ζ models, the same
general oscillation trend is seen, i.e., the (100) minimum,
or φ = 0. The oscillation patterns sensitively reflect the FS
shape. As ζ increases or the FS shape becomes rectangular,
the oscillation patterns are distorted far from a simple sinu-
soidal form as seen in the b-model cases.

The T dependence of A4(T ) defined by

A4(T ) ≡ C(T, φ = π/4) − C(T, φ = 0)

C(T, φ = π/4) + C(T, φ = 0)
(20)

is evaluated through the specific heat formula

C(T )

T
=

∫ ∞

0

dE

T

E2

2T 2

N (E )

cosh2
(

E
2T

) . (21)

 0

 4

 8

 12

 0  45  90  135  180

B/Bc2=0.25
B/Bc2=0.125
B/Bc2=0.0156

[deg]

N
(

)(
%

)

FIG. 5. Oscillation patterns of N (φ) in the ζ model for several B
values. ζ = 1.0.

As shown in Fig. 6, the T dependence of A4(T ) is also con-
sistent with the Doppler shift picture because the increment
δN (E ) of DOS by the Doppler shift is confined to being near
the E = 0 energy region, as indicated by the triangle in Fig. 3,
meaning that A4(T ) is also limited to a low-T region.

In summary of this subsection, we explained the physics of
the Doppler shift picture for describing the DOS oscillation.
It is likely that A4(B, T ) of the in-plane DOS oscillation is
positive for HLN, namely,

A4(B, T ) � 0. (22)

B. Full Eilenberger calculations without PPE

Having established the applicability of the Doppler shift
picture through the results derived by KPA for the Eilenberger
equation, we proceed further by more accurately solving the
full Eilenberger equation self-consistently under the realistic
situation, namely, the cylindrical Fermi surface model for
Sr2RuO4 with and without Pauli paramagnetic effect. The gap

 0

 0.1

 0.2

 0.3

 0.04  0.08  0.12  0.16  0.2

A 4
(T

)(
%)

T/Tc

B/Bc2=0.088
B/Bc2=0.063
B/Bc2=0.044
B/Bc2=0.031

FIG. 6. Temperature dependencies of A4(T ) for various B values,
showing that A4(T ) quickly diminishes as T grows. b = 0.33 for the
b model.
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FIG. 7. ZDOS N (E = 0) as a function of B for μ = 0 (red dots)
and μ = 0.04 (green dots). The blue line along the red dots indicates
N (E = 0) = √

B/Bc2 with Bc2 = 32. The inset shows the
√

B plot.

structure with the horizontal line nodes is written as

	(k) = 	0 cos ckz (23)

with c being the lattice constant along the c axis. The other
parameters are the same as before [17,18] except for the in-
plane anisotropic Fermi velocity, which is modeled by the b
model.

The calculated field dependent zero energy DOS, or ZDOS
N (E = 0) normalized by the normal state value N0 is shown
as red dots in Fig. 7. It is seen that N (E = 0) is a typical form√

B characteristic to the nodal gap structure [45,46]. In fact
as compared with N (E = 0) = √

B/Bc2 curve, the numerical
points are described remarkably well by this formula, not only
at lower B, which is expected to be valid, but also all the way
up to Bc2.

The angle dependent oscillation amplitude A4(B) is also
calculated in Fig. 8 shown as red dots. This result shows

FIG. 8. A4(B) from the fully self-consistent solution of Eilen-
berger theory for HLN. b = 0.2 and μ = 0 (red dots). The inset
shows the ZDOS difference N (φ = 45◦) − N (φ = 0◦) as a function
of B. At lower fields, it is linear in B.
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E/πTc
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N
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0.0
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0.6

0.8

1.0

1.2

1.4

N
(E

)

B = 2
B = 4
B = 7
B = 10
B = 21
B = 25

μ=0.0

μ=0.04
B = 0

~0.85

(b)

(a)

FIG. 9. (a) N (E ) obtained by solving the full Eilenberger theory
self-consistently for various fields. Both μ = 0 and 0.04, including
the 2D DOS N (E ) for B = 0. The slopes at E ∼ +0 have a common
focal point at N (E/πTc = 0.85) = 1, demonstrating the DOS scal-
ing: N ′(E ∼ +0) ∝ 1 − N (E = 0). (b) Detailed comparison of the
slopes for top two curves in (a) with μ = 0 (blue) and 0.04 (red).
They have almost same slopes near E = +0, but at higher energies
are widely different due to PPE. Note that due to numerics N (E )
deviates slightly at E = 0 from ideal V-shape form.

the following: (1) as B → 0 A4(B) tends to a finite value,
(2) A4(B) exhibits a maximum around Bmax/Bc2

∼= 10/32 ∼
0.3, (3) After it maximizes, A4(B) decreases almost linearly
as B → Bc2(= 32), and (4) A4(B) � 0, i.e., A4(B) is positive.

Result (1) coincides with that from KPA mentioned above.
However, (2)–(4) are not covered by KPA, simply because
of inherent limitations due to the single vortex approxima-
tion in KPA. Thus the full Eilenberger calculation adds the
new features (2)–(4). In order to understand the physical
origin of the new features and further refine the Doppler
shift picture, we have carried out extensive computations. We
uncover several novel facts that were crucial in determining
the A4(B) behavior. As shown in Fig. 9, the total DOS N (E )
averaged over the spatial points within the vortex unit cell
forms a characteristic V-shape near E = 0, including when
B = 0. Because the value of N (E ) at E = 0 is sensitive to
numerical error, the obtained DOS N (E ) is somewhat approx-
imated and rounded near E ∼ 0, but retains an approximate
V shape (see Ref. [43] for details). The opening angle of the
V shape depends on B, namely, it becomes shallower as B
increases.

As B → Bc2 the derivative [ dN (E )
dE ]E�+0 = N ′(E ∼ +0) at

lower energy continuously decreases and tends to vanish at
B = Bc2. We find a focal point of the tangential lines, meaning
that N ′(E ∼ +0, B) is a linear function N (E = 0, B). As
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FIG. 10. Slopes N ′(E ∼ +0) normalized by that at B = 0 are
plotted as a function of N (E = 0). The data is extracted from Fig. 9
and also includes data from Nakai et al. [43] (empty squares) and
Ichioka et al. [45] (filled circles).

shown in Fig. 10, we find the DOS scaling law:

N ′(E ∼ +0, B)

N ′(E ∼ +0, B = 0)
= 1 − N (E = 0, B). (24)

This simple relationship includes the Pauli limiting cases
with μ �= 0 (the filled points in Fig. 10). By substituting
Eq. (24) into Eq. (19), we obtain

A4(B) ∝ ED(B)(1 − N (E = 0, B)). (25)

To determine the field dependence of the Doppler shift
energy ED(B), we evaluate the numerator of Eq. (18), namely,
the difference in the ZDOS N (φ = 45◦) − N (φ = 0◦) from
the Eilenberger full solutions. As seen from the inset of
Fig. 8, the difference in the ZDOS in B is linear at lower
fields. On the other hand, the denominator of Eq. (18): N (φ =
0◦) + N (φ = 45◦) ∝ √

B due to the Volovik effect [33]. The
resulting A4(B) ∝ √

B in Eq. (18) at lower fields. The linearity
in the difference of the ZDOS can be understood as follows:
the extended quasiparticle contributions proportional to

√
B

cancel out, but the core localized quasiparticle contributions
remain and give rise to the oscillation whose field dependence
is obviously proportional to the flux number or B. Thus
this is a contributing factor to the DOS oscillation at lower
fields that vanishes at higher fields when the core localized
quasiparticles overlap each other.

We can estimate this field Bmax by calculating the
field at which the elongated vortex cores start overlapping.
Bmax/Bab

c2 = ξc/λ = 1/κ = 1/2.7 with the GL parameter κ

along the c-axis chosen to be 2.7 in our calculations [17,18]
as mentioned before. This agrees well with the numerical
calculation shown in Fig. 8. In view of the above DOS scaling,
we postulate that A4(B) is determined uniquely by N (0) and
extend the DOS scaling, including A4(B).

Once the DOS N (E ) is calculated, it is easy to evaluate
the specific heat C(T ) by Eq. (21), after which A4(T ) can be
calculated using Eq. (20). The obtained A4(B, T ) is illustrated
in Fig. 11 as a contour map. It is seen that the landscape
is simple. A hill in the B-T plane is situated at low T and
Bmax/Bc2 ∼ 0.3 where a ridge extends toward higher temper-
atures. We notice that this hill structure is confined to the

0.00 0.05 0.10 0.15 0.20 0.25 0.30
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0.0

0.2

0.4

0.6

0.8

1.0

B/
B c2

A4(B, T)

−1.52

−1.14
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FIG. 11. Landscape of A4(B, T ) for b = 0.5 and μ = 0.

low-temperature region only up to at most ∼0.25Tc. This is
contrasted with the vertical line node case where the B-T
landscape is much more complicated, exhibiting an A4 sign
change region, local maximum and minimum, and A4 is a
finite up to at least ∼0.4Tc as seen from Fig. 25(b) (also see
Figs. 11–3 in Ref. [28]).

C. Full Eilenberger calculation with PPE and DOS scaling

We performed the same Eilenberger computations by tak-
ing into account the Pauli paramagnetic effects (PPE) with
μ = 0.04. The ZDOS N (E = 0) as a function of B is shown in
Fig. 7 as green dots. Due to the strong PPE the system exhibits

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
E/πTc

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
(E

)

B= 8
B= 8, up
B= 8, down

~-0.32 ~0.32

FIG. 12. Reconstruction of the V-shape DOS N (E ) under PPE.
Red and green curves are the spin-resolved DOS and the blue curve
is total DOS. To accommodate the excess Pauli paramagnetism due
to PPE, the original V-shape N (E ) for spin-up and spin-down are
modified to have flat bottoms shown by shaded triangles. Note that
in spite of this modification the slope of the original V-shape DOS is
preserved under PPE. See the details in the main text.
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FIG. 13. A4(B) under PPE obtained by scaling A4(B) in Fig. 8.

a first-order transition at Bc2 = 8.5, indicated by a jump of
N (E = 0). The presence of HLN is recognized a prominent√

B behavior at lower fields, but it is modified strongly in the
middle and high field regions due to PPE. This behavior is
consistent with previous calculations [46].

The DOS N (E ) is also calculated to estimate A4(B, T )
under the PPE influence by using the DOS scaling. As shown
in Fig. 12, the total DOS N (E ) is decomposed into the spin-up
and spin-down components, which are Zeeman split due to
PPE. In order to accommodate the induced Pauli paramagnetic
component, the original V-shaped DOS is reshaped as seen
from the guided V-shape lines in Fig. 12. namely, the bottoms
of the Zeeman shifted DOS curves become flat as seen from
the red and green curves in Fig. 12 or ideally completely
flat indicated by the shaded inverted triangles. Their areas
are exactly equal to the particle number corresponding to
the induced paramagnetic moment. Because of this flatness
the resulting total DOS curve keeps the original V-shape
with the same slope N ′(E ∼ +0) as that without PPE. This
slope and others [43,45] are plotted in Fig. 10 as the filled
symbols, which are all embedded in the points without PPE.
Note that as shown in Fig. 9(b) the two V-shaped DOSs with
and without PPE have the almost same slopes when their
N (E = 0) are same. Therefore we establish a general DOS
scaling Eq. (24): N ′(E ∼ +0) ∝ 1 − N (E = 0) again. This
time we include the PPE.

It is not difficult to estimate A4(B, T ) under PPE by apply-
ing DOS scaling: starting with A4(B) without PPE in Fig. 8,
then A4(B) under PPE is obtained by using the correspondence
that the same N (E = 0) yields the same A4(B), which is
displayed in Fig. 13.

We had applied the same DOS scaling to construct the
A4(B, T ) contour map for Fig. 11. The A4(T ) data for a given
B without PPE were transformed to that under PPE. The same
procedure was carried out for the A4(B) data from in Fig. 13.
The result is depicted in Fig. 14 where again the landscape
is simple without any sign change region. The ridge is now
situated at around Bmax/Bc2 ∼ 0.6–0.7; this slightly higher B
in comparison to that in Fig. 11 is due to PPE.

Here we notice that comparable full Eilenberger calcu-
lations with and without PPE for vertical line node case
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FIG. 14. Landscape of A4(B, T ) for b = 0.5 and μ = 0.04 ob-
tained by using the DOS scaling from Fig. 11.

with same cylindrical Fermi surface model (� = 60) are
done before [28]. The obtained A4(B, T ) landscapes are quite
different from that of the HLN cases and will be shown later
in Fig. 25(b).

D. Multiband consideration

We have discussed the angle-resolved DOS in terms of the
b model, which models the γ band. As for the β band, we
apply the ζ model. As seen from Figs. 4 and 5, the oscillations
are qualitatively similar, i.e., both exhibit a (100) minimum,
though the oscillation patterns are different. Because both
oscillations are the same sense, the total A4, which is given
by adding up two contributions as a zeroth approximation.
Thus the conclusion that A4(B, T ) is positive for the B and
T plane remains unchanged even under the multiband effect.
It is reasonable to expect that A4(B) in Figs. 8 and 13 do
not change in the essential way even taking into account the
multiband effect into the microscopic Eilenberger calculation.
Those will be contrasted with the vertical line node cases as
seen shortly.

IV. VERTICAL LINE NODES

It is known that when the vertical line nodes (VLN) are
present on the γ band, which is well described by the b
model, A4(B, T ) exhibits the sign change both as functions
of B and T at around Bch/Bc2 ∼ 0.35 and Tch/Tc ∼ 0.15 [28].
The (100) minimum of A4(B, T ) is realized in low (high) field
and at low (high) temperatures for the dx2−y2 (dxy) symmetry
case. Therefore it is obvious that this is not the case for
Sr2RuO4. Here we focus on the ζ model corresponding to the
β band whose A4(B, T ) behavior is not yet fully analyzed.
We calculate A4(B) and A4(T ) for the VLN cases with KPA.
We confirm that results in KPA are basically consistent with
the full Eilenberger calculations done before [28] for ζ = 0.

A. dx2−y2 symmetry

As shown in Fig. 15, for the dx2−y2 symmetry case the sign
changing field Bch in A4(B) becomes lower as ζ increases.
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FIG. 15. Field dependencies of A4(B) for several ζ values in
dx2−y2 . The sign changing field Bch decreases with ζ , but never
disappears.

However, it never vanishes even for extremely larger ζ where
A4(B) starts always from a negative or almost zero values near
B ∼ 0. This is also true for A4(T ), as shown in Fig. 16. The
oscillation patterns also show a distorted periodic form far
from a simple sinusoidal form as seen from Fig. 17. All the
above features do not agree with the experimental data [31].
Thus this is not the case for Sr2RuO4.

B. dxy symmetry

This symmetry case seems more promising at first glance
because as seen from Fig. 18 the sign changing Bch in A4(B)
is removed as ζ increases. Thus for a certain value of ζ the
A4(B) behavior looks similar to the experimental data. This
is also true for A4(T ) shown in Fig. 19. The sign changing
temperature Tch tends to become higher as ζ increases. There-
fore A4(B, T ) seems favorable for describing the data. The
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FIG. 16. Temperature dependencies of A4(T ) for several ζ values
in dx2−y2 . The sign changing temperature Tch decreases with ζ , but
never disappears. B/Bc2 = 0.176.
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FIG. 17. Oscillation patterns of N (φ) for several fields in dx2−y2 .
ζ = 1.0. It is seen that A4 changes its sign under varying B.

oscillation patterns again are a distorted form as seen in
Fig. 20 where we plot the results with ζ = 1 for selected
values of B. Within the accuracy of the present experiment
[31], however, it is not possible to determine the accurate
oscillation pattern, either a simple sinusoidal or distorted one.
Thus, at this stage, we cannot exclude the possibility that
the vertical line nodes with dxy symmetry is realized when
assuming that the β band alone contributes to the specific
heat oscillation. However, it is inevitable to consider the
contribution for the γ band also, which is discussed next.

C. Multiband consideration

As mentioned above, the dxy symmetry for the β band
alone with an appropriate ζ value seems to explain the existing
data. However, it is clear that γ band with the dxy symmetry
contributes equally to the total oscillation. As a zeroth approx-
imation, we simply add up the two contributions by assuming
that the two normal density of states are equal (it is known
that Nγ : 53%, Nβ : 37%, and Nα: 10% of the total DOS) and

 0
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FIG. 18. Field dependencies of A4(B) for several ζ values in
dxy. The sign changing field Bch increases with ζ , and eventually
disappears.
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gap magnitudes 	β= 	γ , ignoring the α band for simplicity.
As shown schematically in Fig. 21, A4(B) and A4(T ) for the
γ band exhibit sign changes, whereas those for the β band
do not. Thus resulting total A4(B) and A4(T ) (right column in
Fig. 21) falls somewhere in the shaded region between them.
Each may or may not exhibit the sign change, depending
on other material parameters. It may be possible to explain
the positive “definiteness”: A4(B, T ) � 0 for nearly the entire
B-T plane, depending on the material parameters.

This task is daunting because there are so many adjustable
microscopic parameters to tune. For example, in order to
set up the microscopic calculation for A4(B, T ) using the
Eilenberger equation for the two band case, we need attractive
coupling constants for the two bands β and γ in addition
to the Cooper pair transfer term [19]; this includes the gap
magnitude ratio 	β/	γ , the Fermi velocity anisotropies for
each band along the c axis, �β and �γ , which are necessary
to determine Bc2 for the total system. The in-plane Fermi
velocity anisotropies, b and ζ are essential. Somewhere in the
multidimensional parameter space there may be appropriate
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FIG. 20. Oscillation patterns of N (φ) for several fields in dxy.
ζ = 1.0.
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B B B

TTT

γ γ +ββ

γ γ +ββ

FIG. 21. Possible multiband effects on A4(B) (top row) and
A4(T ) (bottom row) indicated by arrows in the figures of the right
column.

material parameters that explain the positive “definiteness”:
A4(B, T ) � 0. However, it is not guaranteed, so it is clear that
this is quite difficult to achieve.

We conclude that the vertical line node scenario with dxy

symmetry is not appropriate. The other combinations, such as
dxy on the β band and dx2−y2 on the γ band, are found not
to be appropriate because those scenarios fail in the zeroth
approximation level mentioned above. In short, we are not
denying the VLN scenario completely, but considering the
time-consuming computational burden required to solve the
Eilenberger equation for the multiband case, it is practically
impossible to find a parameter set, that leads to the positive
definite A4(B, T ) � 0.

V. DISCUSSION

A. Analysis of the experimental data

Having done extensive computation for both the HLN and
VLN cases, here we discuss the implications of our results
and analyze the experimental data, which are summarized by
the four items 1–4 mentioned in Introduction. Before that,
we point out the importance of PPE in analyzing the data.
To demonstrate this, we compare the theoretical data for the
field evolution of ZDOS N (E = 0) under PPE (see Fig. 7) and
the experimental data in Fig. 22. At lower B, C/T increases
quickly, reflecting the nodal quasiparticles reminiscent of the
Volovik

√
B. Then C/T slowly rises in the middle B, and

finally it exhibits a jump associated with a first-order transition
at Bc2 due to PPE. These features are captured by our theoret-
ical results. Almost perfect agreement between the theoretical
and experimental results implies that PPE is inevitable for the
following analyses.

(1) Absence of the sign change in A4(B, T ). If the γ band,
which is well approximated by the b model, has VLN and
the major band, namely, 	γ > 	β , A4(B, T ) should exhibit
a sign change along both B and T axes because Nγ = 53%
is the largest and dominates the oscillation. However, those
conditions are not met, hence the β band, which is modeled by
the ζ model, plays a role in determining A4(B, T ). When ζ is
large enough, A4(B, T ) may exhibit no sign change under the
assumption that the β band alone dominates the oscillation.
However, this is unlikely because of Nβ = 37% and 	γ ∼ 	β
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FIG. 22. Comparison of calculated N (E = 0) shown in Fig. 7
of μ = 0.04 with the experimental specific heat data C/T at T =
60 mK [31]. We adjust the theoretical point at B = 0.

at most, the ratio of which is not known precisely. We assigned
	β = 	γ /2 in our previous paper [19] by analyzing SANS
experiments [15,16]. Thus we consider the multiband effect
when solving the Eilenberger equation for two or three bands.
As already mentioned, it is a daunting task to achieve. The
educated guess is that the “positive definiteness” of A4(B, T )
is virtually impossible to reproduce in terms of VLN consid-
ering the delicate balance of the Aγ

4 and Aβ

4 contributions.
(2) A4(B) behavior. According to the microscopic Eilen-

berger calculation for the b model, A4(B) starts at a finite
value at lower B and increases with B, reaching a maximum
at B � 0.3Bc2 (see Fig. 8). A4(B) smoothly decreases almost
linearly toward Bc2 where A4(Bc2) = 0 precisely.

By using the DOS scaling we obtain A4(B) under PPE
which explains well the experimental data as demonstrated in
Figs. 23 and 24. We notice the following.

(A) The obtained Bmax/Bc2 = 0.7 is achieved only by
taking PPE into account as shown in Fig. 13. Thus PPE is
essential in understand the physics of Sr2RuO4, otherwise it
is at Bmax/Bc2 ∼ 0.3.
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FIG. 23. Comparison of calculated A4(B) shown in Fig. 13 with
the experimental data at T = 100 mK [31]. We show the theoretical
fit curve by choosing Bc2 = 1.5 T where the vertical scale is arbitrary.
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FIG. 24. Comparison of calculated A4(B) shown in Fig. 13 with
the experimental data at T = 100 mK [31]. We show the theoretical
fit curve by choosing Bc2 = 1.35 T where the vertical scale is
arbitrary. The agreement is far better for this choice. We highlight
the anomalous field region near Bc2 by a color bar.

(B) As seen from Fig. 24, almost perfect fitting is achieved
by shifting Bc2 so as to coincide B with the field at A4(B) = 0
where the “theoretical Bc2” is situated. This means that the
actual Bc2 is enhanced.

(C) The observed A4(B) � 0 region colored in Fig. 24
appears above this field and corresponds to the “enhanced”
region. This anomalous “enhanced” field region corresponds
to the FFLO phase expected for a clean superconductor with
strong PPE, a condition that is indeed fulfilled in the present
Sr2RuO4 known as a super-clean system. The mean free path
is 140–300 nm [2]. The precise identification of the discov-
ered region calls for further investigation both experimentally
and theoretically.

(3) Narrow T region for finite A4(T ). According to the
Doppler shift picture, which is shown schematically in Fig. 3,
the characteristic energy window ED by the Doppler shift
is confined in a finite narrow energy region around E = 0.
According to our numerics A4(T ) calculated by Eq. (20)
yields a finite value up to at most ∼0.2Tc. This contrasts
with that of the VLN cases; the angle dependent DOS change
δN (E ) [27], which drives the oscillation persists at a much
higher energy, thus leading to the wider T region of A4(T )
[28]. Therefore this experimentally demonstrated narrow T
region is an eminent characteristic of HLN.

(4) Simple landscape of A4(B, T ). The experimental land-
scape of A4(B, T ) is quite simple [see Fig. 25(a)]. Most of the
B-T plane is covered by A4(B, T ) � 0 except for just below
the Bc2 region with A4 < 0. This landscape is well reproduced
by HLN shown in Fig. 25(c). This is contrasted with the
typical VLN case is shown in Fig. 25(b) [28] where a rather
complicated landscape with a local maximum, local minimum
and valley form the landscape. Thus it is clear that HLN is
superior to VLN in this point of view.

B. Unified picture of Sr2RuO4 and future prospects

Having discussed the four items of the experimental find-
ings in light of the present theory and concluding that the
realized gap structure is described by horizontal line nodes,
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FIG. 25. Comparison of landscapes of (a) A4(B, T ) determined
experimentally [31], (b) vertical line nodes: dxy calculated for b = 0
and μ = 0 [28], and (c) horizontal line nodes for b = 0.5 and μ =
0.04.

we are now in a position to describe the overall superconduct-
ing properties of Sr2RuO4 from a unified viewpoint.

In the group theory classified pairing symmetries within
the chiral p wave, there is no state with horizontal line
nodes [47–49] except for (kx + iky) cos kz that has accidental
nodes [50]. The overall pairing symmetry could be consistent
with d3k2

z −1 and the chiral d-wave form (kx + iky)kz or (kx +
iky) cos kz. The latter two are time-reversal symmetry broken,
thus those are compatible with μSR [51] and Kerr rotation
[52] experiments, which claim it. In order to distinguish
those states, we propose carrying out a spin gap and/or spin
resonance experiment by inelastic neutron scattering at Qres =
(1/3, 1/3, 0.15(= 0.85)) or (1/3,1/3,0.35 (=0.65)) for the
former and Qres = (1/3, 1/3, 0.5) for the latter two in the
reciprocal units. Since those distinctive different reciprocal
space points can be probed by neutron scattering experiment
in principle.

The analysis of A4(B) mentioned in item 2 suggests that
the extra state appears above the nominal “Bc2.” The two
characteristics of the enhanced Bc2 and the extra state may
correspond to the FFLO. In fact A4(B) < 0 just characterizes
this high field phase. The in-plane anisotropy Bc2(φ) is con-
sistent with A4(B) < 0, namely, Bc2(φ = 45◦) > Bc2(φ = 0◦)
means N (E = 0, φ = 45◦) < N (E = 0, φ = 0◦). According
to Kittaka et al. [42] the Bc2(φ) anisotropy appears below T <

T1st = 0.8 K and above B > B1st = 1.2 T, which coincides
with the first-order transition line along the Bc2 line. Below
this point B < B1st the Bc2 line is ordinary second-order and
the Bc2(φ) anisotropy disappears simultaneously. This phase
diagram in the B-T plane is expected for the FFLO, namely,
T1st/Tc = 0.8 K/1.5 K = 0.53 is very near the ideal triple
point, i.e., the so-called Lifshitz point Ttri/Tc = 0.56 below
which the FFLO [53,54] starts to appear.

Concerning the question regarding which band plays the
major role for superconductivity among α, β, and γ bands,
we consider that the β band has a larger gap than the γ

band, namely, 	β > 	γ because the observed �V L ∼ 60 just
corresponds to �β ∼ 60 rather than �γ ∼ 180 at least near
Bc2. However, at first sight it is at odds with the absence of the

in-plane Bc2(φ) anisotropy above T > T1st = 0.8 K when one
considers the anisotropic square-like Fermi surface shape in
the ab plane that we model as the ζ model. This easily gives
rise to the Bβ

c2(φ) anisotropy if ζ is large [when ζ=2, Bc2(φ)
anisotropy defined by Bc2(φ = 0◦)/Bc2(φ = 45◦) is ∼1.13].
It should be noticed that in the b model for the γ band the
in-plane anisotropy Bγ

c2(φ) is absent irrespective of the b value
as mentioned before in Eq. (17). This paradox may be solved
by either assuming that ζ may not be so large or that a sub-
stantial in-plane gap anisotropy 	β (φ) is present that cancels
the Fermi surface anisotropy modeled by ζ . Here we prefer
the former scenario because the latter would require a large
additional condensation penalty. After all, the ζ value for the
β band may not be so large. This is currently an open question.

In view of the recent remarkable series of uniaxial stress
experiments, which reported the Knight shift change [55]
below Tc and continuity of Tc under varying uniaxial stresses
without cusp features [56–58] expected for degenerate
representations such as px + ipy or d + id , it is natural to
consider that Sr2RuO4 is a spin singlet superconductor. If
we pick up the appropriate pairing state among the d-wave
category d3k2

z −1 symmetry with off-symmetry horizontal
line nodes is the most viable choice, which is consistent
with the present experiment [31] and theoretical analysis.
Other gap symmetry with accidental nodes may be present.
More investigation is required to finally identify the pairing
symmetry in this system.

Note added in proof. Quite recently, Iida, et al. [59] have
observed a spin gap at (1/3,1/3,1/2) in the reciprocal lattice
units, which is indeed fully consistent with the horizontal line
nodes in Sr2RuO4.
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FIG. 27. Landscapes of the zero-energy DOS for two gap func-
tions, horizontal line nodes (a) and full gap (b) calculated by using
full Eilenberger theory at the same field B = 2; the results are shown
within one unit cell with a vortex core at the center. ZDOS is ex-
tended for the HLN case [N (E = 0) = 0.23], while it is concentrated
and localized at the vortex core for a full gap [N (E = 0) = 0.10].
Note that the unit cell is distorted due to the anisotropy � = 60.

APPENDIX A: FULL GAP CASE

It is instructive to see the full gap case compared with HLN
case shown in the main text. As seen from Fig. 26 where A4(B)
is displayed for HLN (a) and full gap (b) cases with KPA,
we see the followings for the full gap case (b): (1) A4(B) →
0 as B → 0, (2) for lower field B, A4(B) < 0, and (3) after
reaching a minimum A4(B) changes its sign. These results are
contrasted with the case of HLN, namely, A4(B) > 0 always
positive, it monotonically increases, and it approaches a finite
value as B → 0.

The results for a full gap case agree with those reached
by full self-consistent Eilenberger calculation (see Fig. 2 in
Ref. [21]). The differences in the tendency of A4(B) as B → 0
for nodes and a full gap cases an important signature of the gap
structure that appeared as we examined the experimental data.

The contrasting sign difference in A4(B) for HLN and full
gap cases in lower fields is understood as follows: In the
full gap case, the angle-resolved zero energy DOS (ZDOS)
N (φ) reaches a maximum in the φ = 0 direction since N (φ) ∝
1/vF (φ) while in HLN N (φ) ∝ vF (φ) due to the Doppler
shift.

This difference originates from the fundamentally differ-
ent nature of quasiparticles with zero energy: As seen from
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FIG. 28. A4(B) for various b values for the 3D Fermi sphere
case, showing

√
B-like increases first and then nearly saturating to

a constant as B → Bc2. The inset shows A4(B) as a function of b,
demonstrating that A4(B) ∝ b for both 2D cylinder and 3D sphere
cases at B/Bc2 = 0.17.

Fig. 27, we compare the landscapes in a vortex lattice unit cell
for two cases at the same field. The zero-energy quasiparticles
are extended in HLN (a) while they are localized and confined
in the vortex core region in the full gap case (b). Therefore, in
the former, they fully participate in the superfluid screening
current velocity vs around the vortex core. In the main text,
we focus on those extended nodal and also core-localized
quasiparticles with zero energy associated with HLN, which
play a fundamental role in the specific heat oscillations.

APPENDIX B: 3D FERMI SPHERE CASE

We show the KPA results of A4(B) for HLN for three-
dimensional (3D) spherical Fermi surface in Fig. 28. It is
seen from this that A4(B) in 3D nearly saturates for higher
fields, and that it increases rather quickly. By increasing the
Fermi velocity anisotropy b that is introduced in Eq. (16) the
amplitude A4 grows. The growing rate is linear in b at least
for smaller and moderate b values as seen from the inset of
Fig. 28, where A4(B) is plotted under a fixed B as a function
of b for both 2D and 3D cases. A4(B) tends to nearly saturate
or slowly increase at higher fields for the 3D case because the
DOS is given by

N (E ) = π

2

|E |
	0

(|E | < 	0) (B1)

all the way up to the gap edge [49], namely, the slope of the
DOS: dN (E )/dE does not change. The Doppler shift picture,
explained in the main text, works well.
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