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We develop a model for the magnonic contribution to the unidirectional spin Hall magnetoresistance (USMR)
of heavy metal/ferromagnetic insulator bilayer films. We show that diffusive transport of Holstein-Primakoff
magnons leads to an accumulation of spin near the bilayer interface, giving rise to a magnoresistance which is
not invariant under inversion of the current direction. Unlike the electronic contribution described by Zhang and
Vignale [Phys. Rev. B 94, 140411 (2016)], which requires an electrically conductive ferromagnet, the magnonic
contribution can occur in ferromagnetic insulators such as yttrium iron garnet. We show that the magnonic
USMR is, to leading order, cubic in the spin Hall angle of the heavy metal, as opposed to the linear relation
found for the electronic contribution. We estimate that the maximal magnonic USMR in Pt|YIG bilayers is on
the order of 10−8 but may reach values of up to 10−5 if the magnon gap is suppressed and can thus become
comparable to the electronic contribution in, e.g., Pt|Co. We show that the magnonic USMR at a finite magnon
gap may be enhanced by an order of magnitude if the magnon diffusion length is decreased to a specific optimal
value that depends on various system parameters.
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I. INTRODUCTION

The total magnetoresistance of metal/ferromagnet het-
erostructures is known to comprise several independent con-
tributions, including but not limited to anisotropic magne-
toresistance (AMR) [1], giant magnetoresistance (GMR, in
stacked magnetic multilayers) [2], and spin Hall magnetore-
sistance (SMR) [3]. A common characteristic of these effects
is that they are linear; in particular, this means the measured
magnetoresistance is invariant under reversal of the polarity
of the current.

In 2015, however, Avci et al. [4] measured a small but
distinct asymmetry in the magnetoresistance of Ta|Pt and
Co|Pt bilayer films. Due to its striking similarity to the
current-in-plane spin Hall effect (SHE) and GMR, save for
its nonlinear resistance/current characteristic, this effect was
dubbed unidirectional spin Hall magnetoresistance (USMR).

In the years following its discovery, USMR has been
detected in bilayers consisting of magnetic and nonmagnetic
topological insulators [5], and the dependence of the USMR
on layer thickness has been investigated experimentally for
Co|Pt bilayers [6]. Additionally, Avci et al. [7] have shown that
USMR may be used to distinguish between the four distinct
magnetic states of a ferromagnet|normal metal|ferromagnet
trilayer stack, highlighting its potential application in multibit
electrically controlled memory cells.

Although USMR is ostensibly caused by spin accumula-
tion at the ferromagnet|metal interface, a complete theoretical
understanding of this effect is lacking. In bilayer films con-
sisting of ferromagnetic metal (FM) and heavy metal (HM)

layers, electronic spin accumulation in the ferromagnet caused
by spin-dependent electron mobility provides a close match
to the observed results [8]. It remains unknown, however,
whether this is the full story; indeed, this model’s underes-
timation of the USMR by a factor of two lends plausibility
to the idea that there may be additional, as-yet-unknown
contributions providing the same experimental signature. Ad-
ditionally, the electronic spin accumulation model cannot be
applied to bilayers consisting of a ferromagnetic insulator
(FI) and a HM, as there will be no electric current in the
ferromagnet to drive accumulation of spin.

Kim et al. [9] have measured the USMR of Py|Pt (where
Py denotes for permalloy) bilayer and claim, using qualitative
arguments, that a magnonic process is involved. Likewise,
for Co|Pt and CoCr|Pt, more recent results by Avci et al.
[10] argue in favor of the presence of a magnon-scattering
contribution consisting of terms linear and cubic in the applied
current and having a magnitude comparable to the electronic
contribution of Zhang and Vignale [8]. Although these experi-
mental results provide a great deal of insight into the underly-
ing processes, a theoretical framework against which they can
be tested is presently lacking. In this work, we aim to take first
steps to developing such a framework by considering an accu-
mulation of magnonic spin near the FI|HM bilayer interface,
which we describe by means of a drift-diffusion model.

The remainder of this article is structured as follows: in
Sec. II, we present our analytical model as generically as pos-
sible. In Sec. III we analyze the behavior of our model using
parameters corresponding to a Pt|YIG (YIG being yttrium iron
garnet) bilayer as a basis. In particular, in Sec. III A we give
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quantitative predictions of the magnonic USMR in terms of
the applied current and layer thicknesses, and in Sec. III B we
take into account the effect of Joule heating. In the remainder
of Sec. III, we investigate the influence of various material
parameters. Finally, in Sec. IV we summarize our key results
and present some open questions.

II. MAGNONIC SPIN ACCUMULATION

To develop a model of the magnonic contribution to the
USMR, we focus on the simplest FI|HM heterostructure: a
homogeneous bilayer. We treat the transport of magnonic and
electronic spin as diffusive and solve the resulting diffusion
equations subject to a quadratic boundary condition at the
interface. In this approach, valid in the opaque interface limit,
current-dependent spin accumulations—electronic in the HM
and magnonic in the FI—form near the interface. In particular,
the use of a nonlinear boundary condition breaks the invari-
ance of the SMR under reversal of the current direction, i.e.,
it produces USMR.

We consider a sample consisting of a FI layer of thickness
LFI directly contacting a HM layer of thickness LHM. We take
the interface to be the xy plane, such that the FI layer extends
from z = 0 to LFI and the HM layer from z = −LHM to 0. The
magnetization is chosen to lie in the positive y direction, and
an electric field E = ±E x̂ is applied in the x direction. The
set-up is shown in Fig. 1.

The extents of the system parallel to the interface are
taken to be infinite and the individual layers completely
homogeneous. This allows us to treat the system as quasi-
one-dimensional in the sense that we will only consider
spin currents that flow in the z direction. We account for
magnetic anisotropy only indirectly through the existence of a
magnon gap. We further assume that our system is adequately
described by the Drude model (suitably extended to include
spin effects [11]) and that the interface between layers is not
fully transparent to spin current, i.e., has a finite spin-mixing
conductance [12]. For simplicity, we assume electronic spin
and charge transport may be neglected in the ferromagnet, as
is the case for ferromagnetic insulators.

We describe the transfer of spin across the interface micro-
scopically by the continuum-limit interaction Hamiltonian

Hint = −
∫

d3rd3r′ J (r, r′)[b†(r′)c†
↓(r)c↑(r)+b(r′)c†

↑(r)c↓(r)],

FIG. 1. Schematic depiction of our system. The magnetization M
of the FI layer lies in the +y direction, an electric field of magnitude
E is applied to the heavy metal layer (HM) in the ±x direction, and
the interface between the layers lies in the xy plane.

where c†
α (r) [cα (r)] are fermionic creation [annihilation] op-

erators of electrons with spin α ∈ {↑,↓} at position r in the
HM, and b†(r′) [b(r′)] is the bosonic creation [annihilation]
operator of a circularly polarized Holstein-Primakoff magnon
[13] at position r′ inside the ferromagnet. We leave J (r, r′)
to be some unknown coupling between the electrons and
magnons, which is ultimately fixed by taking the classical
limit [14,15].

Transforming to momentum space and using Fermi’s
golden rule, we obtain the interfacial spin current jint

s , which
can be expressed in terms of the real part of the spin mixing
conductance per unit area g↑↓

r as [14,16]

jint
s = g↑↓

r

πs

∫
dε g(ε)(ε − �μ)

×
[

nB

(
ε − �μ

kBTe

)
− nB

(
ε − μm

kBTm

)]
. (1)

(Similar expressions were derived by Takahashi et al. [17] and
Zhang and Zhang [18], although these are not given in terms
of the spin-mixing conductance.)

Here s is the saturated spin density in the FI layer, g(ε)
is the magnon density of states, nB(x) = [ex − 1]−1 is the
Bose-Einstein distribution function, kB is Boltzmann’s con-
stant, and Tm and Te are the temperatures of the magnon
and electron distributions, respectively, which we do not
assume a priori to be equal (although the equal-temperature
special case will be our primary interest). Of crucial impor-
tance in Eq. (1) are the magnon effective chemical potential
μm—which we shall henceforth primarily refer to as the
magnon spin accumulation—and the electron spin accumu-
lation �μ ≡ μ↑ − μ↓, which we define as the difference in
chemical potentials for the spin-up and spin-down electrons.
(In both cases, a positive accumulation means the majority of
spin magnetic moments point in the +y direction.)

We employ the magnon density of states,

g(ε) =
√

ε − �

4π2J
3
2

s

�(ε − �).

Here Js is the spin wave stiffness constant, �(x) is the Heavi-
side step function, and � is the magnon gap, caused by a com-
bination of external magnetic fields and internal anisotropy
fields in ferromagnetic materials [19]. In our primary analysis
of a Pt|YIG bilayer, we take � ≡ μB × 1 T ≈ kB × 0.67 K
with μB the Bohr magneton, in good agreement with, e.g.,
Cherepanov et al. [20], and in Sec. III E we specifically
consider the limit of a vanishing magnon gap.

To treat the accumulations on equal footing, we now rede-
fine μm → δμm and �μ → δ�μ, expand Eq. (1) to second
order in δ, and set δ = 1 to obtain

jint
s 	 −

[
kBTmI0 + Ie�μ + Imμm + Iee

kBTe
(�μ)2

+ Imm

kBTm
μ2

m + Ime

kBTm
μm�μ

]
g↑↓

r (kBTm)
3
2

4π3J
3
2

s s
. (2)

Here the Ii are dimensionless integrals given by Eqs. (A1) in
the Appendix. All Ii are functions of Tm and �, and I0, Ie,
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TABLE I. System parameters for a Pt|YIG bilayer film.

Description Symbol Expression Value at T = 293 K Ref.

YIG spin-wave stiffness constant Js 8.458 × 10−40 J m2 [21]
YIG spin quantum number per unit cell S 10 [21]
YIG lattice constant a 1.2376 nm [21]
YIG Gilbert damping constant α 1 × 10−4 [21]
YIG spin number density s Sa−3 5.2754 × 1027 m−3 [21]
YIG magnon gap � 9.3 × 10−24 J [20]
YIG magnon-phonon scattering time τmp 1 ps [21]
YIG magnon relaxation time τmr

h̄
2αkBTm

130 ps [21]

Combined magnon relaxation time τ
(

1
τmr

+ 1
τmp

)−1
1 ps [21]

Magnon thermal de Broglie wavelength 	
√

4πJs
kBTm

1.62 nm [21]

Magnon thermal velocity vth
2
√

JskBT
h̄ 35.1 km s−1 [21]

Magnon spin diffusion length lm vth

√
2
3 ττmr 326 nm [21]

Magnon spin conductivity σm ζ
(

3
2

)2 Js
	3 τ 1.35 × 10−24 J s m−1 [21]

Real part of spin-mixing conductance g↑↓
r 5 × 1018 m−2 [16]

Pt electrical conductivity σ 1 × 107 S m−1 [23]a

Pt spin Hall angle θSH 0.11 [21]
Pt electron diffusion length ls 1.5 nm [21]
Pt|YIG Kapitza resistance Rth 3.58 × 10−9 m2 K W−1 [25]

aThe conductivity of Pt is approximately inverse-linear in temperature over the regime we are considering. However, as we are not interested
in detailed thermodynamic behavior, we use the fixed value σ = 1 × 107 S m−1 throughout this work.

and Iee additionally depend on Te. In the special case where
Tm = Te, I0 vanishes, Im = −Ie, and Iee = −(Imm + Ime).

In addition to jint
s , the spin accumulations and the electric

driving field E give rise to the following spin currents in the z
direction:

je
s = h̄

2e

(
− σ

2e

∂�μ

∂z
− σθSHE

)
, (3a)

jm
s = −σm

h̄

∂μm

∂z
. (3b)

Here je
s and jm

s are the electron and magnon spin currents, re-
spectively. σ is the electrical conductivity in the HM, σm is the
magnon conductivity in the ferromagnet, e is the elementary
charge, and θSH is the spin Hall angle.

In line with Cornelissen et al. [21] and Zhang and Zhang
[22], we assume the spin accumulations μm and �μ obey
diffusion equations along the z axis:

d2μm

dz2
= μm

l2
m

,
d2�μ

dz2
= �μ

l2
e

,

where lm and le are the magnon and electron diffusion lengths,
respectively. We solve these equations analytically subject
to boundary conditions that demand continuity of the spin
current across the interface and confinement of the currents
to the sample:

jm
s (0) = je

s (0) = jint
s (0),

jm
s (LFI ) = je

s (−LHM) = 0.

This system of equations now fully specifies the magnonic
and electronic spin accumulations μm and �μ, the latter of

which enters the charge current jc via the spin Hall effect:

jc(z) = σE + σθSH

2e

∂�μ(z)

∂z
. (4)

The measured resistivity at some electric field strength E is
then given by the ratio of the electric field and the averaged
charge current:

ρ(E ) = E
1

LHM

∫ 0
−LHM

dz jc(z)
. (5)

Finally, we define the USMR U as the fractional difference in
resistivity on inverting the electric field:

U ≡
∣∣∣∣ρ(E ) − ρ(−E )

ρ(E )

∣∣∣∣ =
∣∣∣∣∣1 +

∫ 0
−LHM

dz jc(z; E )∫ 0
−LHM

dz jc(z; −E )

∣∣∣∣∣.
It should be noted that the even-ordered terms in the

expansion of the interface current are vital to the appear-
ance of unidrectional SMR. Suppose our system has equal
magnon and electron temperature, such that the interfacial
spin Seebeck term I0 vanishes (see Sec. III B), and we ignore
the quadratic terms in Eq. (2). Then because the only term
in the spin current equations (3) that is independent of the
accumulations is − h̄σθSH

2e E in Eq. (3a), we have that �μ ∝
μm ∝ E . Then by Eqs. (4) and (5), jc ∝ E and ρ(E ) ∝ E

E ,
such that U = 0. Conversely, with quadratic terms in the inter-
facial spin current, ρ(E ) ∼ E

E+E2 , and likewise if I0 does not
vanish, ρ(E ) ∼ E

1+E . Both cases give nonvanishing USMR.
Physically, one can say that the spin-dependent electron and
magnon populations couple together in a nonlinear fashion
[namely through the Bose-Einstein distributions in Eq. (1)],
leading to a nonlinear dependence on the electric field.
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FIG. 2. USMR U versus driving current σE for a Pt|YIG bi-
layer at liquid nitrogen temperature (77 K, blue), room temperature
(293 K, green), and the YIG Curie temperature (560 K, red). Inset:
USMR versus system temperature T at fixed current σE = 1 ×
1012 A m−2.

III. RESULTS

A. Equal-temperature, finite-gap case

Although our model can be solved analytically (up to
evaluation of the integrals Ii), the full expression of U is
unwieldy and therefore hardly insightful. To get an idea of the
behavior of a real system, we use a set of parameters—listed in
Table I—corresponding to a Pt|YIG bilayer as a starting point.
(Unless otherwise specified, all parameters used henceforth
are to be taken from this table.)

Figure 2 shows the magnonic USMR of a Pt|YIG bilayer
versus applied driving current (σE ) when Tm = Te = T at the
temperature of liquid nitrogen (77 K, blue), room temperature
(293 K, green), and the Curie temperature of YIG (560 K [20],
red). The FI and HM layer thicknesses used are 90 nm and
3 nm, respectively, in line with experimental measurements
by Avci et al. [24].

In all cases the magnonic USMR is proportional to the
applied electric current—that is, the cubic term found by Avci
et al. [10] is absent and at room temperature has a value
on the order of 10−9 at typical measurement currents [4].
This is roughly four orders of magnitude weaker than the
USMR obtained—both experimentally and theoretically—for
FM|HM hybrids [4,6,8,24] and is consistent with the experi-
mental null results obtained for this system by Avci et al. [24].
Note, however, that the thickness of the FI layer used by these
authors is significantly lower than the magnon spin diffusion
length lm = 326 nm, which results in a suppressed USMR.

Furthermore, it can be seen in the inset of Fig. 2 that the
magnonic USMR is, to good approximation, linear in the
system temperature, in agreement with observations by Kim
et al. [9] and Avci et al. [10].

In Fig. 3 we compute the USMR at σE = 1 × 1012 A m−2

as a function of both LFI and LHM. A maximum is reached
around LHM ≈ 4.5 nm, while in terms of LFI, a plateau is
approached within a few spin diffusion lengths. By varying
the layer thicknesses, a maximal USMR of 4.2 × 10−8 can

1 2 3 4 5
LF (μm)
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20
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40

50

L N
M

(n
m

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U

×10−8

FIG. 3. Pt|YIG USMR U at Tm = Te = 293 K versus FI layer
thickness LFI and HM layer thickness LHM. A driving current σE =
1 × 1012 A m−2 is used. A maximal USMR of 4.2 × 10−8 is reached
at LHM = 4.5 nm, LFI = 5 μm.

be achieved, an improvement of one order of magnitude
compared to the thicknesses used by Avci et al. [24].

B. Thermal effects

We take into account a difference between the electron
and magnon temperatures Te and Tm by assuming these
parameters are equal to the temperatures of the HM and FI
layers, respectively, which we take to be homogeneous. We
assume that the HM undergoes ohmic heating and dissipates
this heat into the ferromagnet, which we take to be an infinite
heat bath at temperature Tm. We only take into account the
interfacial (Kapitza) thermal resistance Rth between the HM
and FI layers, leading to a simple expression for the HM
temperature Te:

Te = Tm + RthσE2LHM.

Using this model, we still find a linear dependence in
the electric field, U 	 uE (Tm)σE , but the coefficient uE (Tm)
increases by three orders of magnitude compared to the case
where the electron and magnon temperatures are set to be
equal. The overwhelming majority of this increase can be
attributed to an interfacial spin Seebeck effect (SSE) [21,25]:
It is caused by the accumulation-independent contribution I0

[Eq. (A1a)] in the interface current. When I0 is artificially set
to 0, uE (Tm) changes less than 1% from its equal-temperature
value.

Furthermore, the overall magnitude of the interfacial SSE
in our system can be attributed to the fact that we have a con-
ductor|insulator interface: The current runs through the HM
only, resulting in inhomogeneous Joule heating of the sample
and a large temperature discontinuity across the interface.

C. Spin Hall angle

The electronic spin accumulation �μ at the interface in
the standard spin Hall effect is linear in the electric field E
and spin Hall angle θSH [3]. From the linearity in E , we may
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FIG. 4. USMR U at Tm = Te = 293 K versus spin Hall angle
θSH. A driving current σE = 1 × 1012 A m−2 and FI and HM layer
thicknesses LFI = 5 μm and LHM = 4.5 nm are used. Blue curve:
Computed value. Dashed green curve: Fit of the form U = uθ θ

3
SH,

with uθ 	 3.1 × 10−4.

conclude that the terms in Eq. (2) that are linear in �μ have a
suppressed contribution to the USMR. Thus, the contribution
of the interface current is of order θ2

SH. Furthermore, �μ

enters the charge current [Eq. (4)] with a prefactor θSH, leaving
the magnonic USMR predominantly cubic in the spin Hall
angle. Indeed, in the special case Tm = Te, expanding the full
expression for U (which spans several pages and is therefore
not reproduced within this work) in θSH reveals that the first
nonzero coefficient is that of θ3

SH. This suggests a small change
in θSH potentially has a large effect on the USMR.

In Fig. 4 we plot the USMR for a Pt|YIG bilayer—once
again using Tm = Te = 293 K—consisting of 4.5 nm of Pt and
5 μm of YIG, in which we sweep the spin Hall angle. Included
is a cubic fit U = uθ θ

3
SH, where we find uθ 	 3.1 × 10−4. Here

it can be seen that the magnonic USMR in HM|FI bilayers can,
as expected, potentially acquire magnitudes roughly compa-
rable to those in HM|FM systems, provided one can find or
engineer a metal with a spin Hall angle several times greater
than that of Pt. This suggests that very strong spin-orbit cou-
pling (SOC) is liable to produce significant magnon-mediated
USMR in FI|HM heterostructures, although we expect our
model to break down in this regime.

D. A note on the magnon spin diffusion length

Although we use the analytic expression for the magnon
spin diffusion length [18,21,22],

lm = vth

√
2

3
ττmr

where vth is the magnon thermal velocity, τ is the combined
relaxation time, and τmr is the magnonic relaxation time (see
Table I)—this is known to correspond poorly to reality, being
at least an order of magnitude too low in the case of YIG
[21]. Artificially setting the magnon spin-diffusion length to
the experimental value of 10 μm (while otherwise continuing

0 5 10 15
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0.0

0.5
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3.0

l m
,o
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(μ

m
)

τmp (s)
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10−11

10−10

10−9

10−8

∞

FIG. 5. Value of the magnon spin diffusion length lm that maxi-
mizes the USMR, as a function of FI layer thickness LFI, at various
values of the magnon-phonon relaxation time τmp.

to use the parameters from Table I) results in a drop in USMR
of some four orders of magnitude.

It follows directly that there exists some optimal value of
lm (which we shall label lm,opt) that maximizes the USMR,
which we plot as a function of the FI layer thickness LFI

in Fig. 5, at LHM = 4.5 nm and σE = 1 × 1012 A m−2, and
for various values of the magnon-phonon relaxation time τmp,
which is the shortest and therefore most important timescale
we take into account. For the physically realistic value of
τmp = 1 ps (blue curve), the optimal magnon spin diffusion
length is just 24 nm. Although lm,opt itself depends on τmp,
the condition lm = lm,opt acts to cancel the dependence of the
USMR on the magnon-phonon relaxation time. Curiously, the
USMR additionally loses its dependence on LFI, reaching a
fixed value of 4.14 × 10−7 for our parameters.

We further find that lm,opt is independent of the spin Hall
angle and driving current and shows a weak decrease with in-
creasing temperature provided the magnon-phonon scattering
time is sufficiently short. A significant increase in the opti-
mal spin diffusion length is only found at low temperatures
and large τmp. Similarly, a weak dependence on the Gilbert
damping constant α is found, becoming more significant at
large τmp, with lower values of α corresponding to larger lm,opt.
When α is swept, again the USMR at lm = lm,opt acquires a
universal value of 4.14 × 10−7 for our system parameters.

E. Effect of the magnon gap

We have thus far utilized a fixed magnon gap with a
value of �/μB = 1 T for YIG. Although this is reasonable for
typical systems, it is possible to significantly reduce the gap
size by minimizing the anisotropy fields within the sample,
e.g., using a combination of external fields [26], optimized
sample shapes [19,27], and temperature [28,29]. This leads us
to consider the effect a decreased or even vanishing gap may
have on our results.

Figure 6 shows the USMR U for a Pt|YIG system (4.5 nm
of Pt and 5 μm of YIG) at room temperature, plotted against
the driving current σE , now for different values of the magnon
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FIG. 6. USMR U of a Pt(4.5 nm)|YIG(5μm) bilayer at room
temperature versus applied current σE at various values of the
magnon gap �. For large gaps, linear behavior is recovered at
realistic currents, while for smaller gap sizes, the USMR saturates
as the current is increased.

gap �. Here it can be seen that while U is linear in E for large
gap sizes and realistic currents, it shows limiting behavior at
smaller gaps, becoming independent of the electric current
above some threshold (provided one neglects the effect of
Joule heating). At low current and intermediate magnon gap,
the current dependence is nonlinear at O(I2) as opposed to the
O(I3) behavior found by Avci et al. [10].

Note also that the saturation value of the USMR is two
to three orders of magnitude greater than the values found
previously in our work, and of the same magnitude as the
electronic contribution found by Zhang and Vignale [8].

The maximal value of the USMR that can be achieved
may be found by considering the full analytic expression
for U in terms of the generic coefficients Ii representing the
dimensionless integrals given by Eqs. (A1) in the Appendix.
In the gapless limit � → 0 and at equal magnon and elec-
tron temperature (Tm = Te), the second-order coefficients Imm

and Ime diverge, while their sum takes the constant value
λ ≡ Imm + Ime 	 0.323551 at room temperature. Iee does not
diverge, and obtains the value −λ.

Now working in the thick-ferromagnet limit (LFI → ∞),
we substitute Ime → −Imm + λ and take the limits E → ∞
and Imm → −∞. By application of l’Hôpital’s rule in the
latter, all coefficients Ii drop out of the expression for U . This
leaves only the asymptotic value, which, after expanding in
θSH, reads

Umax = 4e2l2
s θ2

SHσm tanh2
(LHM

2ls

)
h̄2lmLHMσ +4lse2LHMσm coth

(LHM
ls

) +O
(
θ4

SH

)
. (6)

Whereas the linear-in-E regime of the magnonic USMR
grows as θ3

SH, we thus find that the leading-order behavior
of the asymptotic value is only θ2

SH, and the third-order term
vanishes completely. Physically, this can be explained by the
fact that the asymptotic magnonic USMR is purely a bulk
effect: All details about the interface vanish, while parameters
originating from the bulk spin and charge currents remain.
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FIG. 7. USMR U of a Pt(4.5 nm)|YIG(5 μm) bilayer at room
temperature as function of the magnon gap size � for various values
of the base charge current σE . Note the log-log scaling. Solid colored
lines: Computed USMR. Dashed colored lines: Continuations of the
high-gap tails of the corresponding curves according to the one-
parameter fit U = u0/

√
�. Dashed black line: asymptotic value of

the USMR as given by Eq. (6).

The appearance of lm in the denominator and its absence in
the numerator of Eq. (6) once again highlights that a large
magnon spin diffusion length acts to suppress the USMR.

Figure 7 is a log-log plot of the USMR versus gap size � at
various values of the driving current σE . Here the value Umax

is shown as a dashed black line, indicating that this is indeed
the value to which U converges in the gapless limit or at high
current. Moreover, it shows that for given σE , one can find a
turning point at which the USMR switches relatively abruptly
from being nearly constant to decreasing as 1/

√
�.

A (backward) continuation of the decreasing tails is in-
cluded in Fig. 7 as dashed lines following the one-parameter
fit U = u0/

√
�, and we define the threshold gap �th as the

value of � where this continuation intersects Umax. We then
find that �th scales as E2, or conversely, that the driving
current required to saturate the USMR scales as the square
root of the magnon gap.

We note that although the small-gap regime is mathemat-
ically valid (even in the limit � → 0, as � may be brought
arbitrarily close to 0 in a continuous manner), it does not
necessarily correspond to a physical situation: When the
anisotropy vanishes, the magnetization of the FI layer may
be reoriented freely, which will break our initial assumptions.
Nevertheless, in taking the gapless limit, we are able to predict
an upper limit on the magnonic USMR.

IV. CONCLUSIONS

Using a simple drift-diffusion model, we have shown that
magnonic spin accumulation near the interface between a
ferromagnetic insulator and a heavy metal leads to a small
but nonvanishing contribution to the unidirectional spin Hall
magnetoresistance of FI|HM heterostructures. Central to our
model is an interfacial spin current originating from a spin-
flip scattering process whereby electrons in the heavy metal
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create or annihilate magnons in the ferromagnet. This current
is markedly nonlinear in the electronic and magnonic spin
accumulations at the interface, and it is exactly this nonlin-
earity which gives rise to the magnonic USMR.

For Pt|YIG bilayers, we predict that the magnonic USMR
U is at most on the order of 10−8, roughly three orders of mag-
nitude weaker than the measured USMR in FM|HM hybrids
(where electronic spin accumulation is thought to form the
largest contribution). This is fully consistent with experiments
that fail to detect USMR in Pt|YIG systems, as the tiny
signal is drowned out by the interfacial spin Seebeck effect,
which has a similar experimental signature and is enhanced
compared to the FM|HM case due to inhomogeneous Joule
heating.

We have shown that the magnon-mediated USMR is ap-
proximately cubic in the spin Hall angle of the metal, sug-
gesting that metals with extremely large spin Hall angles may
provide a significantly larger USMR than Pt. It is therefore
plausible that a large magnonic USMR can exist in systems
with very strong spin-orbit coupling, even though our model
would break down in this regime.

The magnonic USMR depends strongly on the magnon
spin diffusion length lm in the ferromagnet. Motivated by a
large discrepancy between experimental values and theoreti-
cal predictions of lm, we have shown that a significant increase
in USMR can be realized if a method is found to engineer this
parameter to specific, optimal values that, for realistic values
of the magnon-phonon relaxation time τmp (on the order of
1 ps for YIG), are significantly shorter than those measured
experimentally or computed theoretically. We further find
that when the magnon spin diffusion length has its optimal
value, the USMR becomes independent of the ferromagnet’s
thickness and Gilbert damping constant.

Although in physically reasonable regimes the magnonic
USMR is to very good approximation linear in the applied
driving current σE , it saturates to a fixed value given ex-
tremely large currents or a strongly reduced magnon gap �.
The transition from linear to constant behavior in the driving
current is heralded by a turning point which is proportional to
the square root of the magnon gap. The asymptotic behavior
of the USMR beyond the turning point is governed by the bulk
spin and charge currents and is completely independent of the
details of the interface.

While a vast reduction in � is required to bring the
saturation current of a Pt|YIG bilayer within experimentally
reasonable regimes, the magnonic USMR scales as 1/

√
�

at currents below the turning point, suggesting that highly
isotropic FI|HM samples are most likely to produce a measur-
able magnonic USMR. The increase in magnonic USMR at
low gaps (and large currents) is in good qualitative agreement
with the recent experimental work of Avci et al. [10], as is the
linear dependence on system temperature.

A notable disagreement with the experimental data of Avci
et al. [10] is found in the scaling of the current dependence,
which in our results lacks an O(I3) term at large magnon gaps

and contains an O(I2) term at intermediate gaps. It is still
unclear whether this discrepancy can be explained by system
differences, such as the finite electrical resistance of Co or the
presence of Joule heating.

Finally, we note that while our results apply to ferro-
magnetic insulators, it is reasonable to assume a magnonic
contribution also exists in HM|FM heterostructures, although
the possibility of coupled transport of magnons and electrons
makes such systems more difficult to model. Additionally,
various extensions of our model may be considered, such as
the incorporation of spin-momentum locking [5], ellipticity of
magnons, heat transport and nonuniform temperature profiles
[21], directional dependence of the magnetization, etc.
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APPENDIX: INTERFACIAL SPIN CURRENT INTEGRALS

The following dimensionless integrals appear in the
second-order expansion of the interfacial spin current to the
spin accumulations, Eq. (2):

I0 =
∫ ∞

�
kBTm

dx

√
x − �

kBTm
x

[
nB(x) − nB

(
Tm

Te
x

)]
, (A1a)

Ie =
∫ ∞

�
kBTm

dx

√
x − �

kBTm

{
nB

(
Tm

Te
x

)
− nB(x)

− Tm

Te
xe

Tm
Te

x

[
nB

(
Tm

Te
x

)]2
}

, (A1b)

Im =
∫ ∞

�
kBTm

dx

√
x − �

kBTm
xex[nB(x)]2, (A1c)

Iee =
∫ ∞

�
kBTm

dx

√
x − �

kBTm

{
e

Tm
Te

x

[
nB

(
Tm

Te
x

)]3

×
[

e
Tm
Te

x − 1 − Tmx

2Te

(
e

Tm
Te

x + 1
)]}

, (A1d)

Imm =
∫ ∞

�
kBTm

dx

√
x − �

kBTm

x

2
ex[ex + 1][nB(x)]3, (A1e)

Ime = −
∫ ∞

�
kBTm

dx

√
x − �

kBTm
ex[nB(x)]2. (A1f)
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