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Since Ginzburg and Landau’s seminal work in 1950, superconducting states have been classified by the
hierarchy of the fundamental length scales of the theory, the magnetic-field penetration lengths and coherence
lengths. In the simplest single-component case they form a dimensionless ratio κ . The model was generalized by
Ginzburg for anisotropic materials in 1952. In this paper we expand the above length-scale analysis to anisotropic
multicomponent superconductors that can have multiple coherence lengths as well as multiple magnetic-field
penetration lengths, leading to unconventional length-scale hierarchies. We demonstrate that the anisotropies
in multiband superconductors lead to new regimes with various mixed hierarchies in different directions. For
example, a regime is possible, where for a field applied in a certain direction coherence lengths are smaller than
the magnetic-field penetration lengths in one of the perpendicular directions, whereas the penetration lengths are
larger in the other direction. Focusing on a model of a clean anisotropic multiband s-wave supercocoductors we
show exampes of a new regime where vortex cores overlap in one direction, resulting in attractive core-core in-
teraction, while in the orthogonal direction the magnetic-field penetration length exceeds the coherence lengths,
leading to dominance of repulsive current-current interaction, resulting in an unconventional magnetic response.
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I. INTRODUCTION

The goal of this paper is to calculate and classify the
coherence and magnetic-field penetration length hierarchies
and their effects on the magnetic properties of anisotropic
multiband superconductors. The original Ginzburg-Landau
theory [1] classified superconductors by a single number, the
Ginzburg-Landau parameter κ = λ/ξ , constructed from the
ratio of the two fundamental length scales of the classical
Ginzburg-Landau effective field theory, magnetic-field pene-
tration length λ and coherence length ξ . Using this framework
they identified two regimes in an externally applied magnetic
field, κ = λ/ξ < 1, where the free energy of a transnationally
invariant superconductor-to-normal interface was positive and
κ = λ/ξ > 1, where the interface energy was negative [in
the original paper the boundary (or critical) value of κ was
1/

√
2, we have absorbed the factor

√
2 into the definition of

the coherence length]. Later it was firmly established that for
κ = 1, any arbitrarily shaped superconductor-to-normal metal
interface in critical magnetic field has zero energy [2–5].

Almost immediately after the formulation of the theory,
two important generalizations were discussed. Superconduct-
ing materials are in general anisotropic, with coherence and
penetration lengths having a directional dependence. A cor-
responding generalization of the Ginzburg-Landau effective
theory was discussed in Ref. [6–10]. Shortly after the for-
mulation of Bardeen-Cooper-Schrieffer (BCS) theory, the su-
perconducting state was generalized to various non-s paring
states. It was demonstrated that superconducting states in
general break multiple symmetries and are thus described
by multicomponent Ginzburg-Landau theory. Multiple com-
ponents could originate from several superconducting com-

ponents in different bands, even without the breaking of
multiple symmetries by the superconducting state. Namely in
Refs. [11,12] superconductivity models were generalized to
the case of multiple bands. A microscopic derivation of the
two-band generalization of the Ginzburg-Landau model (us-
ing two complex fields), corresponding to superconductivity
in different bands, followed shortly [13,14].

The new regime that is possible in multicomponent
isotropic systems, compared to their single-component coun-
terparts, originates from some of the coherence lengths being
smaller and others larger than the magnetic-field penetration
length [15–19], i.e., in the n-component case ξ1,< ξ2 < · · ·
λ · · · < ξn−1 < ξn. This regime has been termed “type-1.5” in
the experimental paper [20]. For artificially layered systems,
the case of more complicated length-scale hierarchies, stem-
ming from different penetration lengths in different layers,
were considered [21,22].

Hierarchy of magnetic length scales was classified at the
level of London model for anistropic systems. A new fea-
ture that arises in single-component anisotropic model is
the appearance of two magnetic modes associated with the
different polarizations of the magnetic field, leading, under
certain conditions to field inversion [23–25]. In multiband
anistropic models the situation is more involved. In Ref. [26]
it was shown that qualitatively different electromagnetic ef-
fects arise when both anisotropy and multiple bands are
present. Namely it was demonstrated that for a London model
with n bands with different anisotropies, the magnetic mode
hybridizes with Leggett’s modes and as a result the sys-
tems have in general n + 1 magnetic modes with different
magnetic-field penetration lengths. The magnetic-field pene-
tration is characterized by n + 1 exponents that are different in
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different directions and under certain conditions have oscilla-
tory behavior.

This calls for investigation of these superconducting
regimes including interplay between the coherence and
magnetic-field penetration lengths which requires going be-
yond the London models. Here we present such an analysis
by considering the nonliner Ginzburg-Landau model of the
multiband anisotropic superconductors. That is, we discuss
the situation when both the magnetic field is characterized by
multiple penetration depths and there are several distinct and
directional-dependent coherence lengths.

The outline of this paper is the following. First, we analyze
the normal modes and calculate the coherence lengths for
a given anisotropic multiband model. We then analyze and
classify possible hierarchies of the length scales. Then we dis-
cuss the implications of this for vortex solutions, the magnetic
response of the system, and asymptotic intervortex forces for
simple interband couplings. After that we focus on multivor-
tex solutions and the magnetic response in regimes that are
present neither in the isotropic counterpart of the model nor
in the London limit of the multiband model considered in
Ref. [26].

II. THE MODEL

We consider the multiband Ginzburg-Landau free energy
for an n-component anisotropic system given by the free
energy in dimensionless units,

F = 1

2

∫
R3

{
n∑

α=1

(
γ −1

ijαDjψα

)(
γ −1

ikαDkψα

) + B2 + Fp

}
, (1)

where Di = ∂i + ieAi is the covariant derivative and ψα =
|ψα|eiθα represents the different superconducting components,
that, for example, can be superconducting components in
different bands. Greek indices will always be used to denote
superconducting components and Latin indices will be spa-
tial, with the summation principle applied for repeated Latin
indices only. The anisotropy of the system is given by γijα

which represents a three-dimensional diagonal matrix for each
component,

γijα =
⎛
⎝γxα

γyα

γzα

⎞
⎠. (2)

Fp collects together the potential (nongradient) terms
which can be any from a large range of gauge invariant terms.
The simplest example, and the one we will mostly focus
on, is the standard situation of a clean s-wave multiband
superconductor, with the potential terms and the Josephson-
Leggett interband coupling term,

Fp =
n∑

α=1

�α

4

(
ψ0

α

2 − |ψα|2)2

−
n∑

α=1

∑
β<α

ηαβ |ψα||ψβ | cos (θαβ ), (3)

where ψ0
α, �α , and η12 are positive real constants. The sec-

ond term above is the Josephson interband coupling, where

θαβ = θα − θβ is the interband phase difference between com-
ponents α and β. We especially focus here on the case of a
clean s-wave multiband superconductor where the Josephson
term locks all phase differences to zero in the ground state,
thus explicitly breaking the symmetry from U (1)n to U (1).
For a detailed discussion of the microscopic justification
of this kind of multiband Ginzburg-Landau expansion see
Ref. [27].

Note that in single-band superconductors for certain mag-
netic field directions the anisotropy can be removed by scaling
transformation. However, already in the two-band model such
rescaling is not possible, provided the matrices in (2) with
α = 1, 2 are linearly independent of each other. In this case
by rescaling coordinates it is only possible to isotropize one
of the bands, while the others remain anisotropic, e.g., for the
first band xi → γ −1

1ij xj and Ai → γ1ijAj .
In studying the magnetic response, we primarily focus on

composite vortices (winding in each component is equiva-
lent) since fractional vortices have infinite energy in a bulk
sample [28,29]. Hence we can categorize each solution by
the winding number N of the complex phase of both of the
condensates. N also dictates the magnetic flux through the
plane which is quantized,

N = �

�0
= 1

2π

∫
R2

Bd2x, (4)

where �0 is the flux quantum.
We have previously demonstrated that physics, which has

no counterpart in the single-component models, arises when
the anisotropy in each band is not equivalent. This condition
leads to multiple magnetic-field penetration lengths in the
London limit and, under certain circumstances, to a nonlo-
cal electromagnetic response in the nominally local London
model [26]. Importantly, the nonlocality scale in this case is
determined by the strength of interband Josephson coupling
and has nothing to do with the nonlocalities of the usual BCS
theory, associated with the Cooper pair dimension [30,31].

These unusual electromagnetic properties lead to the pos-
sibility of different length-scale hierarchies in different di-
rections for anisotropic multiband superconductors. As es-
tablished in the London model [26] the system has multiple
magnetic-field penetration lengths. Therefore the new possi-
ble hierarchies are

(i) in one direction (r̂) the system has all
coherence lengths smaller than all penetration lengths
ξ1(r̂), ξ2(r̂), . . . , ξn(r̂) > λ1(r̂), λ2(r̂), . . . , λn+1(r̂) (type-1);

(ii) in another direction all penetration lengths are
smaller than the coherence lengths ξ1(r̂), ξ2(r̂), . . . , ξn(r̂) <

λ1(r̂), λ2(r̂), . . . , λn+1(r̂) (type-2);
(iii) in some directions the hierarchy is mixed, i.e., some

penetration length(s) λi (r̂) are smaller and some are larger
than the coherence lengths ξi (r̂) (type-1.5).

In an isotropic multiband superconductor, one of the conse-
quences of different length-scale hierarchies is the following:
Interactions between two vortices with similar phase windings
is isotropically attractive in the case where all coherence
lengths are larger than the penetration length, due to dom-
ination of core-core interaction. Conversely, it is repulsive
in the case where the magnetic-field penetration length is
larger than coherence lengths, unless there is a field inver-

064509-2



HIERARCHIES OF LENGTH-SCALE BASED TYPOLOGY IN … PHYSICAL REVIEW B 99, 064509 (2019)

sion. In the case where magnetic-field penetration length falls
between the coherence lengths the intervortex interactions
are attractive at longer and repulsive at shorter range (see
Refs. [15,17–19,32]). In the multiband anisotropic case, the
fact that anisotropies cannot be rescaled, even for the fields
directed along the crystal axes, suggests that the typology
of superconductivity states require specifying length-scale
hierarchies for different directions in a plane. That is, since the
hierarchy of the fundamental length scales are different in dif-
ferent directions, intervortex interactions in one direction can
be dominated by core-core intervortex forces and in another
direction by electromagnetic and current-current interaction.

To find the range of parameters where such effect can take
place we consider the linearized theory. Then, to find the
actual vortex configurations, we need to use numerics because
of the highly complex and nonlinear nature of the problem of
investigating these vortex states.

III. SINGLE-VORTEX SOLUTIONS

To understand the basic properties of the vortex states in
anisotropic multiband superconductors we consider first the
single quanta N = 1 solutions.

For numerical calculations we use the FreeFem++ library
on a finite element space. A conjugate gradient flow method
was utilized to minimize various initial conditions to find
the minimum that is displayed. All initial configurations took
the form of perturbed axially symmetric vortices, either with
higher winding number or well separated such that they
can still interact. The grid dimensions where chosen to be
substantially larger than the scale of the vortices, such that
vortices do not interact with boundaries. We have considered
many parameters in our investigation and have selected some
particular choices that demonstrate the key behavior of the
systems we are interested in.

The initial conditions used for introducing both single and
multiquanta vortices, when well separated, can be written
ψα = [

∏N
k=1 ψ (k)

α (x)]/uN−1
α , where uα is the ground-state

(vacua) value for the magnitude and the radial ansatz for a
vortex at the origin is ψ (k)

α (0) = fα (r )eiθ . The profile func-
tions have the limits fα (0) = 0, fα (∞) = uα .

Using the above initial guess, along with perturbations to
ensure the radial symmetry is broken, we minimize using the
conjugate gradient flow algorithm to find the true minimal
energy solutions for single quanta, similarly to those displayed
in Figs. 1, 2, and 3. From these solutions it is clear that the
hierarchy of the length scales associated with matter fields and
magnetic fields can be different in different directions.

As with the strong type-2 case [26], we observe field
inversion (negative magnetic field). Additionally, we observe
that the field inversion is present when the Josephson coupling
is set to zero (η12 = 0) in Fig. 3 but also that the mode that
mediates the negative magnetic field become more long range
but also weaker.

The main conclusion that can be drawn from the single-
vortex solutions presented in this section is that the core can
extend beyond the flux-carrying area in certain directions
while being smaller than the magnetic-field localization in
other directions, as seen in Fig. 2.

FIG. 1. The N = 1 one-quanta numerical solution for anisotropy
in one band with no Josephson coupling �1 = �2 = 2, η12 =
0, γ −1

1x = 2, γ −1
1y = √

0.7, and γ2x = γ2y = 1. (a) Bz magnetic field,
(b) |Bz| − Bz negative magnetic field, (c) E energy density, (d) |ψ1|2,
(e) |ψ2|2, and (f) θ12 phase difference.

IV. VORTEX INTERACTION ENERGIES
WITHIN THE LINEARIZED THEORY

In this section we consider the fundamental length scales
by performing an asymptotic analysis and linearizing the
Ginzburg-Landau model near its ground state for a clean
multiband U (1) s-wave superconductor. We consider a system
where the global minima occurs at (|ψα|, θαβ ) = (uα, 0) and
uα � 0. The trivial ground-state solution is then given to be
ψα = uα, A = 0, and θαβ = 0.

As we are interested in asymptotic interactions between
vortices, we consider leading-order terms in the free energy
which are quadratic in the small fluctuations of the vector field
A and the real scalar fields εα = |ψα| − uα and θ12. While for
asymptotic intervortex forces in the standard isotropic s-wave
multiband superconductor it can be assumed that θ12 = 0
[16,33], this is no longer the case for anisotropic systems, as

FIG. 2. The N = 1 one-quanta numerical solution for very
strong anisotropy in opposite bands with Josephson coupling
and different parameters �1 = 4, �2 = 0.5, η12 = 1, γ −1

1x = γ −1
2y =

4, γ −1
1y = γ −1

2x = 0.5. (a) Bz magnetic field, (b) |Bz| − Bz negative
magnetic field, (c) E energy density, (d) |ψ1|2 (e) |ψ2|2, and (f) θ12

phase difference.
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FIG. 3. The N = 1 one quanta numerical solution for anisotropy
in both bands with no Josephson coupling �1 = 4, �2 = 0.5, η12 =
0, γ −1

1x = γ −1
2y = 2, γ −1

1y = γ −1
2x = √

0.7. (a) Bz magnetic field, (b)
|Bz| − Bz negative magnetic field, (c) E energy density, (d) |ψ1|2,
(e) |ψ2|2, and (f) θ12 phase difference.

gradients of the phase difference and the magnetic field are
coupled due to the anisotropy [26].

The general leading-order terms in free energy can be
calculated as follows:

Flin =
n∑

α=1

(
γ −2

α ∇εα · ∇εα

) + 1

2

n∑
α=1

n∑
β=1

εαHαβεβ

+
n∑

α=1

(
γ̂ 2

α jα · jα

) + 1

2
(∂1A2 − ∂2A1)2

+
n∑

α=1

∑
β<α

Jαβθ2
αβ. (5)

Here jα are the partial superconducting currents

jα = 1

2e
γ̂ −2

α (∇θα − eA), (6)

where have set h̄ = c = 1, γ̂k are coefficients characterizing
the contribution of each band to the Meissner screening,
A is the vector potential, and Jαβ the Josephson coupling.
Additionally, H is the Hessian of the potential term Fp(|ψα|)
evaluated about the field vacuum values (uα ),

Hαβ = ∂2Fp

∂|ψα|∂|ψβ |
∣∣∣∣
(uα )

. (7)

If we consider the linear free energy in (5), then the
vector potential A and the phase difference θαβ are decoupled
from the magnitudes of the scalar fields |ψα|2. Due to this
decoupling we can see that (5) is split into two independent
parts. That is the London-like energy is given by the last three
terms and the first two terms yield the contribution of scalar
fields. The London-like part of the free energy has rescaled
parameters which are related to that of the Ginzburg-Landau
functional Eq. (1) by Jαβ = ηαβuαuβ and γ̂ −2

α = (2euα )2γ −2
α ,

where the spatial matrix indices are suppressed for γ̂ in (6).
As noted above, in this class of models, the magnetic

and phase difference modes decouple from the condensate
magnitudes and constitute a problem identical to that in the
London model that has already been considered in [26]. For
completeness we reproduce here the solutions to the linearized

London equations from that paper. Ultimately, if we reduce to
the simplest case of n = 2, then the London model leads to
multiple modes being produced for both the magnetic field B
and the phase difference θ12. In the London model [26], these
modes take the form

Bz(r, ϕ) = �0

[
h1(ϕ)

e−k1r

√
k1r

− h2(ϕ)
e−k2r

√
k2r

]
, (8)

hj (ϕ) = k2
j

(
γ̂ −2

1x γ̂ −2
2x γ̂ 2

Lx cos2 θ + γ̂ −2
1y γ̂ −2

2y γ̂ 2
Ly sin2 θ

) − k2
0

a
(
k2

1 − k2
2

) ,

(9)

where r, θ represent the physical space in polar coordinates

and γ̂ 2
Li = (

∑
α γ̂ −2

αi )
−1

,

k2
1,2 = −b ± √

b2 − 4ac

2a
, (10)

where

a = (
γ̂ −2

1y cos2 θ + γ̂ −2
1x sin2 θ

)(
γ̂ −2

2y cos2 θ + γ̂ −2
2x sin2 θ

)
,

(11)

b = γ̂ −2
1y γ̂ −2

2y γ̂ −2
Lx cos2 θ + γ̂ −2

1x γ̂ −2
2x γ̂ −2

Ly sin2 θ

+ k2
0

(
γ̂ −2

Ly cos2 θ + γ̂ −2
Lx sin2 θ

)
, (12)

c = k2
0 γ̂

−2
Ly γ̂ −2

Lx . (13)

Note that there is a fourfold symmetry in Eq. (8) around
the vortex solution, which matches the maximal general sym-
metry of the original free energy.

Comparing with the numerical results of the previous
section, one can see that distributions of magnetic field and
the phase difference θ12 are qualitatively similar to that of the
London model prediction. Thus we suggest to use the pattern
of London model solution to approximate the field obtained in
the full nonlinear model, when matched with a general profile
function b(r ) which is a monotonic function running from
b(0) = 1 to b(∞) = 0:

B = b(r )�0

[
h1(ϕ)

e−k1r

√
k1

− h2(ϕ)
e−k2r

√
k2

]
. (14)

However, the London model symmetries say little about
the behavior of the scalar fields (condensate magnitudes).

In the linearized theory the order parameter amplitudes
decouple from the magnetic field and phase difference in
this model. From the numerical solutions obtained for the
single-quantum vortex in the previous section we get that the
amplitudes can be well described by the axially symmetric
solutions in the rescaled coordinates xi → γijαxj ,

ψ1 = f1(r1)eiθ1 , ψ2 = f2(r2)eiθ2 , (15)

where rα =
√
γ 2

αxx
2 + γ 2

αyy
2. Here fα (rα ) are real profile

functions with the boundary values fα (0) = 0, fα (∞) = uα

which is dependent on the potential Fp.
We expect that this approximation is accurate when in-

tercondensate couplings do not dominate. However, when
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used in numerics, even in the regime with strong Josephson
coupling, it provides very good initial guess for the solutions.

The phase of each of the condensates in Eq. (15) can
be written θ1 = (θ� + θ12)/2 and θ2 = (θ� − θ12)/2, where
θ� = θ1 + θ2. The phase difference symmetry is determined
in a similar way to the magnetic field above from the London
model, equipped with an additional profile function. The
phase sum, however, is determined by the gauge choice we
make along with the chosen winding number.

Here we focus on the effects which appear beyond the
London model due to the spatial variations of density fields,
i.e., at the scales determined by coherence lengths and es-
pecially on their effect on the vortex states. To that end, for
the model in question, one should analyze H, the Hessian of
the potential term Fp(|ψα|), which appears in Eq. (5) (for a
detailed discussion in the istropic counterpart of the model
see Refs. [32,33]). The remaining part of the free energy, once
the decoupled London part is dealt with, is dependent on the
magnitude of the scalar fields alone. In general these scalar
fields εα are coupled through the Hessian Hαβ . This coupling
can be simplified by diagonalizing the Hessian in (7) using its
eigenvectors vα = (v1

α, v2
α )T and corresponding eigenvalues

μα . This leads to a linear combination of the fields χ where
(ε1, ε2)T = χ1v1 + χ2v2. In the isotropic case this would lead
to a simple linear PDE for each decoupled field χ . However,
the nontrivial anisotropy leads to additional cross terms which
have the form of gradient couplings between the fields χα .
Note that these fields cannot in general be thought of as the
individual condensate amplitudes.

Then the part of free energy which depends on the order
parameter amplitude fields χ1,2 becomes

F con
lin = 1

2

2∑
α=1

(
γ̃ −1

αij ∂jχαγ̃ −1
αik∂kχα + Qij∂iχ1∂jχ2 + μ2

αχ2
α

)
,

(16)

where Qij = (v1
1v

1
2γ

−2
1ij + v2

1v
2
2γ

−2
2ij ) which vanishes in

the isotropic case, due to v1v2 = v1
1v

1
2 + v2

1v
2
2 = 0 and

γ̃ −2
1 = γ −2

2 .
The presence of tensor Qij in the anisotropic case leads to

rather involved expressions for length scales in general, even
in the simplest minimal model of a two-band superconductor
Eq. (3). In order to consider the technically simplest case it is
instructive to focus on the U (1)n model, namely the regime of
zero Josephson coupling η12 = 0. In this case the interband
phase difference degree of freedom becomes massless and
decouples from the magnetic field. In this case we have only a
single although directional-dependent penetration length λL.
Later, we will return the case of finite Josephson coupling.

If we return to a general number of bands, then we have the
following linearized contribution to the free energy:

F con
lin = 1

2

n∑
α=1

(
γ −1

αij ∂j εαγ −1
αik∂kεα + μ2

αε2
α

)
, (17)

where μ2
α = 1

2�αψ0
α

2. From this linearized theory one can
extract long-range core-core contribution to intervortex forces
by generalizing the procedure from Refs. [33,34] to the mul-
ticomponent anisotropic case. Namely we first find the equa-

tions of motion from the contribution to the free energy from
Eq. (17). We then spatially rescale each of these equations
such that r → rα for the equation dependent on εα . Note that
εα is only dependent on this quantity due to our approximation
presented in (15). We then wish to replicate the asymptotics
of the vortex scalar fields in the linear system above by
including a point source ρψ such that our system of decoupled
linearized equations become the familiar wave equations,(

�α + μ2
α

)|ψα| = ρα, (18)

where �α is the rescaled d’Alembert operator such that x →
γαxx and y → γαyy or r → rα =

√
γ 2

αxx
2 + γ 2

αyy
2. We have

thus acquired multiple decoupled wave equations that are of
the form of that considered in Ref. [34].

We follow the procedure presented in detail there for solv-
ing this equation and finding the corresponding interaction en-
ergy. We will not reproduce the details here, see Refs. [33,34]
for further detail. This will lead to a point source of the form
ρα = qαδ(x) and yields the long-range interaction energy in
the form of modified Bessel functions K0 that exponentially
decay at the coherence length scales (which are the inverse
masses μα of the fields of the above linearized theory). The
resulting core-core interaction energy is

Ecore−core
int = − q2

1

2π
K0(μ1r1) − q2

2

2π
K0(μ2r2), (19)

where K0 is the Macdonald function.
The core-core interaction is attractive and contains mul-

tiple coherence lengths, as is already understood for multi-
band models. Adding the interaction which originates from
magnetic and current-current forces, calculated in Ref. [26],
gives a complete picture of the long-range forces between the
composite vortices:

Eint = m2
1

2π
K0

(
λ−1

L r
) − q2

1

2π
K0(μ1r1) − q2

2

2π
K0(μ2r2). (20)

The first term in Eq. (20) represents the linear interaction
of the magnetic origin that has the range of the London
penetration length, given from 10 λ−1

L = −ik−1
1 . In the limit

of vanishing Josephson coupling there is only one magnetic
length scale (see detail in Ref. [26]):

k1 =
i

√
γ̂ −2

1y γ̂ −2
2y γ̂ −2

Lx cos2 θ + γ̂ −2
1x γ̂ −2

2x γ̂ −2
Ly sin2 θ√(

γ̂ −2
1y cos2 θ + γ̂ −2

1x sin2 θ
)(

γ̂ −2
2y cos2 θ + γ̂ −2

2x sin2 θ
) .

(21)

We stress that in general (when the Hessian is not diago-
nalized) these interaction terms cannot be directly associated
with a particular band but are formed from combinations of
parameters from all the bands. The condensate interaction
terms are attractive, however, with coherence lengths being
rescaled by the anisotropy and hence directionally dependent.
The magnetic field, however, is repulsive, with its directional
dependence given by the anisotropies in the two condensates.
If we reintroduced the Josephson term, however, then we
would observe an additional magnetic/current-current inter-
action contribution, associated with a new magnetic mode
[26], with a more complex directional dependence and also
a nontrivial form for μ2

α .
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We now consider the possible fundamental lengths-scale
hierarchies for a two-band superconductor with no Josephson
interband coupling and general anisotropy. For this purpose
we analyze the interaction energy between two vortices sepa-
rated by a given distance along the x and y directions.

The above parameters μα give the exponential decay of a
small perturbation in the modulus of the complex supercon-
ducting field components and thus coherence lengths (cf. the
analysis in the isotropic case [16,33]):

ξαi = μ−1
α γαi = �−1

α u−1
α γ̂αi . (22)

As we are purely interested in the difference between the
coherence lengths in the two directions and not the absolute
scales, we can choose an arbitrary spatial rescaling without
loss of generality. It is easiest to work with γ̂Lx = γ̂Ly = 1
such that the magnetic-field penetration length becomes 1
in both the x and y directions. This leads to the following
relation γ̂ −2

2x = 1 − γ̂ −2
1x and thus, for the two-band case,

leaves us with effectively four parameter choices μ1, μ2, γ1x ,
and γ1y such that our correlation lengths are ξ1i = μ1γ1i and
ξ2i = μ2γ2i . Finally, this leads to the following interaction
energies:

Ex
int = m2

1

2π
K0(x) − q2

1

2π
K0

(
ξ−1

1x x
) − q2

2

2π
K0

(
ξ−1

2x x
)
, (23)

E
y

int = m2
1

2π
K0(y) − q2

1

2π
K0

(
ξ−1

1y y
) − q2

2

2π
K0

(
ξ−1

2y y
)
. (24)

At large radial distance, the interaction energy Eint is dom-
inated by the mode with the longest coherence/penetration
length. In (24) the magnetic-field penetration length has been
rescaled by a spatial rescaling such that λ−1

L = I and with loss
of generality set uα = 1, as any change in uα can be absorbed
into �α and γα . Since the condensate correlation lengths ξαi

are directionally dependent, they can be smaller or larger than
the magnetic-field penetration length in various directions,
leading to different hierarchies in one direction as opposed
to another. We outline below that even with no interband
coupling, there are new regimes in the parameter space where
the hierarchies are a mixture of other more familiar types, that
do not exist in the isotropic case,

(i) Type-1/Type-1.5. In the x direction both coherence
lengths are larger than the penetration length of the mag-

netic field μ−1
1 > γ1x, μ−1

2 > (1 − γ −2
1x )

− 1
2 , and in the y di-

rection there is a mixture of hierarchies μ−1
1 > γ1y, μ−1

2 <

(1 − γ −2
1y )

− 1
2 .

(ii) Type-2/Type-1.5. In the x direction both coherence
lengths are smaller than the penetration length of the mag-

netic field μ−1
1 < γ1x, μ−1

2 < (1 − γ −2
1x )

− 1
2 , and in the y di-

rection there is a mixture of hierarchies μ−1
1 > γ1y, μ−1

2 <

(1 − γ −2
1y )

− 1
2 .

(iii) Type-1.5/Type-1.5. In the x direction there is a mixture
of hierarchies μ−1

1 > γ1x, μ−1
2 < 1 − γ1x , and in the y direc-

tion there is also a mixture of hierarchies but in the opposite
order μ−1

1 < γ1y, μ−1
2 > 1 − γ1y .

The type-1.5/type-1.5 may look similar to the isotropic
type 1.5 multicomponent system; however, the dominant in-
teraction in each band switches between the x and y directions

so the structure of vortex clusters should not be expected to
be the same. One may note that type-1/type-2 is not featured
above, and this is due to not having enough parameters,
as in the same formalism it requires that in the x direction

μ−1
1 > γ1x, μ−1

2 > (1 − γ −2
1x )

− 1
2 and in the y direction

μ−1
1 < γ1y, μ−1

2 < (1 − γ −2
1y )

− 1
2 . But when combining these

inequalities it leads to γ −1
1x < γ −1

1y and −γ −1
1x < −γ −1

1y , which
is a contradiction. Note that this statement applies only to the
simplest Josephson-decoupled model but clearly that hierar-
chy of the length scales is possible in more general models.

We note that the addition of the Josephson coupling above
would lead to hybridization of the Leggett’s and London’s
modes [26] and thus to an additional penetration length for the
magnetic field, which has to be taken into account when con-
sidering intervortex interactions. This leads to nonmonotonic
field behavior with field inversion at some distance from the
vortex center, just as in the London model [26]. For this it is
necessary and sufficient to satisfy two conditions: h2 < 0 and
k1 > k2, so that the magnetic mode with negative amplitude
can become dominating at some distance from the vortex.
Importantly, the Josephson term causes Qij �= 0 in Eq. (16).
The resulting mixed-gradient terms will lead to nontrivial
intervortex interactions.

Finally, we reiterate the key point of this section, that,
unlike in isotropic multicomponent systems, it is no longer
sufficient to consider the form of Fp alone to determine the
long-range interactions, the crystal anisotropies must be also
be taken into account to determine what type a system is and
different hierarchies of the length scales in different directions
become possible.

V. MULTIVORTEX SOLUTIONS

In the previous section we demonstrated that the inter-
actions between vortices in the Ginzburg-Landau model of
anisotropic superconductor are different from that obtained in
the isotropic case and also, in general, different from that in
the London model [26]. These interactions are characterized

FIG. 4. The N = 4 four-quanta numerical solution for
anisotropy in one band exhibiting a chain solution �1 = �2 =
2, η12 = 0.5, γ −1

2x = 2, γ −1
2y = √

0.7, and γ1x = γ1y = 1. (a) Bz

magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E energy
density, (d) |ψ1|2, (e) |ψ2|2, and (f) θ12 phase difference.

064509-6



HIERARCHIES OF LENGTH-SCALE BASED TYPOLOGY IN … PHYSICAL REVIEW B 99, 064509 (2019)

FIG. 5. The N = 4 four-quanta numerical solution for
anisotropy in one band with split parameters across the two
bands allowing a clear chain to form. �1 = 4, �2 = 2, η12 =
0.5, γ −1

2x = 2, γ −1
2y = √

0.7 and γ1x = γ1y = 1. (a) Bz magnetic
field, (b) |Bz| − Bz negative magnetic field, (c) E energy density, (d)
|ψ1|2, (e) |ψ2|2, and (f) θ12 phase difference.

by different invervortex forces in different directions. We must
also consider the effect of magnetic-field inversion caused by
the hybridization of magnetic and Leggett modes. We already
know that the magnetic-field inversion can produce weakly
bound vortex states even in the strongly type-2 region of pa-
rameter space [26]. Here we are interested in a different kind
of multisoliton or multiquanta solution that can be formed at
different length scales due to core-core interactions. To find
such bound states, we consider numerical solutions to the
Ginzburg-Landau energy functional with winding N > 1. All
the parameters we have selected are not well approximated by
the London limit, considered in the previous paper [26]. The
numerical scheme used is explained in Sec. III.

We have considered a number of (N = 4) four quanta
solutions with a selection of parameters plotted in Figs. 4, 5,
and 6 that demonstrate chainlike patterns. These are the
multiquanta solutions obtained in different regimes discussed

FIG. 6. The N = 4 four-quanta numerical solution for
anisotropy in one band with no Josephson coupling, allowing the
chain to breathe out �1 = �2 = 2, η12 = 0, γ −1

1x = 2, γ −1
1y = √

0.7
and γ2x = γ2y = 1. (a) Bz magnetic field, (b) |Bz| − Bz negative
magnetic field, (c) E energy density, (d) |ψ1|2, (e) |ψ2|2, and (f) θ12

phase difference.

FIG. 7. Magnetization numerical solution for anisotropy in one
band γ1x = 0.7, γ1y = 0.4γ, γ2x = γ2y, η12 = 0.5, and �1 = �2 =
2. The contour plots are (a) Bz magnetic field, (b) |Bz| − Bz negative
magnetic field, (c) E energy density, (d) |ψ1|2, (e) |ψ2|2, and (f)
θ12 phase difference. The picture shows a clear tendency for vortex
stripes formation with the stripes being vortex bound states due to
core-core interaction.

in the previous section, namely selecting the parameters such
that a different correlation length dominates in the x and y

directions.
In Fig. 4 we show the distributions of fields generated by

the the cluster of four vortices in the superconductor which
has type-1.5 behavior in the x direction and the type-2 in the
y direction. The bound states take the form of chains which
increase in length as the winding number increases. The chain
looks similar to a type-1.5 solution with visibly separated
fractional vortices in the first component but with the zeros
very close. The binding of vortices is due to the attractive core-
core interaction which dominates in the x direction. Note that
the magnetic-field inversion occurs at much larger distances,
meaning the field inversion has a much weaker contribution
to the interaction. We also observe that the separation of the
solitons on the end of the chain is higher and with smaller
solitons. Additionally, the energy shown in Fig. 4(c) has peaks
at the ends of the chain.

In Fig. 5 we show a similar system that is type-1.5/type-
2 but with one of the modes being closer to type-2, so that
the vortices are more separated. Note that for this choice of
parameters the additional separation and energy on the ends
of the chain are less noticeable. Figure 5 shows the parameter
set which is closer to type-1 behavior.

The binding of vortices into the chain is due to core-core
interaction and the existence of long coherence length in the
x direction. At the same time existence of a short coherence
length prevents megavortex formation: Clearly, there are spa-
tially separated core singularities for both parameters. If a
vortex is placed outside of the chain but very close such that
nonlinear effects are at play, it will be pulled into the chain,
forcing other vortices out of its way.

If other chains or vortices are placed with a large y sep-
aration, then they repel, due to the magnetic-field penetration
length being the largest length scale in this direction and hence
dominating at long range. Ultimately, they will form a bound
state based on the negative magnetic field (the field effect
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FIG. 8. The N = 4 four-quanta global minimal energy solutions, with periodicity enforced in the horizontal direction, is successively
squeezed (periodic length is shortened). This squeezing results in an effective increase in magnetic-field density. Note that the Josephson
coupling is switched on here, which has a marked effect on the length scales. We observe the chain buckling and then splitting, with the chains
having an optimal separation which remains stable for long run times. The parameters are �1 = �2 = 2 γ −2

1x = 4.5, γ −2
1y = 0.7, γ2x = γ2y = 1,

and k0 = 1.

considered in Ref. [26]); however, as shown in the figures this
is very weak, so any bound state will have negligible binding
energy.

We interpret the above solutions as having type-2 behavior
in the y direction and type-1.5 in the x direction, respectively.
The new features here are (i) the separation of bound vortex
cores forms in one direction rather than forming compact clus-
ters (the consequence of the different length-scale hierarchies
in different directions), and (ii) type-2-like behavior in the
direction perpendicular to the chain.

VI. MAGNETIZATION

The above demonstrated different hierarchies of the length
scales in different directions, as well as the structure of stable
vortex chains resulting from anisotropic interactions. We are
now interested in the question of how these chain/stripe
solutions enter into a magnetized sample. To model the mag-
netization of a finite domain or sample we must introduce the
external field H (in the previous sections the vortices were
created by an initial guess and stayed in the sample because
of negligible interaction with the boundary). Hence in this
section we minimize the Gibbs free energy on a finite domain
G = F − 2

∫
R2 HB d2x. We impose the condition ∇ × A =

H on the boundary of the superconductor. If we then slowly
increase the external field value in steps of 10−2 we can
simulate the turning up of an external field and the subsequent
magnetization of the theory over our finite domain.

The results of such simulations for the parameters γ −1
1x =√

4.5, γ −1
1y = √

0.7, γ −1
1x = γ −1

1y = 1, �1 =�2 =2, and η12 =
0.5 are shown in Fig. 7. If we consider the results here we can
see that the vortices are interacting in very different ways in
the x and y directions in the domain. This causes vortex chains
to form. The entire domain from the simulation is plotted
and only one value of external magnetic field is shown. The
magnetization process has the form of a first-order phase
transition associated with the sudden entry of a large number
of vortices due to attractive core-core interaction.

Analyzing how the chains interact is challenging and we
must use an alternative method.

VII. INTERACTION OF VORTEX CHAINS

In this section we are interested in demonstrating that
chainlike solutions do form in the bulk of superconductors
subject to an external magnetic field. Also we discuss how
such objects are formed and interact with each other. We have
already demonstrated that a regime exists in parameter space
where vortex solutions in an anisotropic multiband model tend
to form bound states in some direction while repelling in
other direction. However, this does not necessarily mean that
clear well-separated chains can form in a magnetized sample.
To study this we must study the chain solutions themselves,
which is easiest to achieve by studying vortex solutions in a
periodic space.
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FIG. 9. The plots show the minimal energy solutions for a space that is periodic in the horizontal direction where the periodic length L is
continuously decreased, representing an effective increase in magnetic-field density. Note that the Josephson term has been switched off here.
The chain starts to buckle and eventually splits into two chains. These two chains ultimately repel each other, becoming well separated. This
demonstrate direction-dependent typology of the superconducting state: It is type-1.5-like vortex bound states formation in the x direction
(dominated by core-core interaction) and type-2-like vortex chain repulsion in the y direction (dominated by current-current and magnetic
interactions). The parameters are �1 = �2 = 2 γ −2

1x = 4, γ −2
1y = 0.7, γ2x = γ2y = 1, and k0 = 0.
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The easiest way to achieve this is to consider a domain
that is periodic in one direction (namely the direction that
the stripes/chains prefer to form). We have therefore intro-
duced periodic boundary conditions in this direction, such
that ψα (L, y) = ψα (0, y) and A(L, y) = A(0, y). The other
two boundary conditions are then just the standard zero
normal-current condition. These boundary conditions allow
the correct winding for map to occur and thus for vortex
solutions to traverse the space. All the winding will be located
on the boundaries with zero normal-current condition due to
the periodic conditions.

We then introduce a four-quanta solution into the domain
and track what happens as L is varied. Specifically, we are
interested in what happens as L is reduced, effectively squash-
ing our four-quanta solution and increasing the magnetic-field
density. This is achieved by using a conjugate gradient flow
method as detailed in Sec. III to minimize the configuration
and then reducing L and minimizing again. This process is
repeated until the desired magnetic-field density is achieved.
The field configurations for applying this method are plotted
for various parameters in Figs. 8 and 9.

There are a few different categories that the various pa-
rameters which give chainlike solutions can fall into. First,
as the periodic length L is reduced the stripe homogenizes
in the x direction and then continues to expand into the y

direction, eventually filling the space with the homogeneous
value |ψ |2α = 0.

All the other categories that solutions can fall into exhibit
some form of chain splitting as the magnetic-field density is
increased. In Fig. 8 we can see that the familiar chain solution
initially forms and as it is squashed it buckles, forming a
zig-zag, and then splits into multiple chains. These multiple
chains still have some separation in the zeros of the second
condensate which interlace with the zeros in the other chain.
Note that these are the same parameters as for the magnetiza-
tion shown in Fig. 7.

In Fig. 9 we see a similar effect in that the chain starts to
buckle and splits. However, we now see that as the magnetic-
field density increases, the individual chains repel each other
in a stronger fashion. This leads ultimately to two well-
separated stripes. In that case we have the type-2 magnetic-
dominated repulsive interaction in the vertical direction and
type-1.5 core-core-interaction-dominated intervortex forces in
the x direction. Note, however, that similarly to the extreme
type-2 case [26] in such a regime there can appear a small
attractive force between stripes due to field inversion at a wide
separation and hence not an infinite optimal separation.

This behavior is the best demonstration of the vortices
acting very differently in different directions in the domain.
Attracting vortices in one direction onto the end of the chains
and repelling vortices in the other direction.

VIII. CONCLUSION

In conclusion, we have discussed generalization of the
length-scale-hierarchy based typology of superconductors
[1,6] to the case where both multiple components and
anisotropies are present. In an isotropic multicomponent case,
the above-discussed regimes were type-1 where all coherence

lengths are larger than the magnetic-field penetration length
ξi > λ, type-2 where λ < ξi , and a mixed case where some
of the coherence lengths are larger and some are smaller
than the magnetic-field penetration lengths (that was termed
earlier “type-1.5”). Besides that one should distinguish the
special zero-measure Sarma-Kramer-Bogomolny critical
point, where all these length scales are equal and the Bogo-
molny bound is saturated. We have demonstrated that in the
multicomponent case the length-scale based typology is quite
different from the anisotropic single-component counterpart
[6,10]. The considered anisotropic clean s-wave n-band mul-
ticomponent system is characterized by n-coherence lengths
that differ in different directions, ξ1(r̂), ξ2(r̂), . . . , ξn(r̂), as
well as multiple directionally dependent magnetic-field pen-
etration lengths λ1(r̂), λ2(r̂), . . . , λn+1(r̂) (of which there are
n + 1 when the Leggett and magnetic modes are hybridized
[26]). The new feature that arises is that the hierarchies of
these length scales are different for different directions in a
crystal. From the obtained asymptotic intervortex forces it is
clear that vortex structure formation in these systems should
in general be quite complicated and warrants further study.
A new regime that we discussed in particular is where, for
a magnetic field applied in the z direction, the length-scale
hierarchy is type-1.5 in the x direction and type-2 in the
y direction. In that regime the system forms vortex bound
states in the form of stripes or chains, where the intervortex
attraction is mediated by core-core overlap in the x direction
while the stripes have type-2 interaction in the y direction,
mediated by the magnetic and current-current forces. In the
language of interface energies, the system tries to maximize
interfaces in the y direction while in x direction there are
different interfaces, some of which the system tries to maxi-
mize and some that the system tries to minimize (i.e., in some
of the regime the components clearly forms a “mega-vortex-
like” core extending in x direction). By the same token, the
non-re-scalability of length-scale hierarchies suggests mixed
type-1/type-2 regimes where the system goes into a stripe
pattern that maximizes superconductor-to-normal interfaces
in one direction, while being translationally invariant in a
perpendicular direction. In Ref. [26] we gave some simple
estimates that disparity of magnetic-field penetration lengths
should arise for realistic multiband materials. Besides crys-
talline anisotropies, the effect of vortex chains formation due
to length-scale anisotropies can arise in multiband systems
with strains, which can lead to the locally type-1.5 hierarchy
of the length scales. This calls for further calculations regard-
ing which microscopic parameters realize the above regimes
in multiband materials.
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