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We study the decay rate �(k) of density excitations of two-component Bose-Einstein condensates at zero
temperature. Those excitations, where the two components oscillate in phase, include the Goldstone mode
resulting from condensation. While within Bogoliubov approximation the density sector and the spin (out-of-
phase) sector are independent, they couple at the three-phonon level. For a Bose-Bose mixture we find that the
Belyaev decay is slightly modified due to the coupling with the gapless spin mode. At the phase separation point
the decay rate changes instead from the standard k5 to a k5/2 behavior due to the parabolic nature of the spin
mode. If instead a coherent coupling between the two components is present, the spin sector is gapped and,
away from the ferromagnetic-like phase transition point, the decay of the density mode is not affected. On the
other hand, at the transition point, when the spin fluctuations become critical, the Goldstone mode is not well
defined anymore since �(k) ∝ k. As a consequence, we show that the friction induced by a moving impurity is
enhanced—a feature which could be experimentally tested. Our results apply to every nonlinear 2-component
quantum hydrodynamic Hamiltonian which is time-reversal invariant and possesses an U (1) × Z2 symmetry.
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I. INTRODUCTION

The existence of Goldstone modes [1], i.e., gapless collec-
tive excitations, has crucial consequences on the thermody-
namics and dynamics of systems with spontaneously broken
continuous symmetries. While expected to be generically
present in such systems, they can actually disappear in some
specific situations. The most famous is the Anderson-Higgs
mechanism [2,3], known in the relativistic context where, for
instance, a scalar Higgs field gives a finite mass to the W-
and Z-Bosons in electro-weak theory, i.e., three out of the
four Goldstone modes associated with the four generators of
U (1) × SU (2) become massive. This effect can be understood
as due to the long-range interactions and is present also in
nonrelativistic systems like superconductors [4], where the
phase mode characterizing cooper-pair condensation disap-
pears and the photons become massive—or jellium [5], where
the Wigner crystal loses one of the three Goldstone modes
corresponding to translational symmetry breaking.

Here we introduce a new scenario for the breaking of the
Goldstone modes, where the modes do not become massive,
but rather acquire a fast decay channel making them not
well-defined excitations. This happens due to the coupling of
the Goldstone modes with further gapless collective modes
into which they can decay. These modes appear due to the
spontaneous breaking of a further discrete symmetry. This
mechanism carries analogies to the one predicted for sys-
tems possessing a Fermi surface [6], the last of these indeed
showing gapless single-particle excitations into which the
Goldstone modes can decay.

Our system consists of a two-component weakly interact-
ing Bose-Einstein condensate (BEC) whose internal levels

are coherently driven by an external electromagnetic field.
The system shows both density (in-phase) and spin (out-of-
phase) collective excitations [7–10]. The former are the U (1)
gapless phonons characterizing the condensation, while the
latter are gapped and they become gapless at a ferromagnetic
critical point for the spontaneous breaking of the Z2 symmetry
corresponding to the exchange of the two components.

We show in the following that the vanishing of the gap
makes the density modes decay into two spin modes with
a rate of the same order of their energy, i.e., the density
modes become not well-defined excitations. This implies, for
instance, that a moving impurity would generate an enhanced
friction, which we compute analytically.

Our results are more general than the two-component BEC
studied here. They would namely apply to any nonlinear
quantum hydrodynamic time-reversal-invariant Hamiltonian
which couples density and spin, possessing an U (1) × Z2

symmetry.
We also consider the case without the interconversion

term, also known as a Bose-Bose mixture, which possesses
a U (1) × U (1) × Z2 symmetry. Both the density and the spin
excitations are gapless and linear. The system phase separates
when the spin compressibility (susceptibility) diverges. Al-
though enhanced, in this case the decay rate of density modes
scales at a slower rate than their energy.

II. MODEL

We consider a dilute (weakly interacting) atomic Bose gas
at zero temperature, whose atoms of mass m have two internal
levels |a〉 and |b〉. The last of these are typically magnetically
trappable hyperfine levels. An external field is applied that
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couples the |a〉 to the |b〉 state via a two-photon transition,
characterized by a Rabi splitting � that we take real and posi-
tive. The atoms interact via short range interactions described
by the strengths, gaa, gbb, and gab corresponding to the intra
and the interspecies collisions, respectively. Introducing the
fields ψ̂ j , with j = a, b the microscopic Hamiltonian can be
written as

H =
∫

dr

⎡
⎣ ∑

j=a,b

h̄2

2m
|∇ψ̂ j |2 +

∑
i, j

gi j

2
ψ̂

†
i ψ̂

†
j ψ̂ jψ̂i

⎤
⎦

+
∫

dr
h̄�

2

(
ψ̂†

a ψ̂b + ψ̂
†
b ψ̂a

)
. (1)

The system has an U (1) symmetry for � �= 0, correspond-
ing to the total atom number n = na + nb being conserved,
and an U (1) × U (1) symmetry for � = 0, the relative particle
number na − nb being also conserved. At T = 0 the system
is a Bose-Einstein condensate (BEC) described by the com-
plex spinor order parameter (�a(r, t ), �b(r, t )), where � j ,
j ∈ {a, b} is the wave function macroscopically occupied by
atoms in the internal state | j〉. For the sake of clarity we
consider gaa = gbb ≡ g in which case the system possesses a
further Z2 symmetry, corresponding to the exchange of the
two components.

Due to the diluteness condition allows to write the order
parameter in terms of the gas densities as � j = √

ni exp(iφ j )
and the mean-field energy functional reads

EMF =
∑
j=a,b

∫
dr

(
h̄2

2m
|∇√

n j |2 + h̄2n j

2m
|∇φ j |2 + 1

2
gn2

j

)

+
∫

dr(gabnanb − h̄�
√

nanb cos(φa − φb)), (2)

where at this level the interaction strengths are given in terms
of the experimentally known s-wave scattering length ai j :
gi j = 4π h̄2ai j/m.

The ground state of the system is homogeneous with a fixed
relative phase φ0

a − φ0
b = 0 —- due to the last term in Eq. (2)

— and, as already mentioned, can be either an unpolarized
paramagnetic phase with n0

a = n0
b = n or a partially polarized

ferromagnetic phase n0
a �= n0

b, which breaks the Z2 symmetry.
The transition between the two phases is second order and
occurs for h̄� = h̄�c = (gab − g)n (see, e.g., Ref. [11] and
references therein). The phase transition between the unpolar-
ized and polarized phase has been experimentally observed
in Ref. [12]. A sketch of the phase diagram is reported in
Fig. 1, where the singular nature of the � = 0 ferromagnetic
transition is also put in evidence.

To describe the energy and the lifetime of the excitations
we use the quantization scheme for hydrodynamics based on
the mean-field energy Eq. (2) [13,14], which allows also for
a rather direct interpretation of the various results. Indeed for
a dilute gas the beyond mean-field correction to the energy
functional, the so-called Lee-Huang-Yang corrections [15]
are of subleading order. To obtain the quantum Hamiltonian
used for our perturbative approach we introduce the fluc-
tuation fields � j and φ j , j = a, b, respectively, describing
the amplitude and phase fluctuations above the ground-state
values n0

j and φ0
j = 0 and promote them to operator fields.

Ω
gn

gab

g1

paramagnetic

ferromagnetic

ferromagnetic - phase separation

g ab

g

=
1 +

Ω
2g

n

Γ(k) ∝ k5

Γ(k) ∝ k

Γ(k) ∝ k5/2

FIG. 1. Sketch of the phase diagram of two component Bose-
Einstein condensates with density n in presence of both intra and
interspecies interactions, g and gab, respectively, as well as a coherent
interconversion term � between the two species. The system exhibits
a ferromagnetic-like phase transition for strong enough interspecies
interaction. For � = 0 since the total magnetization is preserved the
transition has a different character with respect to the � �= 0 case.
In particular, Belyaev decay �(k) strongly differs in the two cases
(see text).

Inserting them in the Eq. (2) we obtain a quantum Hamilto-
nian. Expanding the Hamiltonian operator in the fluctuation
fields one obtains the various processes needed to describe the
excitations.

The first nontrivial order is given by the quadratic Hamil-
tonian, i.e. the Bogoliubov approximation, in the fluctuation
fields. It decomposes into two sectors H (2) = H (2)

d + H (2)
s ,

with

H (2)
d =

∫
dr

[
h̄2|∇�d |2

4mn
+ gd�

2
d + h̄2n|∇φd |2

4m

]
, (3)

H (2)
s =

∫
dr

[
h̄2|∇�s|2

4mn
+ gs�

2
s + h̄2n|∇φs|2

4m
+ h̄�n

2
φ2

s

]
,

(4)

where we introduce the in-phase (density) �d = (�a +
�b)/2, φd = φa + φb and out-of-phase (spin) �s = (�a −
�b)/2, φs = φa − φb fluctuations, as well as the coupling
constants gd = g + gab and gs(�) = g − gab + h̄�/2n. The
quadratic Hamiltonians Eqs. (3) and (4) can be easily diag-
onalized by introducing the annihilation (creation) operators
for the density dk (d†

k) and spin mode sk (s†
k) at momentum k

as

�α (r) =
√

n

2

∑
k

Uα,k
(
αkeik·r + α

†
ke−ik·r), (5)

φα (r) = i

√
1

2n

∑
k

U −1
α,k

(
αkeik·r − α

†
ke−ik·r), (6)

064505-2



BREAKING OF GOLDSTONE MODES IN A TWO- … PHYSICAL REVIEW B 99, 064505 (2019)

TABLE I. Belyaev decay of the density Bogoliubov mode for
three-dimensional spinor Bose gases. For completeness the single
component case is also reported.

�(k) dominant term

1-comp. Bose gas k5 �|∇φ|2
2-comp. Bose gas k5 �d |∇φd |2
noncritical �s∇φs∇φd , �d |∇φs|2 (if � = 0)
� = 0 PS point k5/2 �s∇φs∇φd

� �= 0 FM transition k �d�
2
s

with α = d, s and where we defined (see also Ref. [10] for
the most general case ga �= gb)

Ud,k =
(

k2

k2 + 4mgd n

) 1
4

, Us,k =
(

k2 + 2mh̄�

k2 + 4mgsn

) 1
4

. (7)

The density and spin Hamiltonians now simply read

H (2)
d =

∑
k

ωd
kd†

kdk, ωd
k =

√
h̄2k2

2m

(
h̄2k2

2m
+ 2gd n

)
,

H (2)
s =

∑
k

ωs
ks†

ksk, ωs
k =

√(
h̄2k2

2m
+ h̄�

)(
h̄2k2

2m
+ 2gsn

)
.

(8)

The density mode is gapless and linear at small momenta,
ωd

k 	 cd |k|, with a speed of sound cd = √
ngd/m independent

of the coupling �, while the spin mode has a gap �s =√
2h̄�ngs.
At the transition point gs(�c) = 0, the gap closes, the

low energy spin-mode is linear and dominated by relative
amplitude fluctuations �s as it is clear already from Eq. (4).
This last becomes critical since the instability is due to the
system breaking Z2 and building a finite polarization.

The case � = 0 behaves very differently. The density and
the spin sector are both gapless and the low momentum
excitations are phase-like, as it has to be for Goldstone modes
of the U (1) × U (1) broken symmetries. The speeds of sound
are cd and cs = √

ngs(0)/m for the density and the spin
sector, respectively. On the verge of phase separation, i.e.,
gs(0) = 0, the spin mode becomes quadratic at low momenta
and it acquires an amplitude contribution, being now both the
relative phase and the relative amplitude fluctuations finite at
low momenta.

III. BELYAEV DECAY FOR A TWO-COMPONENT
BOSE GAS

At the quadratic Bogoliubov level discussed above the
modes are well defined. The finite lifetime comes from higher
order terms which represent interaction among various modes.
In particular, the third order term represents the so-called
Belyaev decay of one excitation into two new excitations and
which is the dominant process at low temperatures [16]. In a
single component weakly interacting Bose gas the decay rate
� of phonons at low momentum k is very small �(k) ∝ k5 in
three spatial dimensions (see, e.g., Refs. [13,16] and Table I).

k

q

k − q

k

q

k − q

V ddd
k,q,k−q

V dss
k,q,k−q

FIG. 2. Schematic representation of the vertices for the decay
of a Goldstone phonon (continuous line) of momentum k into two
Goldstone modes (upper vertex) or into two spin modes represented
by dashed lines (lower panel).

In the case of a 2-component Bose gas further decay
processes are, in principle, possible since, e.g., a density mode
can decay into two spin modes. At the phase transition point
the spin modes change their character, leading to a strong
enhancement of the Belyaev decay rate. We anticipate here
(see also Table I) that the Goldstone mode is still well defined
for a mixture � = 0 with a decay rate which scales like
k5/2, while for � �= 0 the Goldstone mode is not properly
defined. In particular, in three spatial dimensions where our
perturbation theory is well justified, the decay rate of the
Goldstone mode scales like ist energy, i.e., �(k) ∝ k.

A. Symmetries and the general structure
of the three-mode vertices

To obtain the vertices of the possible decay processes we
have to expand Eq. (2) to third order. The number of nonzero
terms is pretty small due to the symmetries of the system. In
the paramagnetic phase due to the Z2 symmetry all the terms
with an odd number of spin fields have to be zero. Therefore,
the density mode can decay either in (i) two density modes
or in (ii) two spin modes, as schematically represented in
Fig. 2. Moreover, due to the total-density U (1) symmetry the
process (i) can occur only via �d |∇�d |2, �3

d , and �d |∇φd |2,
which leads to the standard Belyaev decay. The possible terms
related to process (ii) are �d |∇φs|2 and �s∇φd∇φs for � =
0, due to the spin U (1) symmetry, while also the terms �d�

2
s

and �dφ
2
s are present for � �= 0. For instance, the term �d�

2
s

gives rise to the vertex

V dss
q1,q2,q3 = − �

2n2
Ud,q1Us,q2Us,q3 , (9)

which is responsible for the breaking of the Goldstone mode
at the critical point for the ferromagnetic-like transition.

B. Results

The decay rate is given by the imaginary part of the self-
energy for the density mode. We calculate the self-energy at
the one-loop level, which coincides with a Fermi’s golden rule
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calculation. The general expression for anyone of the above-
mentioned processes reads

�(k) = PmV

(2π )2

∫
d3q|Vk,q,k−q|2δ

(
ωd

k − ωs
q − ωs

|k−q|
)
, (10)

where V is the vertex of the process and PmV the number of
possible equivalent diagrams.

Since we are interested in the decay rate at low momentum
we can consider only the most relevant contributions in the
different regimes as reported in Table I.

1. Mixture (� = 0)

In the case of a mixture � = 0 and away from the phase
separation g �= g12 one has the ordinary Belyaev decay, where
the prefactor is renormalized due to the decay of density
in two spin phonons. The most relevant terms at low mo-
mentum are �d (∇φd )2 for the three density phonon vertex
and �d (∇φs)2 and �s∇φs∇φd for the density into two spin
phonon vertex. The decay rate reads

�(k) 	 3k5(1 + h(cd/cs))

640nmπ
, (11)

where h(r) = 7r/12 + 43/72r − 11r3/24 + 5r5/18, which
for two noninteracting species reduces to h(1) = 1. At
the phase separation point the most relevant term is only
�s∇φs∇φd as can be seen by putting � and gs to zero in
Eq. (7) and one gets a strong enhancement of the phonon
decay which now reads

�(k) = (mcd k)5/2

48nmπ
. (12)

Still, the phononic Goldstone mode is well defined at low
momenta since �k/ωk 	 k3/2 → 0.

2. Coherent coupling � �= 0

When the coherent coupling is on, the spin sector is
gapped, therefore, away from the transition point and at zero
temperature it does not contribute to the phonon decay which
is simple due the standard Belyaev process �d (∇φd )2, leading
to �(k) = 3k5/(640nmπ ).

At the ferromagnetic transition the situation is very dif-
ferent. The gap in the spin channel closes and the spectrum
becomes linear at small momentum, i.e., ωs(k) = cs,PT |k|
with mc2

s,PT = (g12 − g)n = �c where �c is the value of the
coherent coupling at the transition point. A density phonon
can now decay into two spin ones. Thses are critical at
the transition and, as already mentioned, dominated by the
relative amplitude fluctuations, since the system is on the
verge of polarization. The most relevant term becomes �d�

2
s ,

whose contribution leads to a critical decay rate

�(k) = (mcs,PT )4k

4nmπ
, (13)

making the Goldstone mode a not well-defined excitation.

IV. DYNAMIC STRUCTURE FACTOR: BRAGG
SPECTROSCOPY AND FRICTION

The decay rate of the density excitations can be mea-
sured having access to the dynamic structure factor, which,

accounting for the finite lifetime �(k) of on-shell phonons,
can be written as

S(k, ω) = n|Ud (k)|2 �(k)/π(
ω − ωd

k

)2 + �(k)2
. (14)

A measurement of such quantity in cold gases can be done
using two-photon optical Bragg spectroscopy [17–19]. Two
photonic beams properly intersecting on the atomic cloud
introduce an external perturbation VBragg = VB/2 cos(qz −
ωt )θ (t ) from the arbitrary time t = 0. Experimentally it is
then rather easy to measure the total momentum transferred
by the lasers. Within linear response theory the momentum
transferred along the direction given by q at long enough time
t reads

Pz(t ) = πV 2
B

2h̄
qt (S(q, ω) − S(−q,−ω)). (15)

For very small damping the Lorentzian Eq. (14) reduces
to a delta function and the momentum will increase as soon
as the Bragg frequency ω is close to the density mode fre-
quency ωd

q , in analogy with the single component conden-
sate [20]. At low momenta the dispersion can be properly
measured although looking at the interferometry after the
Bragg pulse [21].

When the Bragg excited cloud separates from the original
BEC the Belyaev decay has been directly measured showing
the typical suppression at low-k due to the vertex for a single
component BEC [20].

The very same kind of experiments can be performed on
the 2-component BEC close to the ferromagnetic transition
point leading to the absence of clear peaks and especially to a
linear dependence of the strong Belyaev damping.

Force on an impurity: Friction

In this section we describe a different and more indirect ef-
fect of the short lifetime of the phonons, namely the response
of the system to a local density perturbation.

Landau theory of superfluidity leads to the existence of a
finite critical velocity below which the flow is dissipationless.
A moving object weakly interacting with the fluid feels a
friction force only if its speed is larger than the Landau critical
velocity. For homogeneous ultracold gases the situation is
quite clear and the critical velocity is due to Cherenkov
phonon emission [22]. If phonons have a finite life-time a
friction force is present for any speed of the moving impurity.

The dissipation of energy due to a time-dependent potential
can be generally written in terms of S(k, ω) as

Ė = −
∫

dk
(2π )3

∫ ∞

0

dω

2π
ωS(k, ω)|W (k, ω)|2, (16)

where W (k, ω) is the Fourier transform of the external pertur-
bation. Considering a delta-like infinite mass impurity moving
at a constant speed V, we can write W (r, t ) = λδ(r − Vt )
where λ is the coupling between the impurity and the gas,
which leads to W (q, ω) = 2πλδ(ω − q · V). Using Eq. (14)
the expression for dissipated energy per unit time reads

Ė = 2π

h̄
λ2

∫
dk

(2π )3
n|Ud (k)|2 �(k)(

k · V − ωd
k

)2 + �(k)2
k · V.

(17)
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Considering that at low speed |V| the most relevant contri-
bution comes from momenta k < k̄ � 1/ξd with ξd = h̄/mcd

the density healing length, we find that the dissipated energy
depends quadratically on the speed of the impurity and scales
very differently far from the transition and at the transition
point, namely

Ė = − λ2

12π2ξ 6
d

(
V

cd

)2
⎧⎨
⎩

3
160 (k̄ξd )8, � > �c,

(cscd )4(
c4

d +c4
s

)2 (k̄ξd )4, � = �c.
(18)

This strongly enhanced energy dissipation via a moving ob-
stacle close to the transition might offer a practicable means
of experimentally testing our predictions [23].

V. EFFECTIVE φ4-THEORY AND THE ROLE
OF THE DIMENSIONALITY

Our results are based on the assumption that also at the
phase transition point the propagator for spin waves is linear at
low momenta, i.e., that the effective theory close to the phase
transition point has a dynamical critical exponent z = 1.

To discuss the validity of such an assumption we expand
Eq. (2) to fourth order. Again due to symmetry reasons the
only possible terms have to contain an even number of spin
operators. Contributions arise from the kinetic part

∝ (�d + �s)2|∇(�d + �s)|2 + (�d − �s)2|∇(�d − �s)|2
(19)

and from the Rabi part

∝ 3n�2
s

(
4�2

d +�2
s

)+3n2
(
�2

s +2�d�s − �2
d

)
φ2

s +n4φ4
s

(20)

of the Hamiltonian. Similar arguments as the ones used above
to identify the most relevant third-order terms contributing to
the decay of Goldstone phonons, from the mode expansion
Eqs. (5) and (6) leads to the conclusion that �4

s is the most
relevant forth-order contribution at the phase-transition point
gs = 0. Indeed it introduces a phonon-phonon interactions
which contains Ud,q1Us,q2Us,q3Us,−q1−q2−q3 . Since at low mo-
menta Us(k) 	 1/

√
k, the interaction �4

s leads to a term in
the self-energy scaling like k−2 at small momenta (see, e.g.,
Ref. [24] for more details). Therefore, close to critical point,
the low energy Z2 effective theory corresponds to a standard
φ4-theory, which is well known to have an upper critical
spatial dimension D = 3 [24]. As it has been shown by Irkhin
and Katanin [25], the log-corrections at the upper critical
dimension do not affect the mean-field critical exponents. In
particular, the dynamical critical exponent is z = 1 and the
dispersion relation for spin waves gives rise to the Gaussian
propagator employed in our previous analysis. Therefore, the
main result of our paper remains unchanged: the critical spin
waves induce a damping of the density Goldstone mode which
is linear in momentum � ∼ k. On the other hand, due to the
log-corrections the prefactor in the damping rate Eq. (13) as
well as in the expression of the friction given in Eq. (18) would
change.

A few remarks are due here. The previous argument just
reinforces the fact that Bose-Bose mixtures do not belong to

the same universality class of coherently coupled Bose gases
since the �4

s term arises only in presence of a Rabi coupling.
It would be also interesting to check the effect of the ne-

glected terms coupling spin and density in the actual behavior
close to the phase transition. If indeed the density mode is
very damped we expect to be left with just the spin degrees
of freedom and therefore a pure φ4 theory only for the �s as
argued above. More importantly, for spatial dimension D < 3
the ferromagnetic transition will exhibit the same features of
the quantum Ising model. In particular, even the transition
point would be strongly modified with respect to the mean
field value gs(�) = 0.

The only theoretical results so far trying to address the
previous remarks have been obtained for one-dimensional
Hubbard models. It has been numerically shown that both
in the insulating, where a mapping to XXZ model in the
transverse field is possible, and in the superfluid phase the β

critical exponent for the ferromagnetic transition is consistent
with the one of an one-dimensional Ising model in transverse
field [26–28]. Also the transition point appears indeed very
far from the prediction of the mean-field analysis. Experi-
mentally, the non-mean-field behavior should be possible to
observe with present technology, by confining strongly in one
or two dimension a driven Bose gas. A recent experiment
with coherently driven Bose gases in a very elongated trap has
been already carried out [29]. The outcomes of the experiment
are, however, consistent with mean field results for the critical
exponents since the confinement was not large enough and the
physics was therefore three dimensional.

A special mention for the one-dimensional homogeneous
case is due here. In the dilute regime a single component Bose
gas is well described by the Lieb-Liniger model and therefore
exactly solvable, implying that the excitations have infinite
life time. The 2-component gas instead is not integrable.
However, the simple one-loop approximation for the decay
into two density modes fails in this case since energy and
momentum conservation coincide. More accurate analysis
lead for single-component BECs to a decay rate proportional
to k2 [30–32]. On the other hand, for the decay of a density
mode in two spin modes, the energy and the momentum
conservation are distinct and one-loop analysis works. Close
to the phase transition instead the mean field description
of the critical point fails completely and therefore the fate
of the Goldstone mode cannot be determined following the
arguments used in the present work. We stress again that the
problem of expanding around a mean field solution is present
both in D = 1, 2.

VI. CONCLUSION

In conclusion, we show that two-component Bose gases
present an interesting scenario for the breaking of Goldstone
modes. If the system has a U (1) × Z2 symmetry, the Gold-
stone mode related to the breaking of the global phase sym-
metry U (1) in the condensed phase becomes not well defined
at the critical point for the breaking the discrete symmetry
Z2 due to decay into critical spin amplitude modes. When
the system has instead a U (1) × U (1) × Z2 symmetry, the
Goldstone mode related to the global phase (density mode) is
strongly affected by the spin modes at the Z2 transition point,
but still well defined in the limit of large wave lengths.
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We also discuss how, for coherently coupled gases, the
ferromagnetic transition is described by an usual φ4-theory
while this is not the case for a Bose-Bose mixture. Although
sometimes put on the same footing our results show clearly
that 2-component Bose-Einstein condensates with and with-
out interconversion term behave very differently concerning
the Z2 phase transition.

The main effects here presented can be experimentally
studied with present technology using trapped ultracold Bose
gases with two hyperfine levels. Coherently coupled Bose
gases have been indeed realized for the first time many
years ago in the context of atom optics by the group of
Cornell [33,34] where interesting coherence properties related
to the superfluid stiffness have been observed. A few years
ago the spontaneous magnetization of the gas has been (al-
though indirectly) observed in the group of Oberthaler [12]
and very recently the same laboratory reported the first study
about the dynamics of the phase transition and its critical
exponents [29].

While measuring the Goldstone mode life time could be
rather demanding, the main qualitative signature of strong
spin wave fluctuations could be simply obtained by perturbing

the system via a density probe. If indeed around the phase
transition point there exists a strong coupling between the
Goldstone and the spin modes we expect that a density per-
turbation should produce an emission of spin waves when the
gas is prepared close enough to the phase transition point since
also any finite (low) temperature would enlarge the region of
quantum criticality.

The system we address would also open new possibilities
for the investigation of quantum phase transitions in low
dimensions. Indeed, as we argued in Sec. V, in two- and
one-spatial dimension the mean field starting point is not
appropriate in studying the ferromagnetic transition (not the
phase separation at zero temperature).
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